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Abstract

Methods based on Bayesian decision tree en-
sembles have proven valuable in constructing
high-quality predictions, and are particularly
attractive in certain settings because they en-
courage low-order interaction effects. Despite
adapting to the presence of low-order inter-
actions for prediction purpose, we show that
Bayesian decision tree ensembles are gener-
ally anti-conservative for the purpose of con-
ducting interaction detection. We address
this problem by introducing Dirichlet pro-
cess forests (DP-Forests), which leverage the
presence of low-order interactions by cluster-
ing the trees so that trees within the same
cluster focus on detecting a specific interac-
tion. We show on both simulated and bench-
mark data that DP-Forests perform well rel-
ative to existing interaction detection tech-
niques for detecting low-order interactions,
attaining very low false-positive and false-
negative rates while maintaining the same
performance for prediction using a compara-
ble computational budget.

1 INTRODUCTION

In many scientific problems, a primary goal is to dis-
cover structures which allow the problem to be de-
scribed parsimoniously. For example, one may wish
to find a small subset of candidate variables that are
predictive of a response of interest; this structure is
referred to as sparsity. Another structure is interac-
tion (or additive) structure. An extreme case of ad-
ditive structure is a generalized additive model (see,
e.g., Hastie, 2017), where the effects of the predictors
combine additively without any interactions. Teas-
ing out additive structures can be valuable because
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it can substantially simplify the interpretation of a
model. For example, if a given predictor does not in-
teract with other predictors then it can be interpreted
in isolation without reference to the values of other
predictors. When predictors do interact, interpreta-
tion of the interactions is typically simplified when-
ever the interactions are of low-order. We consider the
nonparametric regression problem Yi = f0(Xi) + εi,
εi ∼ Normal(0, σ2), where Yi is a response of in-
terest and Xi ∈ RP is a vector of predictors, how-
ever the methods we develop here can be easily ex-
tended to many other settings. The variables xj and
xk are said to interact if f0(x) cannot be written as
f0(x) = f0\j(x) + f0\k(x) where f0\j and f0\k do not
depend on xj and xk respectively. One can define
higher order interactions similarly: a group of K vari-
ables is said to have a K-way interaction if f0(x) can-
not be decomposed as a sum of K or fewer functions,
each of which depends on fewer than K of the vari-
ables.

Methods which estimate f0(x) using an ensemble of
Bayesian decision trees have proven useful in a num-
ber of statistical problems. Beginning with the seminal
work of Chipman et al. (2010), Bayesian additive re-
gression trees (BART) have been successfully applied
in a diverse range of settings including survival anal-
ysis (Sparapani et al., 2016), causal inference (Hahn
et al., 2017), variable selection in high dimensional
settings (Linero, 2016; Bleich et al., 2014), loglinear
models (Murray, 2017), and analysis of functional data
(Starling et al., 2018). A key motivating factor for the
use of BART is precisely that it is designed to tak-
ing advantage of low-order interactions in the data.
Indeed, Linero and Yang (2017) and Rockova and van
der Pas (2017) illustrate theoretically that the presence
of low-order interactions is precisely the type of struc-
ture which BART excels at capturing. Hence BART
appears to be an ideal tool for extracting low-order
and potentially non-linear interactions.

Surprisingly, we show that, despite the ability of
BART to capture low-order interactions for prediction
purposes, it is nonetheless not suitable for conduct-
ing fully-Bayesian inference for the selection task of
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Figure 1: The interaction structure detected in the
example from Section 1.1. “Truth” denotes the true
interaction structure in the example.

interaction detection. When taken at face value as
a Bayesian model, we show empirically that BART
generally leads to the detection of spurious interac-
tion effects. This is not contradictory because optimal
prediction accuracy is generally not sufficient to guar-
antee consistency in variable selection (see, e.g., Wang
et al., 2007).

We discuss the general problem which leads to the
detection of spurious interactions; while this devel-
opment is couched in the BART framework, we be-
lieve that the fundamental issues also occur for other
decision tree ensembling methods. Specifically, the
problem is that there is no penalty associated to in-
cluding spurious interaction terms in the model. We
then introduce a suitable modification to the BART
framework which addresses this problem and allows
BART detect interactions in a fully-Bayesian fashion.
We accomplish this by clustering the trees into non-
overlapping groups. Intuitively, the shallow trees com-
prising each cluster work together to learn a single low-
order interaction. To bypass the need to specify the
number of clusters, we induce the clustering through
a Dirichlet process prior (Ferguson, 1973). We refer to
the ensemble constructed in this fashion as a Dirichlet
Process Forest (DP-Forest).

