
Mitigate HDD Fail-Slow by Pro-actively Utilizing
System-level Data Redundancy with Enhanced

HDD Controllability and Observability
1st Jingpeng Hao

Electrical, Computer, and Systems Engineering Department
Rensselaer Polytechnic Institute

Troy, USA
haoj@rpi.edu

2nd Yin Li
Electrical, Computer, and Systems Engineering Department

Rensselaer Polytechnic Institute
Troy, USA

liyin1985@gmail.com

3rd Xubin Chen
Electrical, Computer, and Systems Engineering Department

Rensselaer Polytechnic Institute
Troy, USA

chenx22@rpi.edu

4th Tong Zhang
Electrical, Computer, and Systems Engineering Department

Rensselaer Polytechnic Institute
Troy, USA

tzhang@ecse.rpi.edu

Abstract—This paper presents a design framework aiming
to mitigate occasional HDD fail-slow. Due to their mechanical
nature, HDDs may occasionally suffer from spikes of abnormally
high internal read retry rates, leading to temporarily significant
degradation of speed (especially the read latency). Intuitively, one
could expect that existing system-level data redundancy (e.g.,
RAID or distributed erasure coding) may be opportunistically
utilized to mitigate HDD fail-slow. Nevertheless, current practice
tends to use system-level redundancy merely as a safety net, i.e.,
reconstruct data sectors via system-level redundancy only after
the costly intra-HDD read retry fails. This paper shows that one
could much more effectively mitigate occasional HDD fail-slow by
more pro-actively utilizing existing system-level data redundancy,
in complement to (or even replacement of) intra-HDD read
retry. To enable this, HDDs should support a higher degree
of controllability and observability in terms of their internal
read retry operations. Assuming a very simple form enhanced
HDD controllability and observability, this paper presents design
solutions and a mathematical formulation framework to facilitate
the practical implementation of such pro-active strategy for
mitigating occasional HDD fail-slow. Using RAID as a test vehicle,
our experimental results show that the proposed design solutions
can effectively mitigate the RAID read latency degradation even
when HDDs suffer from read retry rates as high as 1% or 2%.

Index Terms—HDD fail-slow, read latency, RAID, read retry,
system-level redundancy

I. INTRODUCTION

This paper studies how to effectively mitigate the fail-
slow problem of hard disk drive (HDD). With the mechanical
nature, HDDs are fundamentally sensitive to the variation
of environmental factors such as vibration, temperature, and
humidity [1]. This attributes to the widely observed HDD fail-
slow phenomenon (i.e., HDDs occasionally operate at a speed
much slower than their normal specs). A recent study [2]
on fail-slow hardware reports that HDD speed could drop
by even 3 orders of magnitudes due to vibration. Driven by

new magnetic recording technologies (e.g., heat assisted mag-
netic recording (HAMR) [3], [4], shingled magnetic record-
ing (SMR) [5], [6], and two-dimensional magnetic recording
(TDMR) [7]–[9]), the track pitch of HDDs will continue to
shrink, which will make future HDDs inevitably more subject
to environmental variations and hence more severe fail-slow
problems.

This work particularly focuses on the read-fail-slow problem
that is mainly caused by the read retry operations inside HDDs.
Upon an internal sector read failure (e.g., due to environmental
variation), today’s HDDs always switch into a so-called retry
mode during which HDDs repeatedly read the failed sector by
adjusting various operational configurations/parameters (e.g.,
read head position, timing recovery, and read-back signal
amplification). The read retry operation continues until the
sector read succeeds or a timeout limit (e.g., tens of seconds)
has been reached. Under significant environmental variations,
HDDs could experience abnormally high read retry rate (e.g.,
0.1% and above), leading to very poor speed performance
(especially the tail latency) over a certain period. In com-
parison, read retry rate is typically 10−5 ∼ 10−6 (and even
below) under normal HDD specs. Very intuitively, in the
presence of system-level data redundancy (e.g., RAID and
distributed erasure coding), we could utilize such existing
data redundancy to indirectly reconstruct the data instead of
solely relying on intra-HDD read retry. In order to materialize
this very simple concept, HDDs should support a higher
degree of controllability (e.g., host can dynamically turn on/off
intra-HDD read retry and/or adjust the read retry timeout
limit) and observability (e.g., host can inquire HDDs about
their current read retry statistics). The industry has of course
recognized the potential benefits of this simple concept. For
example, under the Open Compute Project (OPC), there is a

proposal on making cloud-HDDs to support the so-called fast-
fail read [10], which reduces the HDD read retry timeout limit
on the per-request basis. Nevertheless, current practice tends
to be passive from the following two aspects: (1) It only re-
actively invokes the system-level indirect data reconstruction,
i.e., only after HDDs report sector read failures due to internal
read retry timeout, the host will fetch the entire redundancy
coding group from the HDD array to indirectly reconstruct the
failed sectors. (2) It only opportunistically utilizes the existing
data redundancy without actively enhancing the sector-failure-
tolerance capability of the redundancy coding schemes (e.g.,
RAID and distributed erasure coding). Recall that current
redundancy coding schemes are designed solely for tolerating
catastrophic HDD failures (and server unavailability in the
case of distributed erasure coding). Tolerating random sector
read failures is essentially just a by-product of current redun-
dancy coding schemes.

II. BACKGROUND AND RATIONALE

It is well documented that HDDs can occasionally operate
at a speed much slower than their normal specs, which is
called fail-slow [2]. Although the exact reason behind HDD
fail-slow can be multi-fold and even is not fully understood (at
least in the open literature), it is generally believed that fail-
slow is mainly caused by abnormally high intra-HDD read
retry rate. This is particularly true when deploying HDDs
in a harsh operating environment such as data centers. Each
read retry repeatedly reads the failed sector through additional
disk rotations until the sector has been successfully read or a
timeout limit has been reached. In the former case (i.e., read
retry success), the host receives the correct data but suffers
from a (much) longer read latency; while in the latter case
(i.e., read retry failure), HDDs will report a sector read failure
(i.e., a sector data loss) to the host.

In the presence of system-level data redundancy (e.g.,
RAID and distributed erasure coding), we could possibly
better mitigate HDD fail-slow by complementing (or even
replacing) intra-HDD read retry with system-level indirect
data reconstruction. This requires that HDDs have certain
controllability and observability in terms of their internal read
retry. The industry has of course well recognized the potential
of this very simple intuition. For example, HDDs that are fully
compliant with the T13 ATA-8 standard [11] allow the host
to configure the read retry timeout limit on the per-drive basis
through the time-limited error recovery (TLER) parameter.
Nevertheless, per-drive configuration of the read retry timeout
limit tends to be too coarse-grained and inflexible. A more
recent effort is an OPC proposal [10] on introducing a new
fast-fail read command that can adjust the retry timeout limit
on the per-request basis. Nevertheless, as discussed earlier in
Section I and further illustrated in Fig. 1(a), current practice
always serves each read request with the normal mode first
while keeping the system-assisted mode as a backup just in
case of intra-HDD read retry timeout.

