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Abstract— Modeling individual-specific gait dynamics based
on kinematic data could aid development of gait rehabilitation
robotics by enabling robots to predict the user’s gait kinematics
with and without external inputs, such as mechanical or
electrical perturbations. Here we address a current limitation of
data-driven gait models, which do not yet predict human gait
dynamics nor responses to perturbations. We used Switched
Linear Dynamical Systems (SLDS) to model joint angle kine-
matic data from healthy individuals walking on a treadmill
during normal gait and during gait perturbed by functional
electrical stimulation (FES) to the ankle muscles. Our SLDS
models were able to generate joint angle trajectories in each
of four gait phases, as well as across an entire gait cycle,
given initial conditions and gait phase information. Because the
SLDS dynamics matrices encoded significant coupling across
joints that differed across indivdiuals, we compared the SLDS
predictions to that of a kinematic model, where the joint angles
were independent. Joint angle trajectories generated by SLDS
and kinematic models were similar over time horizons of a
few milliseconds, but SLDS models provided better predictions
of gait kinematics over time horizons of up to a second. We
also demonstrated that SLDS models can infer and predict
individual-specific responses to FES during swing phase. As
such, SLDS models may be a promising approach for online
estimation and control of and human gait dynamics, allowing
robotic control strategies to be tailored to an individual’s
specific gait coordination patterns.

I. INTRODUCTION

Gait rehabilitation robotics, particularly exoskeletons, have
used reference trajectories to guide joint angles of the lower
limbs [1]. Reference trajectories are typically obtained by
averaging the gait patterns of multiple healthy individuals
together, or by prerecording the gait of a user, either healthy
or impaired. In impaired gait, the reference can be taken
from the unimpaired leg and mirrored to form a complete
specification for both legs, under the assumption that joint
kinematics can be independently specified. Robot controllers
then attempt to follow each joint trajectory in the reference
independently, either through position or impedance control.

Recent work using model-predictive control of exoskele-
tons based on reference trajectories have shown that con-
troller performance suffers when human gait dynamics are
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not taken into account [2]. Controlling around a reference
trajectory assumes that the human behaves passively; as a
result, human limb dynamics and interjoint coupling are
treated as disturbances that cannot be completely rejected.
However, human joints are not independently controlled ei-
ther within or between limbs [3,4,5], and interjoint coupling
can be even more pronounced in impaired populations [6].
Further, in the case of asymmetric impairments, the dynamics
of the impaired leg also affects the coordination of the less
impaired leg, allowing compensation via mechanical and/or
neural coupling [4]. Estimating predictive models of human
limb dynamics online could substantially improve human-
robot interactions in gait. Improved models should predict
the limb kinematics based on joint coupling, as in [7], but
also predict the individual’s response to dynamic interactions
with the robot. Explicitly modeling dynamic human-robot
interactions could help the robot predict how changing joint
torques affects all of the joints through the individual’s coor-
dination dynamics, allowing robot controllers to be tailored
to individual-specific behaviors and responses [8].

Switched linear dynamical systems (SLDS) have been
used in the machine learning community for recognizing
different gaits, and may be a useful framework for predicting
human gait dynamics. SLDS model nonlinear behavior, such
as gait, as a piecewise linear system; each of the linear
systems governs only a part of the overall system, and a set of
discrete modes determine which linear system is active. The
linear system parameters of an SLDS can either be specified
from physical knowledge, as in [9], or estimated from data, as
in [10-14]. Each linear system of an SLDS can be designed
to represent different gaits, such as running, walking, and
limping [10,11], or to represent other whole-body behaviors
like sit-to-stand [12]. Previously, we demonstrated an SLDS
model with autonomous linear systems can identify single
and double-limb support gait phases [13].