1.1 A Simple Example

To motivate the problem, we consider a simulated data
example of Vo and Pati (2016). This example takes
P = 100, N = 100, Xi ∼ Normal(0, 0.02 I), and

f0(x) = x1 + x22 + x3 + x24 + x5 + x1x2 + x2x3 + x3x4.
We compare the DP-Forest we propose to a variant of
BART referred to as SBART (Linero and Yang, 2017)
which can accommodate sparsity in variable selection.
We also consider the recently proposed iterative ran-
dom forests algorithm of Basu et al. (2018), selecting
interactions whose stability score is higher than 0.5. In
Figure 1 we display the interaction structure detected
by each method on this data; while we considered only
one iteration of this experiment here, these results are
typical of replications of the experiment.

Here, SBART detects a spurious edge between x2 and
x4. This occurs because BART, despite its fundamen-
tally additive nature, does not include any penaliza-
tion which discourages unnecessary interactions from
being included. On the contrary, BART expect inter-
actions to occur between relevant predictions; consid-
ering a draw from a BART prior such that x2 and x4
are included in the model, an interaction between these
variables is a-priori likely. Adapting Bayesian decision
tree ensembles to interaction detection then requires a
prior which discourages the inclusion of weak interac-
tions. The iRF similarly detects two spurious interac-
tions and misses a relevant interaction between x3 and
x4.

1.2 Related Work

Recent work has studied the theoretical properties of
BART. Linero and Yang (2017) and Rockova and van
der Pas (2017) show that certain variants of BART
are capable of adaptively attaining near-minimax-
optimal rates of posterior concentration when f0 can
be expressed as a sum of low-order interaction terms
f0(x) =

∑V
v=1 f0v(x) with each f0v(x) depending on

a small subset of Sv of the predictors. In view this,
one might conclude that no modification to BART is
needed. This is true if one cares only about the mean
integrated squared error

∫
(f0(x)−f(x))2 F0(dx) where

Xi
iid∼ F0. Optimal prediction performance, however,

does not imply that variable selection and interaction
detection are being performed adequately. If S0 is the
true interaction structure of the data S is an estimate
of S0, then attaining the minimax estimation rate for
f0 in terms of prediction error typically only guaran-
tees that S0 ⊆ S (not S ⊆ S0).

Several other methods have been recently proposed in
the literature specifically for the task of interaction de-
tection. We offer a non-comprehensive review. For a
recent review, see Bien et al. (2013). Lim and Hastie
(2015) proposed a hierarchical group-lasso which en-
forces the constraint that the presence of a given inter-
action implies the presence of the associated main ef-
fects; a similar approach is given by Bien et al. (2013).
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A potential shortcoming of these approaches is that
they focus on linear models and allow only pairwise in-
teractions. Radchenko and James (2010) propose the
VANISH algorithm, which allows for nonlinear effects
through the use of basis function expansions, but again
limits to pairwise interactions. Several decision-tree
based methods have also been proposed. The addi-
tive groves procedure of Sorokina et al. (2008) uses an
adaptive boosting-type algorithm to sequentially test
for the presence of interactions between variables af-
ter performing a variable screening step. Basu et al.
(2018) propose the iterative random forest (iRF) algo-
rithm which flags “stable” interaction effects as those
which appear consistently in many trees in a certain
random forest.

2 BAYESIAN TREE ENSEMBLES

2.1 The BART Prior

Our starting point is the Bayesian additive regression
trees (BART) framework of Chipman et al. (2010),
which treats the function f0(·) as the realization of a
sum of random decision trees

f(x) =
T∑
t=1

g(x; Tt,Mt),

where Tt denotes the tree structure (including the de-
cision rules) of the tth tree and Mt = {µt` : ` ∈ Lt}
denotes the parameters associated to the leaf nodes;
here, Lt denotes the collection of leaf nodes of Tt. Let
[x (t, `)] denote the event that the point x is associ-
ated to leaf ` in tree t. The function g(x; Tt,Mt) then
returns µt` whenever [x (t, `)] occurs.