Under relatively severe HDD fail-slow with high read retry
rate (e.g., 1% and above), such a passive current practice

Normal mode

(rely on intra-HDD retry

to handle read failures)

Success?

System-assisted mode

(rely on system redundancy

to handle read failures)

Read request

Estimate the normal mode

vs. system-assisted mode

Normal mode

better?

Normal mode

(rely on intra-HDD retry

to handle read failures)

System-assisted mode

(rely on system redundancy

to handle read failures)

Success?

Read request

N

N

NY

(a) (b)

Finish Finish

Y

Y

Fig. 1. Illustration of the operational flow on serving each request in the case
of (a) current practice, and (b) envisioned pro-active design strategy.

may not necessarily be the best option. In particular, certain
read requests may be (much) better served by directly starting
with the system-assisted mode. Very intuitively, one may want
to be more flexible on how each read request is served in
order to achieve better overall system latency performance.
This leads to a more pro-active design strategy as illustrated
in Fig. 1(b). The objective of this work is to investigate the
effective implementation of such a pro-active design strategy
and quantitatively evaluate its potential advantage over current
practice.

III. PROPOSED DESIGN SOLUTIONS

Under the pro-active design strategy as illustrated in
Fig. 1(b), for each read request, we must decide whether it
is beneficial to directly serve this read request in the system-
assisted mode. We can formulate this decision-making process
as follows: For each read request r, let the set Rr contains
all the read requests whose read latency will be affected by
the decision on whether we serve the current request r in
the normal mode or system-assisted mode. Obviously, all the
requests in Rr are served after the request r has been served.
For each read request ri ∈ Rr, let τ (N)

i and τ
(S)
i denote its

read latency if we serve the current request r in the normal
mode and system-assisted mode, respectively. Without the loss
of generality, we assume all the read requests have the same
priority (i.e., their read latencies are equally important). Hence,
we can use the aggregated net read latency

τ =
∑
∀ri∈Rr

(
τ
(N)
i − τ (S)

i

)
(1)

as the metric for the decision, i.e., if τ > 0, then we should
serve the current read request r directly in the system-assisted
mode, otherwise we start with the normal mode. In this
section, we will first present two techniques that can reduce
the latency τ

(S)
i and hence increase the chance of using the

system-assisted mode to improve overall read latency profile.

In particular, Section III-A presents a scheme that can improve
the tolerance to random sector read failures, which can con-
tribute to reducing τ (S)

i . Section III-B discusses the practical
implementation of system-assisted mode, which may help to
reduce τ (S)

i . Section III-C presents a mathematical framework
that formulates the process of quantitatively estimating the
aggregated net read latency τ . In particular, given each read
request r, the mathematical formulation framework can be
used to estimate the set Rr and each τ (N)

i − τ (S)
i . To simplify

the discussions, this paper describes and evaluates the design
solutions in the context of RAID, where each individual HDD
is a fault domain.

A. Expanded RAID Encoding

Let us consider a RAID system over m+ k HDDs, which
can tolerate the catastrophic failures of any k HDDs. In current
practice, each codeword (e.g., (m+1)-bit parity codeword in
RAID-5 with k = 1 and (m+2)-byte Reed-Solomon codeword
in RAID-6 with k = 2) protects m user data symbols with
k redundant symbols and can correct k symbol errors. Each
codeword spans over m+k sectors, where each sector is stored
on one individual HDD. Hence, being covered by a large
number of independent codewords, each group of m+k sectors
form a sector coding group and can tolerate up to k sector read
failures within this (m+k)-sector coding group. Let pf denote
the sector read failure probability when intra-HDD read retry
is disabled, we can calculate the probability of RAID decoding
failure (i.e., one sector coding group experiences more than k
sector read failures) as

PRAID fail =

m+k∑
i=k+1

(
m+ k

i

)
· pif · (1− pf)m+k−i.

In the case of RAID decoding failure, we have to re-fetch
the data from HDDs by enabling the intra-HDD read retry.
This however could significantly increase the read latency of
the current read request. Therefore, it is highly desirable to
reduce the RAID decoding failure probability. To achieve this
objective, we propose an expanded RAID (eRAID) coding
strategy, where the key is to expand the length of each
codeword by an expansion factor e ≥ 1 so that each codeword
spans over e consecutive sectors from each HDD. Let s denote
the number of sectors in each RAID stripe, and assume s is di-
visible by the expansion factor e. Each eRAID codeword (e.g.,
Reed-Solomon codeword) protects e·m user data symbols with
e · k redundant symbols and can tolerate up to e · k symbol
errors. Each eRAID codeword spans over e · (m+ k) sectors,
where e consecutive sectors are stored on one individual HDD.
Therefore, each group of e · (m + k) sectors form a sector
coding group and can tolerate up to e · k sector read failures
within this e · (m + k)-sector coding group. Assuming each
stripe consists of 2 sectors (i.e., s = 2) and meanwhile setting
m = 2 and k = 1, Fig. 2 further illustrates and compares the
conventional RAID and proposed eRAID coding. In the case
of eRAID encoding, we set the expansion factor e = 2. As
shown in Fig. 2(a), with m = 2 and k = 1, each codeword

in conventional RAID (i.e., RAID-5) is a simple 3-bit parity
codeword and can correct a 1-bit error. Hence each group of 3
sectors form a coding sector group and can tolerate one sector
failure. In comparison, as shown in Fig. 2(b), each codeword
in the eRAID is a 6-byte Reed-Solomon (RS) codeword and
can tolerate two 1-byte errors. Hence each group of 6 sectors
form a coding sector group and can tolerate two sector failures
within this 6-sector coding group.

Given the sector read failure rate of pf , we can calculate the
probability that one eRAID codeword experiences a decoding
failure (i.e., one eRAID sector group experiences more than
e · k read failures) as

PeRAID fail =

e·(m+k)∑
i=e·k+1

[(
e · (m+ k)

i

)
·pif ·(1−pf)e·(m+k)−i

]
.

We note that the above formula is valid only when the
occurrence of read failure on one sector is statistically in-
dependent from any other sectors. Although this is true for
sectors from different HDDs, it may not be necessarily true
for adjacent sectors from the same HDD. Nevertheless, each
eRAID sector coding group contains e adjacent sectors from
each HDD. Under severe environmental vibration, if one sector
experiences a read failure, its adjacent sector may more likely
experience a read failure as well. To incorporate such adjacent-
sector failure correlation, we can use a correlation factor c
(c ≥ 1) , i.e., under the sector read failure rate of pf , if one
sector experiences a read failure, a read failure may occur on
its adjacent sector with a probability of c · pf . Among all the
sector read failures, at most half of the failures occur with
the probability of c · pf . Therefore, we can estimate the upper
bound of the eRAID decoding failure probability as

PeRAID fail ≤
e·(m+k)∑
i=e·k+1

[(
e · (m+ k)

i

)
· pb

i
2 c

f · (c · pf)d
i
2 e

·(1− c · pf)e·(m+k)−i
]
.