While SLDS models are typically used to recognize differ-
ent gait behaviors, they can also generate gait patterns that
are qualitatively similar to human gait [14]. Because each
part of an SLDS is linear, the behavior of the original system
can be quickly predicted using linear forecasting techniques.
However, the performance of SLDS in predicting human
gaits has yet to be quantitatively measured. SLDS models
to date also have not included control terms to model the
effects of perturbations on gait, such as forces and torques
from an exoskeleton or electrical stimulation to the muscles.

Our goal was to demonstrate that an SLDS model of gait,
trained on an individual’s specific joint angle trajectories in
both unperturbed and in perturbed walking, can reproduce



the individual’s normal walking pattern and their unique
response to a perturbation. Here, we focused on evaluating
the dynamics of each phase-specific linear system in an
SLDS; specifically, we hypothesized that each of our linear
systems could generate joint angle trajectories for the corre-
sponding gait phase by including information about interjoint
coordination. We compared simulated gait trajectories to the
measured trajectories in each phase for unperturbed gait.
Then, we compared simulations with and without simulated
inputs to the perturbed gait to assess the model’s ability
to predict individual responses to gait perturbations. We
also compared the SLDS model’s performance to a simple
kinematic model based on independent joint trajectories. Our
results show that, while the SLDS behaves locally like a
kinematic model, SLDS can also predict both unperturbed
gait trajectories and individual responses to perturbations in
different gait phases, and across an entire gait cycle.

II. METHODS

A. Gait Data

Data was collected from five healthy participants (all
female, 24-25 years old) while walking at constant speed
on a split-belt treadmill instrumented with force platforms
embedded within each belt. All participants provided written
informed consent prior to participating according to proto-
cols approved by the institutional review board at Emory
University. Three-dimensional kinematics from both legs
were captured at 100Hz using a motion capture system
and the Vicon Plug-In Gait model. Ground reaction forces
(GRFs) were recorded at 1000Hz. Vertical GRFs were used
to identify gait events using a 50N threshold. Specifically,
we defined heel-strikes as when the force first exceeds 50N
and toe-offs as when the force first drops below 50N.

Subjects were given 3-5 minutes to acclimate to treadmill
walking. Afterwards, each subject walked at two conditions
for 45s each at matched walking speeds in the following
order: (1) baseline walking and (2) perturbed walking. In the
perturbed walking condition, functional electrical stimulation
(FES) was delivered to the right ankle dorsiflexor muscles
during the right swing phase and the right plantarflexors
during right terminal double support phase. Two footswitches
were attached under the sole of the shoe of the right leg to
determine gait events for closed-loop control of FES [15].

B. Gait as a Switching Linear Dynamical System

We modeled the joint kinematics of the lower legs during
gait as a switching linear dynamical system. An SLDS is
a set of linear dynamical systems with discrete modes that
govern when to switch between the individual linear models.
The equation for an SLDS in discrete-time can be written as:

xk+1 = Azkxk +Bzkuk + wk(zk) (1)

where zk is the discrete mode, zk ∈ {1, . . . , N}, xk the
state, uk is the control input at time k. Azk and Bzk are
the linear system parameters and wk(zk) is a zero-mean,
Gaussian noise term with covariance matrix Σzk associated
with the discrete mode zk. The probability of starting in

each discrete mode is given by the initial state distribution,
π, and transitioning between hidden states is governed by a
transition probability:

p(zk+1 = j|zk = i) = Tij (2)

The model parameters Θ = (A,B,Σ, T, π) were esti-
mated from data X = {(x1, u1), (x2, u2), . . . , (xK , uK)}
following a variant of the Baum-Welch algorithm for Hidden
Markov Models [16]. In the expectation step, we calculated
the probability of being in discrete mode i at time k, γk(i),
and the probability of transitioning from discrete mode i
to discrete mode j, ξk(i, j) using the forwards-backwards
algorithm [13]. In the maximization step, we updated the
model parameters according to:

πi = γ1(i) (3)

aij = (
K−1∑
k=1

ξk(i, j))/(
K−1∑
k=1

γk(i)) (4)

[Ai, Bi] = [

K∑
k=1

γk(i)xkx̂
>
k−1][

K∑
k=1

γk(i)x̂k−1x̂
>
k−1 + λI]−1

(5)

Σi = (
K∑

k=1

γk(i)wk(i)w>k (i))/(
K∑

k=1

γk(i)) (6)

where wk(i) = xk+1 − Aixk − Biuk and x̂k = [x>k , u
>
k ]>.