We follow Chipman et al. (2010) and specify a branch-
ing process prior for the tree structure Tt. A sample
from the prior for Tt is generated iteratively, start-
ing from a tree with a single node of depth d = 0;
this is made a branch with two children with prob-
ability q(d) = γ/(1 + β)d, and is made a leaf node
otherwise. We repeat this process independently for
all nodes of depth d = 1, 2, . . . until all nodes at depth
d are leaves. After the structure of the tree is gen-
erated, each branch b is associated with a decision
rule of the form [xj ≤ Cb]. The coordinate j used
to construct the decision rule is sampled with proba-
bility sj where s = (s1, . . . , sP ) is a probability vector.
The splitting proportion s will play a key role later as
an avenue for inducing sparsity in the regression func-
tion. Finally, we generate Cb ∼ Uniform(Lj , Uj) where
(L1, U1)× · · · × (LP , UP ) is the hyper-rectangle corre-
sponding to the values of x that lead to branch b. We
remark that this choice for Cb differs from the scheme
used by other BART implementations; we adopt it to
simplify the full conditionals we derive in Section 3.

For the prior on Mt we set µt`
iid∼ Normal(0, σ2

µ/T )
conditional on Tt and σ2

µ. By taking the variance to
be σ2

µ/T we ensure that the prior level of signal is
constant as T increases. The normal prior is selected
for its conjugacy; we note, however, that any prior for
µt` with mean 0 and variance σµ/T leads to the ap-
proximation f(x) ∼ Normal(0, σ2

µ) by the central limit
theorem. We fix β = 2 and γ = 0.95; we refer readers
to Linero and Yang (2017) for further details regarding
prior specification, and to Chipman et al. (2013) and
Linero (2017) for detailed reviews of Bayesian decision
tree methods.

2.2 Leveraging Structural Information

Several recent developments have extended the BART
methodology to take advantage of structural infor-
mation. Linero (2016) noted that sparsity in f0(x)
can be accommodated automatically by setting s ∼
Dirichlet(α/P, . . . , α/P ). Recall here that sj denotes
the prior probability that, for a fixed branch, coordi-
nate j will be used to construct a split at a that branch.
Hence, if s is nearly-sparse with d non-sparse entries,
the prior will encourage realizations from the prior to
include only the d predictors with non-sparse entries.
Linero and Yang (2017) showed that this prior for s
induces highly desirable posterior concentration prop-
erties; in particular, the posterior of f(x) concentrates
at close to the oracle minimax rate if we had known
the relevant predictors beforehand.

Linero and Yang (2017) also introduce the SBART
model, which uses soft decision trees (Irsoy et al.,
2012) which effectively replace the decision boundaries
of BART with smooth sigmoid functions. This allows
the SBART model to adapt to the smoothness level
of f(x); consequently, if f0(x) is assumed to be α-
Hölder, the posterior for the SBART model concen-
trates around f0(x) at close to the oracle minimax
rate obtainable when the smoothness level is known
a-priori. While the methodology we develop applies
to the usual BART models, we will use the SBART
model with the sparsity-inducing Dirichlet prior in all
of our illustrations.

3 DP-FORESTS

The distribution of (Tt,Mt) in the BART model is
parameterized by the splitting proportions s, leaf vari-
ance σ2

µ, and tree topology parameters (γ, β). To
encourage a small number of low-order interactions,
we specify a prior which clusters the trees into non-
overlapping groups such that each cluster constructs
splits using different subsets of the predictors. A
schematic is given in Figure 2 with T = 4. In this
figure we see that the first two trees are dedicated to
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Figure2:Schematicshowingtheeffectofclusteringtreeswithintheensemble. WhenZt=1splitareconstructed
withX1,butwhenZt=2splitsareconstructedwith(X2,X3).

learningamaineffectforx1whilethesecondtwotrees
arededicatedtolearninganinteractionbetweenx2
andx3.

Weinduceaclusteringbyusingtree-specificsplit-
tingproportionss(t)∼GandusingaDirichletpro-
cessprioronG(Ferguson,1973).Specifically,welet

s(t)
iid
∼GconditionalonGandletG∼DP(ωG0)where

G0isaDirichlet(αw1,...,αwP)distributionandωde-
notestheprecisionparameteroftheDirichletprocess.
Usingthelatent-clusterinterpretationoftheDirichlet
process(see,.e.g,Tehetal.,2006)thiscanbeapprox-
imatedbythefollowinggenerativemodel:

1.Drawπ∼Dirichlet(ω/K,...,ω/K)forlargeK.