Fig. 3 shows the simulated decoding failure probability
under different sector read failure rates with m = 5 and
k = 1. For eRAID, we considered two different values of the
expansion factor e (i.e., 2 and 3). The adjacent sector failure
correlation factor c is set to be 1 (i.e., no correlation) and
2 (i.e., if one sector fails, the failure rate of its immediately
adjacent sector will double). The results clearly show that the
proposed eRAID can significantly reduce the decoding failure
probability. For example, under the sector read failure rate
of 1%, the conventional RAID decoding failure probability is
1.5 × 10−3, and the eRAID decoding failure probability is
2.1× 10−4 and 2.7× 10−5 when the expansion factor e is 2
and 3, respectively, when there is no adjacent sector failure
correlation (i.e., c = 1). If we aggressively set the correlation
factor as 2 , the eRAID decoding failure probability only
slightly increases to about 3 × 10−4 and 4 × 10−5 when the
expansion factor e is 2 and 3, respectively. Clearly, eRAID
maintains the same level of tolerance to catastrophic HDD

One sector HDD

HDD

HDD

One 3-bit parity codeword

(tolerate 1-bit error)
One 3-sector coding group

(tolerate one sector failure)

HDD

HDD

HDD

One 6-byte RS codeword

(tolerate two 1-byte errors)

One 6-sector coding group

(tolerate two sector failures)

(a) (b)

.

. . .

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Two independent 3-sector coding groups

Fig. 2. Illustration of (a) conventional RAID and (b) proposed eRAID on 3 HDDs with m = 2 and k = 1.

failures as the conventional RAID, because each catastrophic
HDD failure causes e sector failures within each eRAID
coding sector group.

Fig. 3. RAID decoding failure rate under different sector read failure rate
with m = 5 and k = 1.

It should be pointed out that, as the cost of achieving
stronger tolerance to random sector read failures, the proposed
eRAID apparently demands higher encoding and decoding
computational complexity. Given an RS code with the code-
word length n and error-correction strength of t, its encoding
and decoding computational complexity is proportional to n·t.
Because of the relatively short codeword length (e.g., 10 or 20)
and the small value of t (e.g., 2 or 4) in real-world systems,
the computational complexity overhead of eRAID tends to be
insignificant and can be easily accommodated by hardware-
based RAID controller. In the case of software-based RAID
controller, modern CPUs can also easily handle the eRAID
encoding/decoding. For example, the RS encoding/decoding
modules in Intel Intelligent Storage Acceleration Library (ISA-
L) [12] can readily achieve above GB/s throughput on a single
CPU core.

B. Implementation of System-Assisted Mode

When serving a read request in the system-assisted mode,
we essentially intend to opportunistically leverage the exist-
ing coding redundancy to improve the read latency profile,
especially in the presence of occasional HDD fail-slow with
high read retry rates. At the first glance, one may intuitively
expect to implement the system-assisted mode in a progressive
manner: We first only fetch the requested data (with intra-
HDD read retry disabled) from the RAID array. Only if one
or multiple sector read failures occur, we fetch the other data
in the same sector coding group (with intra-HDD read retry
disabled) and reconstruct the requested data from the RAID
decoding. However, this intuitive implementation option fails
to exploit the full potential of the system-assisted mode. In par-
ticular, in the presence of existing coding redundancy, there are
multiple ways of obtaining/reconstructing the requested data,
among which directly fetching the requested data may not
necessarily always be the best option. For example, suppose
one read request aims to fetch data from l HDDs among the
total m + k HDDs. Besides directly fetching the data from
these l HDDs, there are

(
m+k
m

)
other ways of fetching data

from HDDs to reconstruct the requested data. Considering
the runtime variations among all the HDDs (e.g., in terms
of sector read failure rate and request queue depth), the above
progressive data fetching strategy may not always be the best
option.

In this work, we propose to implement the system-assisted
mode in a pro-active manner with a posteriori request removal.
The basic idea is simple and can be described as follows.
First, we note that, throughout the remainder of this paper,
the term read request refers to the request being issued to
the RAID array, and the term read sub-request refers to the
request being dispatched to one individual HDD. To serve one
read request being issued to the RAID array, we dispatch
one or multiple sub-requests to one or multiple HDDs in
the RAID array. Given a read request r covering data on l

HDDs, let {r1, r2, · · · , rl} denote the corresponding l sub-
requests. Meanwhile, let {r′1, r′2, · · · , r′m+k} denote the sub-
requests that fetch the entire coding group covering the read
request r, where ri ⊆ r′i for 1 ≤ i ≤ l (i.e., compared with
the original sub-request ri, the sub-request r′i may read the
same or more data dependent upon the boundary of the coding
group). When serving the read request r in the system-assisted
mode, we simultaneously dispatch the entire sub-request set
{r′1, r′2, · · · , r′m+k} to all the m + k HDDs with intra-HDD
read retry disabled. Due to the runtime variations among all
the HDDs, the service on different sub-requests may finish at
(largely) different time. Let the set {di} denote the returned
data of all the sub-requests that have been served by HDDs so
far (note that a sector read failure will correspond to an erasure
in {di}). Once the data set {di} is enough to reconstruct the
data being requested by r, we immediately remove the other
outstanding sub-requests r′j’s that have not entered HDDs
yet (i.e., those sub-requests that are still waiting in the host-
side request queues). Clearly, if we can further enhance the
controllability of HDDs so that host can inform HDDs to
cancel requests that have been dispatched to HDDs, we can
further improve the effectiveness of this design approach. In
this work, to minimize the changes to HDDs, we do not
assume the availability of such additional HDD controllability.
Hence, we can only remove the sub-requests that have not
entered HDDs yet.

In the case that we still cannot reconstruct the requested data
even after all the sub-requests {r′1, r′2, · · · , r′m+k} have been
served by the HDDs (i.e., because of too many sector read
failures), we have to re-dispatch one or more sub-requests
to HDDs with intra-HDD read retry enabled. Based upon
the above discussions, Fig. 4 further illustrates the entire
operational flow of the proposed method for implementing the
system-assisted mode.