Given a set of initial parameters, we iterated between expec-
tation and maximization steps until the absolute difference in
log-likelihood between consecutive iterations was less than
a pre-defined threshold. To initialize the models, we used a
procedure previously described to estimate gait phases based
on kinematic features [13]. In brief, we initialized heel strikes
from the time of the minimum in knee flexion over a gait
cycle, and toe-offs as the time of the minimum in ankle
flexion. We then initialized each LDS model in the SLDS
based on the kinematically determined gait events.

Here, we have introduced a regularization term λ into
the estimation of the linear system parameters [Ai, Bi] that
was not present in our previous work [13]. This term is
analogous to a penalty on the regression coefficients [A,B]
in a linear regression cost function and serves to drive
unnecessary elements in the dynamics towards zero. With
the addition of the regularization term, we are no longer
guaranteed a monotonic increase in likelihood by iterating
between expectation and maximization, as is guaranteed by
the traditional Baum-Welch algorithm. However, our models
converged even with nonzero regularization values.

To model individual-specific gait dynamics, we trained
a four-state SLDS on each individual’s gait data in both
constant speed walking and walking with FES perturbations.
We formulated a second-order model using generalized co-
ordinates for our state vector, xk = [θk, θk−1], where k is a
vector of measured joint angles at time k. We included hip
flexion and adduction, knee flexion, and ankle flexion and
adduction angles of both left and right legs in our model.
We also modeled the perturbation as an input square wave



with magnitude 1 from left heel strike to right heel strike,
and 0 otherwise - i.e. the input is on in double support phase
with left leg forward and right leg swing phase. Transitions
between discrete modes were constrained to form a cycle,
with only one mode following after another.

We trained the models on a bout of constant speed walking
(no input) and a bout of walking with FES perturbation
(square wave input). To set the regularization parameter,
we trained on the first 75% of the data in each bout, and
then validated the model on the remaining 25%. We tested
10 values of the regularization parameter, logarithmically
spaced between 0.1 and 100. For each individual, we chose
the value of λ that minimized the average normed error,
1/K

∑
k ‖wk‖, on the validation data.

We also trained a single SLDS on constant speed walking
and walking with FES perturbation from all five participants,
using the same cross-validation procedure described for each
of the individual-specific models. The group SLDS model
was trained on the first 75% of each individual’s walking data
in both conditions; the remaining 25% from each participant
in each condition was used to select the regularization
parameter based on the minimizing the average normed error.

C. Verifying SLDS modes are gait phases

Using the gait events obtained from the force platforms,
we constructed a ground-truth gait phase sequence to validate
that the SLDS discrete modes correspond to gait phase
dynamics. We defined left swing phase from left toe-off until
left heel-strike, left double support phase from left heel-strike
to right toe-off, right swing phase from right toe-off to right
heel-strike, and right double support phase from right heel-
strike to left toe-off. We labeled each point in the joint angle
trajectories with its corresponding gait phase.

We used the Viterbi Algorithm [17] to infer the gait
phases associated with the kinematics, based on the SLDS
model. Using both the model-predicted gait phases and the
gait phases determined by force plates, we calculated the
accuracy as the fraction of all labeled phases that matched
the phases determined by the ground reaction forces. We
calculated the confusion matrix, recall, precision, and accu-
racy for each participant using their individual-specific SLDS
model, and calculated the mean and standard deviation across
participants. We repeated this procedure with the SLDS
model trained on data from all participants, and compared
the results to those obtained from individual-specific model.