2.DrawZ1,...,ZT
ind
∼Categorical(π).

3.Draws(1),...s(K)
ind
∼ Dirichlet(αw1,...,αwP)

where
P
p=1wp=1,wp≥0.

4.Fort=1,...,T,draw(Tt,Mt)asdescribedin
Section2withs=s(Zt).

TheZt’sclustertreessuchthatthetreeswithineach
groupcaptureasinglelow-orderinteraction.Notethat
theuseofthethesparsityinducingpriorinstep3
aboveensuresthateachs(k)willbenearly-sparse,and
hencethetreeswithZt=kwillsplitononlyasmall
subsetofthepredictors.Theroleplayedbythisweight
vectorwistoencourageasubsetofthepredictorsto
appearinmultipledifferentinteractions.Forexample,
ifthereareinteractions(X1,X2)and(X2,X3)wedo
notwanttoencourageanadditional(X1,X3)interac-
tion.Alargevalueofw2allowsforthisbyencouraging
X2toappearinseveralinteractions.

3.1 PropertiesofthePrior

Thedegreeofsparsitywithineachclusteroftrees,as
wellastheoverallnumberofclustersused,aredeter-

minedbythehyperparametersαandω. Thesehy-
perparametersarekeyindeterminingtheinteraction
structuresthatthepriorfavors. Tohelpanchorin-
tuitionwefirstconsiderseveralspecialcasesofthe
DP-Forestsmodel.First,weconsiderthebehaviorof
thepriorasα→0withωfixed.Inthiscase,withhigh
probabilityeachs(t)willhaveonlyonenon-sparseen-
try.Consequently,eachtreeintheensemblewillsplit
onatmostonepredictor.Becausethetreesarecom-
posedadditively,thisimpliesthatnoneofthevariables
interact,andhencethepriorconcentratesonasparse
generalizedadditivemodel(SPAM,Ravikumaretal.,
2007). Ontheotherhand,asα→ ∞ weseethat
s(t)→ (w1,...,wP)sothatthepriorrevertstoorig-
inalBARTmodelwithsplittingproportionsgivenby
(w1,...,wP)describedbyBleichetal.(2014).

Wecanconductasimilaranalysiswith αfixedandω
withK→∞.Asω→∞,eachtreewillbeassociated
toauniques(t).Asω→0,ontheotherhand,allofthe
treessharethesames(t)sothatthemodelcollapsesto
theDirichletadditiveregressiontreesmodeldescribed
byLinero(2016).

ThekeydifferencebetweenBARTandaDP-Forestis
that,oncetwovariablesareincluded,BARTdoesnot
penalizeinteractions.LetAiandAjdenotetheevent
thatvariableiandjareincludedinthemodel,letAij
denotetheeventthatvariablesiandjinteract,andlet
Πα,ωdenotethejointpriordistributionforT1,...,TT.
Westudythepriorontheinteractionstructurebyex-
aminingtheprobabilitiesΛ(α,ω)=Πα,ω(Aij|Ai∩
Aj),andΞ(α,ω)=Πα,ω(Aik|Aij∩Akj).Inwords,Λ
istheprobabilitythat(i,j)interactgiventhatboth
variablesarerelevant,whileΞrepresentstheproba-
bilitythat(i,k)interactgiventhat(i,j)and(k,j)
interact. Additionally,weexaminetherelationship
betweentheaveragenumberoftwo-wayinteractions
includedinthemodelandthenumberofvariablesin-
cluded.
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Figure3:Plotsofvariousquantitiesforω=0(solid,
correspondingtoSBART)andω=1(dashed)with
P=5andT=50.Left:plotofαagainstΛ. Middle:
PlotofαagainstΞ. Right:plotofthenumberof
variablesincludedinthemodelagainstthenumberof
interactions. Valuesarecomputedapproximatelyby
samplingfromthepriordistribution.