C. Aggregated Net Read Latency Estimation

As discussed above, we can use the aggregated net read
latency τ in Eq. (1) as a metric to decide whether it is bene-
ficial to directly serve one read request in the system-assisted
mode. This subsection presents a mathematical formulation
framework for quantitatively estimating this metric. Given a
read request being issued to the RAID array, we dispatch one
or multiple sub-requests to HDDs, where each sub-request
fetches data from one HDD. To simplify the mathematical
formulation, we treat all the sub-requests independently from
each other and count the read latency of each sub-request
individually. Hence, for each read request, we re-define Rr as
the set that contains all the sub-requests whose read latency
will be affected by the decision whether we serve the current
read request r in the normal mode or system-assisted mode.
For each sub-request ri ∈ Rr, let τ (N)

i and τ (S)
i denote its read

latency if we serve the current request r in the normal mode
and system-assisted mode, respectively. As shown in Eq. (1),
in order to estimate the aggregated net read latency τ , we must
determine the set Rr and estimate the read latency difference(
τ
(N)
i − τ (S)

i

)
for each sub-request within the set Rr.

Read request r

Issue sub-requests {r'1,r'2, … ,r'm+k} to all

the m+k HDDs with read retry disabled

Put the returned data into

the set {di}

Response from

one HDD?

{di} enough to

reconstruct the

requested data?

All the HDDs

responded?

Re-issue some sub-requests

with read retry enabled

N

Y

N

N

Y

Y

Remove all the outstanding sub-

requests from the request queue

Fig. 4. Illustration of the operational flow of serving a read request in the
system-assisted mode using the proposed implementation method.

We first discuss the estimation of
(
τ
(N)
i − τ (S)

i

)
. Without

the loss of generality, we assume the read request r spans
over the first l HDDs (where l ≤ m + k). When serving the
read request r in the system-assisted mode with the method
presented in Section III-B, we dispatch m + k sub-requests
{r′1, r′2, · · · , r′m+k} to all the m + k HDDs (with intra-HDD
read retry disabled). Accordingly, we partition the set Rr into
m + k sub-sets R(j)

r (1 ≤ j ≤ m + k), where each R(j)
r

contains all the sub-requests dispatched to the j-th HDD. Let
τ
(j)
HDD denote the average latency for the j-th HDD to serve

one read without read retry (i.e., the latency of seeking the
location and then flying over one or multiple sectors). For the
j-th HDD, let p(j)f denote the sector read failure probability,
and τ

(j)
retry denote the average read retry latency once read

retry is enabled. For each sub-request in R(j)
r , we have

τ
(N)
i −τ (S)

i =

{
p
(j)
f · τ

(j)
retry + p

(j)
c · τ (j)HDD, 1 ≤ j ≤ l

−(1− p(j)c) · τ (j)HDD, l < j ≤ m+ k
,

where p(j)c denote the probability that the sub-request r′j will
be canceled from the host-side request queue.

Next, we will discuss how to determine the m + k sub-
sets R(j)

r (1 ≤ j ≤ m + k). Recall that each sub-set R(j)
r

contains all the future sub-requests being dispatched to the j-
th HDD, whose read latency will be affected by the decision
whether we serve current request r in the normal mode or
system-assisted mode. When we just receive the read request
r, future read requests have not arrived yet. Therefore, we
have to estimate the size of each R(j)

r through appropriate

probabilistic modeling. Let Qj denote the host-side request
queue consisting of all the outstanding sub-requests to be
dispatched to the j-th HDD, and qj(t) denote its queue depth
(i.e., the number of sub-requests waiting in the queue Qj) at
the time of t. Given the read request r, assume we push its
sub-requests into their corresponding queues at the time t0. Let
t
(j)
e denote the time that the queue depth qj(t) drops to zero for

the first time after t0. Once the queue depth drops to zero, we
can assume that the read latency of all the future subsequent
requests will not be affected by any previous requests. Let
n
(j)
t0→te denote the number of sub-requests that have been

pushed into the queue Qj between t0 and t(j)e . Therefore, the
decision of serving current read request r in either normal
mode or system-assisted mode at the time t0 will affect the
n
(j)
t0→te future sub-requests in the queue Qj . Hence, we have

that |R(j)
r | = n

(j)
t0→te .

Given the queue depth of qj(t0) at the time t0, we have that
the j-th HDD will serve total qj(t0) + n

(j)
t0→te sub-requests

before the queue depth qj(t) drops to zero at the time t(j)e .
Recall that τ (j)HDD denote the average latency for the j-th HDD
to physically serve one read without read retry. Since intra-
HDD read retry rate may at most be few percent, we can
estimate that it will take

T
(j)
t (n)|

n=n
(j)
t0→te

=
(
qj(t0) + n

(j)
t0→te

)
· τ (j)HDD (2)

for the j-th HDD to serve all the sub-requests in the queue
before the queue depth drops to zero. Meanwhile, let P (j)

n (t)
denote the probability that n sub-requests enter the queue Qj

within a period of t. Therefore, we could estimate the average
value of n(i)t0→te (i.e., the size of the sub-set R(j)

r) as

E
(
n
(j)
t0→te

)
=
∞∑

n=1

n · P (j)
n

(
T

(j)
t (n)

)
. (3)

Accordingly, based upon above discussions, we could estimate
the aggregated net read latency τ as

τ =
l∑

j=1

E
(
n
(j)
t0→te

)
·
(
p
(j)
f · τ

(j)
retry + p(j)c · τ

(j)
HDD

)
−

m+k∑
j=l+1

E
(
n
(j)
t0→te

)
· (1− p(j)c) · τ (j)HDD. (4)

In the runtime, HDDs with enhanced observability periodically
update the host with the values of the sector read failure
probability p(j)f , average read retry latency τ (j)retry, and average
read service time τ

(j)
HDD. Meanwhile, host can estimate the

sub-request cancellation probability p
(j)
c based upon recent

operational statistics. Host can estimate P
(j)
n (t) based upon

recent request arrival statistics. In particular, assuming that
the request arrival interval can be modeled as a random Pois-
son process, we can easily estimate the Poisson distribution
parameter based on recent request arrival statistics, and then
accordingly derive the probability P (j)

n (t).

IV. EVALUATIONS

We carried out experiments on a server with dual-socket
Intel Xeon E5-2630 2.2GHz CPUs (10 cores per socket),
64GB DRAM, and six HDDs that form a RAID-5 with the
stripe size of 8kB. Each HDD is a 2TB 7200rpm SATA
6.0Gb/s 3.5′′ internal drive. To enable each HDD fully exploit
the Native Command Queuing (NCQ), we run 32 threads
in the user-space to concurrently dispatch read requests to
each HDD, and each thread maintains its own request queue.
We uniformly distribute requests among all the 32 queues
associated with the same HDD. Therefore, for all the six
HDDs, we run total 192 threads in parallel (hence total 192
queues) to dispatch requests to the six HDDs.