D. Comparing SLDS locally to a kinematic model of gait

To demonstrate the importance of joint coupling in gait
dynamics, we compared the SLDS model to a velocity-based
kinematic model of the form:

xk+1 = 2xk − xk−1 (7)

comparable to the second-order models in our SLDS.
For individual-specific SLDS, the group SLDS, and kine-

matic models, we calculated the local fitness of each model

for each joint angle as:

fitj = 1−

√√√√ K∑
k=1

(θk(j)− θ̂k(j))2/
K∑

k=1

(θk(j)− θ̄(j))2 (8)

where θ(j) is the jth measured joint angle, θ̂k(j) is the value
of the jth joint angle predicted from the previous measured
values, θk−1(j) and θk−2(j), and θ̄(j) is the average value
of θ(j). A fitness score of 1 indicates a perfect fit, while
scores less than 0 indicate the model performs worse than
the mean. We calculated the fitness score on both gait with
no FES (no inputs) and with FES (with square wave inputs).

E. Using SLDS to generate joint angle trajectories

We compared the kinematic and SLDS models’ ability
to generate joint angle trajectories. For each gait cycle in
the training data, we simulated the joint angle in each gait
phase from the first two joint angles in that phase using
both the kinematic and the SLDS models. For simulations
with the SLDS, we generated the joint angle trajectories of
each phase using only the linear models corresponding to the
given phase. For each model, we quantified the simulation
quality using a fitness score similar to Eq (8), except we
used θ̂k(j) as the generated trajectory over multiple time
steps instead of over one time step. As before, a fitness of
1 indicates the model perfectly simulates the gait trajectory,
while a fitness less than 0 indicates the simulation is worse
than using the mean. We repeated the simulation with both
the individual-specific and the group SLDS models.

Finally, we also used the SLDS to generate the entire gait
cycles, given only the initial conditions and the measured
gait phases; we gave the SLDS the measured gait phases to
avoid errors arising from stochastically switching between
linear models in the SLDS. We simulated multiple gait cycles
in walking with and without FES, where the input term
u was provided during walking with FES simulations. All
simulations started at the left toe-off gait event, as measured
by the force plates, and initial conditions were the current
and previous joint angle measurements at the gait event.
We computed the average fitness for each joint angle across
multiple simulated gait cycles for each individual, using both
the individual-specific and the group SLDS models.

III. RESULTS

A. SLDS identifies gait phases from joint kinematics

The discrete modes of the individual-specific SLDS corre-
sponded to measured gait phases with 84±11% and 82±9%
average accuracy across individuals in walking without and
with FES, respectively. Precision and recall scores for the
individual-specific models are listed in Table 1. In contrast,
the discrete modes of the group SLDS corresponded to
measured gait phases with 42 ± 3% and 39 ± 4% average
accuracy in walking without and with FES, respectively.



B. SLDS dynamics matrices encode joint coupling

Comparing a kinematic model with independent joints
to individual-specific SLDS, the mean dynamics across
individual-specific SLDS models, and the group SLDS sug-
gested that the SLDS models approximated a kinematic
model but with interjoint coupling (Figure 1). Inter-joint
coupling elements within gait phases varied across individ-
uals; however, across individuals and gait phases, the SLDS
dynamics matrices showed that all joint angles appeared
strongly coupled to their own history, and many were coupled
to the histories of other joints.

C. SLDS is locally similar to a kinematic model

Across individuals, the kinematic model’s one time-step
predictions accounted for 89-98% of the deviation in joint
angles from their mean values for walking without FES.
Likewise, the individual-specific SLDS model accounted for
93-99% of the deviations in joint angle trajectories, and the
group SLDS model accounted for 92-99% of the deviation.
We found no significant difference in local fitness among the
kinematic, individual-specific, and group SLDS models in
any joint angle (Kruskal-Wallis one-way analysis of variance,
medians and interquartiles ranges (IQR) in Table II, 14
DoF, χ2 < 74, p > 0.005 for all joint angles, Bonferroni
corrected for multiple comparisons). We found similar results
on walking with FES.