Figure3showsseveralrelationshipsbetweenthese
quantitiesasαvariesforbothSBARTandDP-Forests.
WeseethatΛisquitelargeforallvaluesof αwith
SBART,implyingthatthepriorexpectsanyvariables
includedinthemodeltointeract;thetrendisdecreas-
inginαonlybecausealargernumberofpredictorswill
beincludedinthemodel,causingvariablestocompete
forbranchesintheensemble. DP-Forestsdonoten-
couragetheinclusionofinteractions,particularlywhen
αissmall.Next,weseethatΞisalsouniformlylarge
forSBART.Thisimpliesthatthepriordoesnoten-
courageinteractionstructureslikethetruthfromFig-
ure1,whileaDP-Forestwithasmallchoiceofαdoes.

3.2 DefaultPriorSettings

AbenefitoftheBARTframeworkistheexistence
ofdefaultpriorswhichrequireminimaltuningfrom
users. Whereapplicable,wedonotstrayfromthe
defaultsrecommendedinSection2.SpecifictoDP-
Forests,thekeyparametercontrollingthebehavior
ofthemodelisα. OnthebasisofFigure3werec-
ommendchoosingαtobesmall;wehavefoundset-
tingα∼ Exponentialwith mean0.1toworkwell.
Conversely,inourillustrationstheresultsfortheDP-
Forestmodeldonotdependstronglyonω,andwe
setω∼Exponential(1). Thisleavestheweightvec-
torw=(w1,...,wP)tobespecified.Inourillustra-
tions,wefirstrunascreeningstepwhichremovesirrel-
evantpredictors.Inprincipleanymethodcanbeused
forscreening;inourillustrations,weuseSBARTto
screenvariableswhichhaveposteriorinclusionproba-
bilitybelow50%,andsetwj∝I(jisnotscreened).A
moreprincipledalternativeistouseanothersparsity-
inducingprioronw. Assuggestedbythereviewers,
wealsoconsideredahierarchicalpriorinwhichαwj=

ξj
ind
∼ Gamma(a/P,b). Thisisequivalenttosetting

α∼Gamma(a,b)andwj∼Dirichlet(a/P,...,a/P).
Wefoundthatthisdidnotperformaswellinexperi-
mentsasusingvariablescreeningandomittheresults.

3.3 ComputationandInference

Inferenceforthe DP-Forest modelcan becar-
riedoutusinga GibbssamplerwiththeBayesian
backfitting approach of Chipmanet al. (2010).
The Gibbssampleroperatesonthestatespace
({Tt,Mt,Zt}

T
t=1,{s

(k),πk}
K
k=1,α,ω,σ

2
µ,σ

2). Weuse
standardMetropolis-within-Gibbsproposalstoupdate
TtandMt;seeKapelnerandBleich(2016)andPra-
tola(2016)fordetails.Theparametersα,ω,σ2µ,and
σ2canallbeupdatedeasilyusingtheslicesampling
algorithmofNeal(2003). Finally,Zt,s

(k),andπall
haveconjugatefull-conditionaldistributions:

Fullconditionalforπ:Notethatπisconditionally
independentofallparametersgiven(ω,Z).Byconju-
gacyoftheDirichletdistributiontomultinomialsam-
plingwehavethefullconditionalπ∼Dirichlet(ω/K+
m1,...,ω/K+mK)wheremk= tI(Zt=k).

Fullconditionalfor s(k):Theconjugacyofthe
Dirichletpriorto multinomialsamplingimpliesa
Dirichletfull-conditional whenasingle sisused.
Toaccountfortheclustering,weonlyconsiderthe
branchesassociatedtotreeswithZt=k,givingthe

fullconditionals(k)∼Dirichlet(αw1+c
(k)
1 ,...,αwP+

c
(k)
P )wherec

(k)
j isthenumberofbranchesassociated

toclusterkwhichsplitonpredictorj.

FullconditionalforZt:Letp(k)denotethefull
conditionalforZt. Theterm[Zt=k]comesinonly
throughthefactorsπk(thepriorprobabilityofZt=k)

and
P
j=1s

(k)ctj
j wherectjisthenumberofbranches

oftreetwhichsplitonpredictorj(thelikelihoodof
treethavingsplitonthepredictorsthatithas,give

Zt=k).Hencep(k)∝πk
P
j=1s

(k)ctj
j .

Puttingthesepiecestogether, wearriveat Algo-
rithm1,whichdescribesasingleiterationoftheGibbs
sampler.

4 EXPERIMENTS

WenowcompareDP-Foreststoexistingmethodsona
numberofsyntheticdatasets. Weconsiderthefollow-
ingmethodsinadditiontoDP-ForestsandSBART.