To emulate HDD fail-slow under different read retry rate
and retry latency, we use a simple method described below:
Let p(j)f denote the read retry rate of the j-th HDD, and sj
denote the average number of disk rotations for the j-th HDD
to finish one read retry. Let ns denote the average number
of 4kB sectors along each track. Given one sub-request that
consists of b sectors and is dispatched to the j-th HDD with
read retry enabled, we can estimate the probability that this
sub-request experiences a read retry as 1−

(
1−p(j)f

)b
. In this

work, we assume that HDDs can maximize their internal read
retry efficiency, i.e., the same read retry operation can handle
all the sector read failures encountered by one sub-request.
Therefore, with the probability of 1−

(
1−p(j)f

)b
, we increase

the size of this sub-request by sj · ns · 4kB, regardless the
number of sector read failures encountered by this sub-request.
Moreover, to simplify the experiments, we use a fixed small
number (i.e., only 3 or 5 in this work) of disk rotations per
read retry operation. In modern 3.5′′ HDDs, the number of
sectors per track ranges from about 200 to 400 dependent on
the track position on the surface of the disk platter. In our
experiments, we set that the average number of 4kB sectors
per track is 300. Therefore, to emulate the occurrence of read
retry when one HDD serves a read request, we increase the
read request size by 3.6MB and 6MB for 3 and 5 rotations
per read retry.

Moreover, to incorporate the adjacent sector failure correla-
tion (as discussed in Section III-A), we assume that a sector
read failure makes its immediately adjacent sector subject to
a higher failure probability c · p(j)f , and we set the factor c
as 2 (i.e., the sector failure probability will double) in our
experiments.

A. Impact of Read Retry

We first evaluated the effect of HDD fail-slow. In particular,
we consider the scenarios where intra-HDD read retry rate
temporarily increases from normal specs (i.e., 10−5 ∼ 10−6)
to 1% or 2% because of significant environmental variations.
We carried out experiments under three different read request
sizes (8kB, 24kB, and 40kB). To better reveal the impact of
read request size, we ran each experiment using one request
size. The read request arrival interval follows the Poisson
distribution, and the starting LBA (logical block address) of

0.005 0.010 0.020
0

40

80

120

160

200

(a)

A
ve

ra
ge

 L
at

en
cy

(m
s)

Sector Failure Rate
0.005 0.010 0.020

0

50

100

150

200

250

(b)

A
ve

ra
ge

 L
at

en
cy

(m
s)

Sector Failure Rate

 Normal Mode Adaptive Sub-request Removal Pro-active Data Reconstruction Reactive Data Reconstruction

0.005 0.010 0.020
0

200

400

600

800

1000

1200

(c)

A
ve

ra
ge

 L
at

en
cy

(m
s)

Sector Failure Rate

Fig. 5. Measured average read latency with normal mode and different system-assisted mode implementations when the read request size is (a) 24kB, (b)
40kB, and (c) 80kB. The mean of request arrival interval is 8ms.

each read request randomly distributes throughout the entire
LBA range. Since each HDD can sustain up to around 200
random 4kB IOPS, we chose the average arrival interval of
8ms in order to create relatively high stress on HDDs and
meanwhile obviate request queue overflow. Table I and Table II
show the measured average and 99-percentile read latency,
respectively, under different configurations. Given the same
request average arrival interval, due to the absence of request
queue overflow, all the different configurations have the same
IOPS and only differ on read latency.

TABLE I
COMPARISON OF AVERAGE READ LATENCY.

Rotations Retry Read request size

per retry rate 8kB 24kB 40kB
0 16ms 41ms 107ms

3 1% 18ms 48ms 221ms
2% 19ms 64ms 269ms

5 1% 18ms 56ms 284ms
2% 22ms 90ms 553ms

TABLE II
COMPARISON OF 99-PERCENTILE READ LATENCY.

Rotations Retry Read request size

per retry rate 8kB 24kB 40kB
0 43ms 169ms 832ms

3 1% 63ms 236ms 1,712ms
2% 68ms 512ms 2,190ms

5 1% 81ms 243ms 2,513ms
2% 98ms 530ms 3,336ms

The results show the significant impact of high intra-HDD
read retry rate, even though we assume each read retry only
incurs 3 or 5 additional disk rotations. Its impact increases as
the read request size increases. For example, with 3 additional
rations per retry, when read retry rate increases from 0 to 1%,
the average read latency only increases from 16ms to 18ms
for 8kB request size, but it increases from 107ms to 221ms
for 40kB request size. Under the read retry rate of 2% and
5 rotations per retry, the average read latency can degrade

by 4× for 40kB request size. Table II shows the same trend
on the 99-percentile read latency. The measurement results
quantitatively demonstrate that even few percentage of read
retry rate with few disk rotations per retry could significantly
degrade the HDD-based storage system performance, which
well justifies the motivations of this work.

B. Effectiveness of Adaptive Sub-Request Removal

We carried out experiments to evaluate the effectiveness
of adaptive sub-request removal when serving a request in
the system-assisted mode. For the purpose of comparison,
we considered the following three different cases on the
implementation of the system-assisted mode:

1) Adaptive sub-request removal: As discussed in Sec-
tion III-B, in order to better embrace the runtime vari-
ations among all the HDDs (e.g., in terms of sector
read failure rate and request queue depth), we propose
to implement the system-assisted mode by pro-actively
invoking data reconstruction with adaptive sub-request
removal from the host-side request queues. This case
fully implements our proposed design approach.

2) Pro-active data reconstruction: Compared with the first
case (i.e., adaptive sub-request removal), its only differ-
ence is the absence of the adaptive sub-request removal.
It fetches the entire coding sector group from the RAID
array and pro-actively leverages the RAID coding to
reconstruct the requested data, but does not remove
those unneeded sub-requests from the host-side request
queues.

3) Reactive data reconstruction: It fetches the entire coding
sector group from the RAID array but only reactively
leverages the RAID coding to reconstruct the requested
data and does not remove those unneeded sub-requests
from the request queues. In particular, this case always
first waits for the requested data from HDDs, and only
if the requested data suffer from sector read failures, it
will then reconstruct the requested data through RAID
decoding.