D. SLDS can generate individual responses to perturbations

Using kinematic, individual-specific SLDS, and group
SLDS models to generate joint angle trajectories in each
gait phase, we found SLDS generated trajectories were
qualitatively similar to the trajectories in the training data,
while trajectories generated by the kinematic model followed
straight lines and quickly diverged from the measured tra-
jectories (Figure 2). Median fitness values for the kinematic
model were less than 0 for all joint angles except left and
right hip flexion in both perturbed and unperturbed walking.

TABLE I
MEAN CONFUSION MATRICES FOR INFERRED GAIT PHASES ACROSS

INDIVIDUAL-SPECIFIC SLDS

Unperturbed Gait
Force Plate Measured Phases

L.Swing L.Support R.Swing R.Support
L.Swing 28± 3% 0± 0% 0± 0% 1± 1%
L.Support 5± 1% 16± 2% 1± 1% 0± 0%
R.Swing 0± 0% 1± 1% 26± 11% 1± 2%
R.Support 1± 1% 0± 0% 7± 12% 14± 1%

Recall 81± 6% 97± 4% 77± 33% 90± 13%
Precision 97± 4% 73± 4% 93± 9% 74± 24%

Perturbed Gait
Force Plate Measured Phases

L.Swing L.Support R.Swing R.Support
L.Swing 27± 4% 0± 0% 0± 0% 1± 2%
L.Support 6± 2% 14± 1% 2± 1% 0± 0%
R.Swing 0± 0% 0± 1% 26± 9% 1± 2%
R.Support 1± 1% 0± 0% 7± 10% 15± 2%

Recall 81± 7% 97± 6% 75± 26% 90± 16%
Precision 96± 5% 67± 9% 94± 8% 73± 24%

In contrast, median fitness values for the SLDS generated
trajectories were greater than 0 across simulation conditions.
Fitness scores from kinematic, individual-specific, and group
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Fig. 1. A kinematic model, compared to an example from and the mean
and standard deviation of the individual-specific SLDS left double support
dynamics, as well as the group SLDS. SLDS models contain substantial
off-diagonal terms, which indicate joint coupling.



TABLE II
KINEMATIC AND SLDS LOCAL FITNESS ON UNPERTURBED GAIT

SLDS
Joint Angle Kinematic Individual Group
L. Hip Flexion 0.98± 0.00 0.99± 0.00 0.99± 0.00
L. Hip Adduction 0.93± 0.02 0.95± 0.01 0.95± 0.01
L. Knee Flexion 0.98± 0.03 0.99± 0.02 0.98± 0.01
L. Ankle Flexion 0.94± 0.06 0.96± 0.04 0.95± 0.04
L. Ankle Adduction 0.90± 0.03 0.93± 0.03 0.92± 0.02
R. Hip Flexion 0.99± 0.01 0.99± 0.01 0.99± 0.01
R. Hip Adduction 0.92± 0.03 0.95± 0.02 0.94± 0.01
R. Knee Flexion 0.98± 0.03 0.99± 0.01 0.99± 0.01
R. Ankle Flexion 0.89± 0.04 0.93± 0.03 0.92± 0.02
R. Ankle Adduction 0.95± 0.01 0.96± 0.01 0.95± 0.00

SLDS models were significantly different (Kruskal-wallis
analysis of variance, medians in Figure 2, χ2 > 100,
14 DoF, p < 0.005, α = 0.005 corrected for multiple
comparisons) for all joint angles except left knee flexion,
which approached significance (χ2 = 105, DoF = 14, p =
0.0052). Both the individual-specific and group SLDS fitness
values were greater than those for the kinematic model (one-
tailed Wilcoxon Rank-Sum test, medians in Figure 2, Rank-
Sum = 15, p < 0.005 for all comparisons) for all joint
angles. Fitness of the individual-specific models was also
greater than that of the group model for left ankle flexion,
left ankle adduction, right hip flexion, and right ankle flexion
(one-tailed Rank-Sum test, Rank-Sum = 40, p < 0.005),
and approached significance for all other angles (one-tailed
Rank-Sum Test, Rank-Sum> 34, p < 0.08). All medians
were calculated within a joint angle, but across individuals.