Additivegroves: Theadditivegrovesprocedureof
Sorokinaetal.(2008).Becausetuningoftheadditive
grovesalgorithmiscompute-intensive,weranseveral
pilotstudiestochooseappropriatetuningparameters
whichperformwellforthegivensimulationsettings.
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Algorithm1Bayesianbackfittingalgorithm

1:fort=1,...,Tdo
2: Update(Tt,Mt)viaMetropolis-Hastings.
3: SampleZt∼p(k),k=1,...,Kwherep(k)∝

πk
P
j=1s

(k)ctj
j andctjisthenumberofbranches

associatedtotreetwhichsplitonpredictorj.
4:endfor
5:fork=1,...,Kdo

6: Samples(k)∼Dirichlet(αw1+c
(k)
1 ,...,αwP+

c
(k)
P )wherec

(k)
j isthenumberofbranchesassoci-

atedtoclusterkwhichsplitonpredictorj.
7:endfor
8:Sampleπ∼Dirichlet(ω/K+m1,...,ω/K+mK)

wheremk=
T
t=1I(Zt=k).

9:Sample(σ,σµ,α,ω)usingslicesampling.

Hierarchicalgrouplasso: Thehierarchicalgroup
lassoproposedbyLimandHastie(2015)forinterac-
tiondetection;weabbreviatethismethodbyHL.This
procedurewasdesignedwithlinearityoff0(x)inmind.
Tuningparametersareselectedbycross-validation.

Hierarchicalgrouplasso,leastsquares: HLis
usedtoselecttheinteractionsandmaineffects,while
thecoefficientsareestimatedbyleastsquares;weab-
breviatethis methodbyHL-LS.Tuningparameters
areselectedbycrossvalidation.

Iterativerandomforests: Theiterativerandom
forests(iRF)procedureproposedbyBasuetal.(2018)
asimplementedintheiRFpackageonCRAN. Weuse
thedefaultT=500treesand10iterationsoftheiRF
algorithm.

Oursimulationsettingsareborrowedfromseveralex-
istingworks;wedonotcompareourmethodstothese
otherworksduetoalackofpubliclyavailablesoftware.

(S1)(RadchenkoandJames,2010) WegenerateXi∼
Uniform([0,1]P)whereP=50,N =300,and
σ2=1. Weletf0(x)be

√
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wheref1(x) =x1,f2(x) =(1+x2)
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sin(x3),f4(x)=e
x4,andf5(x)=x

2
5.Eachfv(x)

isfurthercenteredandscaledsothatE(fv(Xi))=
0andVar(fv(Xi))=1.

(S2)(Vo and Pati,2016) We generate Xi ∼
Normal(0,I)withN =100,P=100,andσ=
0.14. Weletf0(x)=x1+x

2
2+x3+x

2
4+x5+

x1x2+x2x3+x3x4.

1 0.932

0.638
0.409

0

0.966
0.812

0.528
0.319 0.337

0.986 0.897

0.633

0.333

0.903

1

0.09 0 0

0.827

Vo-Interaction Vo-NoInteraction

Friedman Radchenko-James

DPF SBART Groves iRF HL-LS DPF SBART Groves iRF HL-LS

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Method

F
sc
or
e

0 0.21
1.68

3.01

0

0.24
1.43

2.293

4.6

2.217

0.07 0.54

2.72

7.98

4.09

0
2

4.82
6.58

0.714

Vo-Interaction Vo-NoInteraction

Friedman Radchenko-James

DPF SBART Groves iRF HL-LS DPF SBART Groves iRF HL-LS

0

2

4

6

8

0

2

4

6

8

Method

F
al
se
p
os
it
i
ve
s

0 0 0 0

1

0 0

1.061

1.54
1.815

0 0 0 0.01 0

0 0 0 0 0

Vo-Interaction Vo-NoInteraction

Friedman Radchenko-James

DPF SBART Groves iRF HL-LS DPF SBART Groves iRF HL-LS

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Method

F
al
se
ne
ga
ti
ve
s

(S3)Sameas(S2),butwithouttheinteractioneffects.

Figure4:Barplotofresultsforinteractiondetection.
ThetoprowgivestheaverageF1scoreforeachmethod
fordetectinginteractions. Thesecondrowgivesthe
averagenumberoffalsepositiveinteractionsdetected.
Thebottomrowgivestheaveragenumberoffalseneg-
ativesdetected.Theaverageforeachmethodisgiven
oneachbar.