We note that all the three cases use the conventional RAID-5
encoding (i.e., simple parity code). Fig. 5 and Fig. 6 show the

0.005 0.010 0.020
0

500

1000

1500

2000

2500
99

%
 T

ai
l L

at
en

cy
(m

s)

Sector Failure Rate
(a)

0.005 0.010 0.020
0

500

1000

1500

2000

2500

3000

3500

99
%

 T
ai

l L
at

en
cy

(m
s)

Sector Failure Rate
(b)

 Normal Mode Adaptive Sub-request Removal Pro-active Data Reconstruction Reactive Data Reconstruction

0.005 0.010 0.020
0

1000
2000
3000
4000
5000
6000
7000
8000

99
%

 T
ai

l L
at

en
cy

(m
s)

Sector Failure Rate
(c)

Fig. 6. Measured 99-percentile read latency with normal mode and different system-assisted mode implementations when the read request size is (a) 24kB,
(b) 40kB, and (c) 80kB. The mean of request arrival interval is 8ms.

measured average and 99-percentile read latency, respectively,
when using the above three different cases for implementing
the system assisted mode. We also measured the average and
99-percentile read latency of a baseline that simply uses the
conventional practice (i.e., always serve read requests in the
normal mode with read retry enabled). The average request
arrival interval is 8ms. For the baseline case, each read retry
only consumes 3 additional disk rotations. The results show
that small requests (i.e., 24kB) can be better served by the
normal mode while larger requests (i.e., 40kB and 80kB) can
be better served by the system-assisted mode. Meanwhile, the
advantage of the system-assisted mode rapidly increases as
the read request size increases (e.g., from 40kB to 80kB).
This is because of the following two factors: (1) Data fetching
overhead of the system-assisted mode reduces as we increase
the request size. When the read request spans over all the
HDDs (e.g., 80kB per request), the system-assisted mode does
not incur any extra data fetching overhead. (2) As the read
request size increases, the probability that one request suffers
from sector read failures will increase.

As shown in Fig. 5 and Fig. 6, the proposed adaptive sub-
request removal can noticeably improve the effectiveness of
the system-assisted mode. For example, under 1% sector read
failure rate and 40kB request size, the use of adaptive sub-
request removal can reduce the average read latency by 24%
and 41%, compared with the other two cases. Moreover, the
second case (i.e., pro-active data reconstruction) can achieve
noticeably better latency than the third case (i.e., reactive
data reconstruction). This suggests that, even without adaptive
request removal, it is still beneficial to more pro-actively
leverage the RAID coding redundancy.

C. Effectiveness of eRAID

We further studied the proposed eRAID coding as presented
in Section III-A. In the experiments, we set the expansion
factor of eRAID as 2. Hence, for the RAID-5 over six HDDs,
each eRAID codeword is an RS code that consists of 12
1-byte symbols and can correct up to 2 symbol errors. For
the purpose of comparison, we also considered the baseline

that uses the conventional RAID-5 over the six HDDs (i.e.,
each codeword is a 6-bit parity code). The mean of request
arrival interval remains as 8ms. Fig. 7 shows the measured
average and 99-percentile read latency under the read request
size of 40kB. In the case of RAID/eRAID decoding failures,
we should re-dispatch the failed sub-requests to HDDs with
read retry enabled, and we set that all the re-dispatched sub-
requests always experience read retries. Hence, Fig. 7 shows
the results when each read retry takes 3 or 5 additional disk
rotations. To minimize the latency of such re-dispatched sub-
requests, we always insert the re-dispatched requests into the
head of host-side request queues.

0.005 0.010 0.020
0

50

100

150

200

A
ve

ra
ge

 L
at

en
cy

 (m
s)

Sector Failure Rate
(a)

0.005 0.010 0.020
0

500

1000

1500

2000

99
%

 T
ai

l L
at

en
cy

 (m
s)

Sector Failure Rate
(b)

 Conventional RAID (3 Rotations Per Retry)
 eRAID (3 Rotations Per Retry)
 Conventional RAID (5 Rotations Per Retry)
 eRAID (5 Rotations Per Retry)

Fig. 7. Measured average and 99-percentile read latency with the read request
size of 40kB.

The results show that the proposed eRAID coding strategy
can noticeably reduce the read latency of the system-assisted
mode, compared with the conventional RAID. For example,
under the sector read failure rate of 1% and only 3 disk
rotations per read retry, replacing conventional RAID with
eRAID can reduce the average and 99-percentile read latency
by 11% and 27%, respectively. The results also show that the
benefit of eRAID improves as the sector read failure rates
further increase.

D. Overall Performance Evaluations

We carried out further experiments under both synthetic and
trace-based workloads. For synthetic workloads, we randomly
mix read requests with ten different sizes i·8kB (where 1 ≤
i ≤ 10), where requests with different sizes occur with the
same probability. For trace-based workloads, we chose four
traces from the MSR Cambridge trace set [13], denoted as
MSR-1, MSR-2, MSR-3, and MSR-4, respectively. We chose
two traces from the Systor’17 trace set [14], denoted as Systor-
1 and Systor-2. All these six traces are read-intensive, where
read requests account for at least 70% of all the requests in
each trace. Table III summarizes the read request size statistics
of these six traces. In Table III, the sum of each row is not
1 but the total read requests percentage among all requests.
For example, the total read requests percentage for MSR-1 is
71.7%, and that means the write requests percentage is 28.3%.

TABLE III
TRACE READ REQUEST SIZE STATISTICS.

≤8kB (8kB, 16kB] (16kB 32kB] >32kB
MSR-1 56.9% 2.2% 2.1% 10.5%
MSR-2 80.5% 1.5% 1.7% 11.6%
MSR-3 28.9% 2.3% 8.0% 44.6%
MSR-4 4.8% 2.8% 0.4% 87.0%
Systor-1 30.9% 7.1% 18.0% 14.4%
Systor-2 35.9% 11.3% 15.0% 27.6%

1) Experimental Results under Synthetic Workloads: Fig. 8
shows the measured average and 99-percentile read latency
when all the six HDDs experience the same sector read failure
rate. For the purpose of comparison, the figure also includes
the measured read latency when using the conventional prac-
tice (i.e., using the normal mode only to serve each request).
The results well demonstrate the effectiveness of the proposed
pro-active design strategy. For example, under the sector read
failure rate of 1% and only 3 additional disk rotations per
retry, the proposed design strategy can reduce the average and
99-percentile read latency by 44% and 46%, respectively.

In addition to assuming all the HDDs experience the same
sector read failure rate during HDD fail-slow, we further
carried out experiments by increasing the sector read failure
rate of only one HDD. In each experiment, we randomly
choose one HDD to increase its sector read failure rate while
keeping the other five HDDs intact. We use the same read
request statistics as above (i.e., randomly mixing read requests

0.005 0.010 0.020
0

200

400

600

A
ve

ra
ge

 L
at

en
cy

 (m
s)

Sector Failure Rate
(a)

0.005 0.010 0.020
0

1000

2000

3000

99
%

 T
ai

l L
at

en
cy

 (m
s)

Sector Failure Rate
(b)

 Normal Mode (3 Rotations Per Retry)
 Proposed (3 Rotations Per Retry)
 Normal Mode (5 Rotations Per Retry)
 Proposed (5 Rotations Per Retry)

Fig. 8. Measured average and 99-percentile read latency with mixed request
size under synthetic workloads. All the six HDDs experience the same sector
failure rate.

with ten different sizes and equal probability). Fig. 9 shows
the measured average and 99-percentile read latency. The
results show that, even when only one HDD experiences high
sector read failure rate, the proposed design approach can still
noticeably reduce the read latency.