SLDS models without input terms generated joint angle
trajectories in walking without FES well, but underestimated
trajectories for walking with FES in right swing phase
(Figure 2). Across individuals, the SLDS models improved
their prediction of right swing trajectories when the input
was provided to model the FES perturbation. Modeling the
input as a square wave improved the individual-specific
model’s generated right ankle flexion trajectory (one tailed
Wilcoxon Rank-Sum Test, without input median fitness =
0.57, with input median fitness = 0.71, Rank-Sum = 15,
p < 0.005). Model fitness with the group SLDS did not
improve by including the input term for any joint angles.
Overall, the individual-specific models had greater median
fitness values compared to the group model for simulated
gait with FES perturbations for all joints (one tailed Rank
Sum Test, medians in Figure 2, Rank-Sum = 40, p < 0.005)
except Left Knee Flexion, which approached significance
(Rank-Sum = 37, p = 0.027, α = 0.005).

E. SLDS can generate trajectories for an entire gait cycle

Individual-specific SLDS models generated trajectories
that were similar to the trajectories in the training data for
both walking without and with FES when FES input was
modeled (Figure 3). Median fitness scores across individuals
for individual-specific models ranged from -0.02 for left
ankle adduction to 0.79 for left hip flexion for both FES
conditions. We found no significant difference in median
fitness between indivdiual-specific simulations and group
SLDS simulations of walking without FES, although the

difference approached significance for several joints (one-
tailed Rank Sum Test, medians in Figure 3, 35 < Rank-
Sum < 39, p < 0.05, α = 0.005). Likewise, only the fitness
for Left Hip Flexion was significantly greater for individual-
specific models compared to group models (Rank-Sum Test,
Rank-Sum = 40, p < 0.005), while several other joint angles
approached a significant difference.

IV. DISCUSSION

Our work demonstrating that SLDS can generate gait
trajectories is an important step towards developing data-
driven gait models for use in rehabilitation robotics. One
advantage of our SLDS approach over a reference trajectory
or a statistical model of joint kinematics is that the SLDS
can predict changes in gait resulting from a perturbation,
such as the mechanical interaction between an exoskeleton
and its user. Here we showed that SLDS can generate
the gait kinematics and the individual-specific responses to
perturbations across all joints within a gait phase. Because
the SLDS model represents gait dynamics as linear systems,
it may be useful for quickly forecasting future gait patterns,
as is required for real-time control by rehabilitative robotics.

Our current and prior results show that SLDS can ro-
bustly identify gait phases in the presence of modeled and
unmodeled gait perturbations. Identifying gait phases in the
presence of disturbances is important for gait rehabilitation
robotics, as robotic controllers are often designed for specific
gait phases [2]. In our previous work, we demonstrated the
relationship between SLDS discrete modes and gait phases
for SLDS models without inputs [12]. Here we further
showed that the inference of gait phases also holds when the
perturbation is treated as an input to the model. The precision
and recall values for gait phases we obtained in this work
closely matched those of prior autonomous models.