2) Experimental Results under Trace-based Workloads:
In addition to the synthetic workloads, we carried out ex-
periments using the six traces as described above. For all
the experiments, we only considered the case of 3 additional
rotations per retry, and sector failure rate of 0.5% and 2%.

Fig. 10 shows the measured average and 99-percentile read
latency when all the six HDDs suffer from the same sector
failure rate of 0.5% or 2%. The results clearly show the
effectiveness of the proposed design solution on reducing
the read latency. For example, under the sector failure rate
of 2%, the proposed design solution can reduce the average
and 99-percentile read latency by 34.2% and 35.1% for the
trace MSR-2, and by 61.4% and 59.6% for the trace MSR-4.
For the trace Systor-2, the proposed design solution can even
reduce the average and 99-percentile read latency by 68.9%
and 61.9%. Compared with the four MSR traces, the two
Systor traces benefit more from the proposed design solution.
This is because the Systor traces have smaller average request
arrival time than MSR traces. Among the four MSR traces that
have similar request arrival time, the benefit of the proposed
solution closely relates to the percentage of large read requests.
As shown in Table III, the percentage of >32kB read requests
increases from the MSR-1 to MSR-4. Accordingly, the benefit
of the proposed design solution improves from the MSR-1 to

0.005 0.010 0.020
0

30

60

90

120

A
ve

ra
ge

 L
at

en
cy

 (m
s)

Sector Failure Rate
(a)

0.005 0.010 0.020
0

300

600

900

1200

99
%

 T
ai

l L
at

en
cy

 (m
s)

Sector Failure Rate
(b)

 Normal Mode (3 Rotations Per Retry)
 Proposed (3 Rotations Per Retry)
 Normal Mode (5 Rotations Per Retry)
 Proposed (5 Rotations Per Retry)

Fig. 9. Measured average and 99-percentile read latency with mixed request
size under synthetic workloads. Only one HDD experiences the high sector
failure rate.

MSR-4, as shown in Fig. 10. The same conclusion can be
drawn for the two Systor traces. Moreover, the results clearly
show that the proposed design solution can make the read
latency much less sensitive to the sector failure rate. When
serving requests using the normal mode, the average and 99-
percentile read latency of Systor-2 increase by 210.0% and
132.9% when the sector failure rate increases from 0.5% to
2%. In comparison, when using the proposed design solution,
the increase drops to 38.1% and 47.0%.

Fig. 11 shows the measured average and 99-percentile read
latency when only one HDD suffers from the abnormally
high sector failure rate of 0.5% or 2%. The results show
that the proposed design solution can still achieve noticeable
or significant benefits. Similar to the scenario where all the
HDDs suffer from high sector failure rate, the proposed design
solution is more beneficial if the trace has a smaller arrival time
and/or higher percentage of large read requests. For example,
under the sector failure rate of 2%, the proposed can reduce the
average and 99-percentile read latency by 17.9% and 21.1%
for MSR-3, 17.5% and 39.8% for MSR-4, 35.1% and 53.1%
for Systor-1, and 25.2% and 47.1% for Systor-2. The above
results well demonstrate the effectiveness of the proposed
design solution.

V. RELATED WORK

Applying system-level data redundancy to tolerate HDD
operational failures is of course not new. Extensive prior work

MSR-1 MSR-2 MSR-3 MSR-4 Systor-1 Systor-2
0

100

200

300

400

500

A
ve

ra
ge

 L
at

en
cy

 (m
s)

(a)

 Normal Mode (Sector Failure Rate=0.5%)
 Proposed (Sector Failure Rate=0.5%)
 Normal Mode (Sector Failure Rate=2%)
 Proposed (Sector Failure Rate=2%)

MSR-1 MSR-2 MSR-3 MSR-4 Systor-1 Systor-2
0

500

1000

1500

2000

2500

3000

3500

99
%

 T
ai

l L
at

en
cy

 (m
s)

(b)

Fig. 10. Measured average and 99-percentile read latency under six different
traces. All the six HDDs experience the same sector failure rate.

has led to the pervasive real-life adoption of RAID [15]–
[17] and distributed erasure coding [18]–[21]. Both RAID and
distributed erasure coding aim to accommodate catastrophic
HDD failures (and server unavailability in the case of dis-
tributed erasure coding) at relatively low redundancy (e.g.,
20% to 50%). Most prior work around RAID mainly focused
on the following two aspects: (1) Mathematically model the
capability on tolerating HDD failures (e.g., see [22]–[26]) by
taking into account of the more realistic failure characteristics
(including the HDD latent errors). (2) Develop techniques to
realize efficient data reconstruction in the presence of catas-
trophic HDD failures (e.g., see [27], [28]) and dynamically
redistribute RAID when more HDDs have been added into
the array or when the RAID system needs to be upgraded
(e.g., see [29]–[31]). All the prior work tend to utilize the
system-level data redundancy in a re-active manner and target
at very low sector failure probabilities. To the best of our
knowledge, no prior work has ever comprehensively studied
the potential of pro-actively utilizing the existing system-level
data redundancy to mitigate occasional HDD fail-slow with
high sector read failure rates.

VI. CONCLUSIONS

This paper presents a simple yet effective design framework
to mitigate occasional HDD fail-slow with high intra-HDD
read retry rates. The key is to pro-actively utilize the existing

MSR-1 MSR-2 MSR-3 MSR-4 Systor-1 Systor-2
0

30

60

90

120

150
A

ve
ra

ge
 L

at
en

cy
 (m

s)

(a)

 Normal Mode (Sector Failure Rate=0.5%)
 Proposed (Sector Failure Rate=0.5%)
 Normal Mode (Sector Failure Rate=2%)
 Proposed (Sector Failure Rate=2%)

MSR-1 MSR-2 MSR-3 MSR-4 Systor-1 Systor-2
0

300

600

900

1200

99
%

 T
ai

l L
at

en
cy

 (m
s)

(b)

Fig. 11. Measured average and 99-percentile read latency under six different
traces. Only one HDD experiences the high sector failure rate.

system-level data redundancy to minimize the impact of HDD
fail-slow on storage speed performance (in particular read
latency). Assuming future HDDs can support a simple form
of enhanced controllability and observability regarding their
internal read retry operations, this paper presents specific
design techniques and a mathematical formulation framework
in order to practically and effectively implement the envisioned
pro-active design strategy. With a RAID-5 storage array over
six 2TB HDDs, we carried out extensive experiments over a
wide range of configurations and results well demonstrate the
effectiveness of the proposed design framework on mitigating
HDD fail-slow.

ACKNOWLEDGEMENT

This work is supported in part by the NSF grant CNS-
1814890 and a grant from IDEMA/ASRC.

REFERENCES

[1] B. D. Strom, S. Lee, G. W. Tyndall, and A. Khurshudov, “Hard disk
drive reliability modeling and failure prediction,” IEEE Transactions on
Magnetics, vol. 43, no. 9, pp. 3676–3684, Sept 2007.

[2] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, G. Grider, P. M.
Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci, K. Webb, P. Alvaro,
H. B. Runesha, M. Hao, and H. Li, “Fail-slow at scale: Evidence of
hardware performance faults in large production systems,” in USENIX
Conference on File and Storage Technologies (FAST), 2018, pp. 1–14.

[3] D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. Wang,
T. Klemmer, G. Ju, and A. Aian, “A HAMR media technology roadmap
to an areal density of 4 Tb/in2,” IEEE Transactions on Magnetics,
vol. 50, no. 1, Jan. 2014.

[4] M. A. Seigler, W. A. Challener, E. Gage, N. Gokemeijer, G. Ju, B. Lu,
K. Pelhos, C. Peng, R. E. Rottmayer, X. Yang, H. Zhou, and T. Rausch,
“Integrated head assisted magnetic recording head: design and recording
demonstration,” IEEE Transactions on Magnetics, vol. 44, no. 1, Jan.
2008.

[5] K. Miura, E. Yamamoto, H. Aoi, and H. Muraoka, “Estimation of
maximum track density in shingles writing,” IEEE Transactions on
Magnetics, vol. 45, no. 10, pp. 3722–3725, Oct. 2009.

[6] F. Lim, B. Wilson, and R. Wood, “Analysis of shingle-write readback
using magnetic-force microscopy,” IEEE Transactions on Magnetics,
vol. 46, no. 6, pp. 1548–1551, Jun. 2010.

[7] Y. Shiroishi, K. Fukuda, I. Tagawa, H. Iwasaki, S. Takenoiri, H. Tanaka,
H. Mutoh, and N. Yoshikawa, “Future options for HDD storage,” IEEE
Transactions on Magnetics, vol. 45, no. 10, pp. 3816–3822, Oct 2009.

[8] A. R. Krishnan, R. Radhakrishnan, B. Vasic, A. Kavcic, W. Ryan,
and F. Erden, “2-D magnetic recording: Read channel modeling and
detection,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 3830–
3836, Oct 2009.

[9] R. Wood, R. Galbraith, and J. Coker, “2-D magnetic recording: Progress
and evolution,” IEEE Transactions on Magnetics, vol. 51, no. 4, pp. 1–7,
April 2015.

[10] OCP Storage Cloud HDD Fast Fail Read SubProject.
https://www.opencompute.org/wiki/Storage/CloudHDD.

[11] AT Attachment 8 ATA/ATAPI Command Set (ATA8-ACS).
http://www.t13.org/.

[12] Intelligent Storage Acceleration Library (ISA-L).
https://github.com/01org/isa-l.

[13] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Transactions
on Storage (TOS), vol. 4, no. 3, p. 10, 2008.

[14] C. Lee, T. Kumano, T. Matsuki, H. Endo, N. Fukumoto, and M. Sug-
awara, “Understanding storage traffic characteristics on enterprise virtual
desktop infrastructure,” in Proceedings of the 10th ACM International
Systems and Storage Conference. ACM, 2017, p. 13.

[15] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays
of inexpensive disks (RAID),” in Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), 1988,
pp. 109–116.

[16] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson, “RAID: High-performance, reliable secondary storage,” ACM
Computing Surveys, vol. 26, no. 2, pp. 145–185, Jun. 1994.

[17] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: an efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Transactions on Computers, vol. 44, no. 2, pp. 192–202, Feb 1995.

[18] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “Xoring elephants: Novel erasure
codes for big data,” in Proc. of the VLDB Endowment, vol. 6, no. 5,
2013, pp. 325–336.

[19] K. M. Greenan, X. Li, and J. J. Wylie, “Flat XOR-based erasure codes
in storage systems: Constructions, efficient recovery, and tradeoffs,”
in IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), 2010, pp. 1–14.

[20] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE
Transactions on Information Theory, vol. 56, no. 9, pp. 4539–4551,
2010.

[21] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in windows azure storage,” in Proc.
of USENIX Annual Technical Conference (ATC), 2012, pp. 15–26.

[22] A. Ma, R. Traylor, F. Douglis, M. Chamness, G. Lu, D. Sawyer,
S. Chandra, and W. Hsu, “RAIDshield: characterizing, monitoring,
and proactively protecting against disk failures,” ACM Transactions on
Storage (TOS), vol. 11, no. 4, p. 17, 2015.

[23] G. F. Hughes and J. F. Murray, “Reliability and security of RAID storage
systems and D2D archives using SATA disk drives,” ACM Transactions
on Storage (TOS), vol. 1, no. 1, pp. 95–107, 2005.

[24] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Improving storage system availability with D-GRAID,” ACM
Transactions on Storage (TOS), vol. 1, no. 2, pp. 133–170, 2005.

[25] A. Dholakia, E. Eleftheriou, X.-Y. Hu, I. Iliadis, J. Menon, and K. Rao,
“A new intra-disk redundancy scheme for high-reliability RAID storage
systems in the presence of unrecoverable errors,” ACM Transactions on
Storage (TOS), vol. 4, no. 1, p. 1, 2008.

[26] B. Schroeder, S. Damouras, and P. Gill, “Understanding latent sector
errors and how to protect against them,” ACM Transactions on Storage
(TOS), vol. 6, no. 3, p. 9, 2010.

[27] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang, and
Z. Song, “PRO: A popularity-based multi-threaded reconstruction opti-
mization for RAID-structured storage systems.” in USENIX Conference
on File and Storage Technologies (FAST), vol. 7, 2007, pp. 301–314.

[28] S. Wu, H. Jiang, D. Feng, L. Tian, and B. Mao, “Workout: I/O workload
outsourcing for boosting RAID reconstruction performance.” in USENIX
Conference on File and Storage Technologies (FAST), vol. 9, 2009, pp.
239–252.

[29] A. Miranda and T. Cortes, “CRAID: online RAID upgrades using
dynamic hot data reorganization.” in USENIX Conference on File and
Storage Technologies (FAST), vol. 14, 2014, pp. 133–146.

[30] G. Zhang, Z. Huang, X. Ma, S. Yang, Z. Wang, and W. Zheng, “Raid+:
deterministic and balanced data distribution for large disk enclosures,”
in USENIX Conference on File and Storage Technologies, 2018, p. 279.

[31] W. Zheng and G. Zhang, “Fastscale: Accelerate RAID scaling by
minimizing data migration.” in USENIX Conference on File and Storage
Technologies (FAST), 2011, pp. 149–161.