Off-diagonal terms in each block of the SLDS dynam-
ics matrices enabled long time horizon forecasting of gait
trajectories. By explicitly including inter-joint coupling,
individual-specific SLDS models can forecast human gait us-
ing a small set of linear systems. Furthermore, the individual-
specific joint coupling and responses to perturbation can
be estimated and used to predict responses to perturbations
affecting joint torques; in our case FES activated muscles,
but our results could likely be generalized to the effects of
applied torques from robotic exoskeletons. For longer time-
horizons we showed the importance of including inter-joint
coupling, which allowed joint kinematic trajectories to be
forecasted over an entire gait cycle if gait event information
is available. As such, the SLDS approach may be useful for
controlling gait in real-time, allowing robot controllers to
predict and adapt to interactions with the human.

SLDS provide a compact model of an individual’s gait
dynamics that can generate their response to perturbations.
We showed that, within each gait phase, the SLDS can
generate kinematic trajectories that match both an individ-
ual’s unperturbed gait pattern and their unique response to a
perturbation. While the perturbation was applied to directly
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Fig. 2. SLDS predictions of individual responses to FES gait perturbations. Examples of mean±std right ankle flexion from two participants are given for
comparison. Vertical bars indicate left heel-strike (red), right toe-off (yellow), and right heel-strike (purple) gait events. All traces start from left-toe off. (a)
Inputs to the simulation include gait events, initial joint angles, and perturbation waveforms. (b) Gait trajectories generated by the kinematic model (yellow)
compared to unperturbed gait trajectories (blue). (c-d) Gait trajectories generated by the SLDS model (red) without (c,d) and with input (e) compared to
measured gait kinematics (blue) without (c) and with FES (d,e) perturbations, and to the group SLDS model (purple). Median fitness scores and IQR for
each condition are given for each joint angle.

affect right ankle flexion, its effects propagated across multi-
ple joints due to inter-joint coupling. Because SLDS models
include joint coupling, they can capture and predict the inter-
joint effects of single- or multi-joint perturbations. Purely
statistical models of gait, which often do not include inputs
[7], would be unable to generate such predictions.

Another advantage of our approach is that the SLDS
models can be trained on a relatively small amount of gait
data. We used approximately 1.5 minutes per individual, and
while performance and generalizability may improve with
more training data, the limited amount we used indicates that
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Fig. 3. Examples of individual-specific (red) and group (purple) SLDS
simulations of complete gait cycles compared to measured trajectories (blue)
for one participant. (a) Generated trajectories start and end at the left toe-
off. Initial conditions and gait events were provided to the model. (b,c)
Time-normalized kinematics averaged (± std) over multiple gait cycles for
generating unperturbed (b) and perturbed (c) gait trajectories. Median fitness
values with IQR across individuals for each joint angle are shown.

SLDS may be suitable for quickly modeling an individual’s
gait while using rehabilitative robotics. In practice, an SLDS
model could be trained to represent the individual’s gait
dynamics and responses to robotic assistance from a short
segment of data. The model could then be used to design
individual-specific interactions while the device is in use.

Modeling the dependence of gait phase on joint angles
could improve the predictive performance of gait models
based on SLDS by predicting the next ground contact event
and smoothing out the gait trajectory near the transition
point. When predicting across multiple gait phases, our
SLDS model still requires the gait events to be specified
beforehand; this is the case for other SLDS models of gait
as well [9,10], because SLDS assumes the future gait phases
will be independent of the future joint angles.

More work is required to generalize our results to account
for different gait types, for the effects of different pertur-
bations on gait, and for gait impairments. Our results were
based on treadmill walking with electrical stimulation, and
our models were trained on a single speed of walking in
healthy young adults with only one type of perturbation. We
also only modeled one amplitude of perturbation, which lim-
ited our ability to test the range of perturbations that could be
modeled with SLDS. While these conditions could be used
with treadmill-based rehabilitation robots [18,19], we do not
yet know how the SLDS model would need to be modified
to accommodate overground walking, as is the case for some
robotic systems [20,21], where gait speed varies. Moreover,
gait dynamics and individual responses to perturbations may
become more complex with gait impairment. Currently, the
ability of SLDS to model such gaits, and the type and size
of perturbations it can successfully predict, are unknown.
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