(S4)(Friedman,1991)AcommontestcaseforBART,
wegenerateXi∼ Uniform([0,1]

P)withP =
250,N=250,and σ2 =1. Weset f0(x) =
10sin(x1x2)+20(x3−0.5)

2+10x4+5x5.

Eachofthesescenarioswasreplicated100times. We
evaluateeachmethodaccordingtotheaveragenumber
offalsepositives(FPs),falsenegatives(FNs),F1score,

andintegratedroot-meansquarederror f0−f2.
TheF1scoreisacommonlyused measureofover-
allaccuracythatbalancesfalsepositivesagainstfalse
negativesinvariableselectiontasks;see,forexample,
ZhangandYang(2015).

ResultsforinteractiondetectionaregiveninFigure4.
WeomittheresultsforHLbecauseHL-LSperforms
uniformlybetter. Underallsimulationsettings,DP-
Forestsperformbetterthanallothermethodsaccord-
ingtoF1score.SBARTisalsocompetitivewithother



JunliangDu, AntonioR.Linero

0.999 0.999 0.996
0.861 0.86

0.999 0.999
0.861 0.832

0.563

0.993 0.993 1 0.988 0.918

0.999 0.999 0.937 0.885

0.576

Vo-Interaction Vo-NoInteraction

Friedman Radchenko-James

DPF SBART Groves iRF HL-LS DPF SBART Groves iRF HL-LS

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Method

F
sc
or
e

0.01 0.01 0.01 0.01 0.04

0.01 0.01 0.01

0.99

3.13

0.08 0.08 0 0.14

2.24

0.01 0.01 0

0.84 0.806

Vo-Interaction Vo-NoInteraction

Friedman Radchenko-James

DPF SBART Groves iRF HL-LS DPF SBART Groves iRF HL-LS

0

1

2

3

0

1

2

3

Method

F
al
se
p
os
it
i
ve
s

0 0 0.03

1.18 1.18

0 0

1.162
0.79

1.728

0 0 0 0 0.01

0 0
0.56 0.4

2.592

Vo-Interaction Vo-NoInteraction

Friedman Radchenko-James

DPF SBART Groves iRF HL-LS DPF SBART Groves iRF HL-LS

0

1

2

0

1

2

Method

F
al
se
ne
ga
ti
ve
s

Figure5:Barplotofresultsfordetectingmaineffects.

proceduresonmanyofthedatasets.Asexpected,the
primaryproblemwithSBARTisthatithasarela-
tivelylargenumberoffalsepositives,i.e.itissus-
ceptibletodetectingspuriousinteractions.Thisissue
ismostpronouncedon(S2)and(S3),withSBART
detectingbetween1.5and2spuriousinteractions.

Additivegrovesanditerativerandomforestsgenerally
performworsethanSBART.Inadditiontohavinga
largerfalsepositivesrate,theseproceduresarealso
pronetofalsenegativesundersimulation(S2). With
theexceptionof(S1),thehierarchicalgroup-lasso(HL-
LS)performsworsethantheothermethods. Under
(S1),HL-LShasreasonableperformanceaseachcom-
ponentoff0(x
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)canbereasonablywell-approximated
bytheassumedlinearmodel. HL-LSalsoappearsto
performwellunder(S3);this,however,isduetothe
factthatHL-LStypicallymissesseveralmaineffects,
whichisasubstantiallyworseoutcomethandetecting
aspuriousinteraction. Thenonlinearitiesunder(S2)
and(S4)alsocreateproblemsforHL-LS.

Allmethodsperformbetterfordetectingthemainef-
fects.SBARTandDP-Forestsgiveidenticalresultsfor
themaineffectsduetotheuseofSBARTinscreen-
ingforDP-Forests.(S1)istheeasiestsetting,withall

Figure6:Boxplotsgiventhedistributionofintegrated
rootmean-squarederrorforeachmethodforeachsim-
ulationsetting.

methodshavingveryfewfalsenegativesandHL-LS
theonlymethodhavingnon-negligiblefalse-positives.
Under(S2),thenon-Bayesianproceduresallhavenon-
negligiblefalsenegatives,andiRFandHL-LSaread-
ditionallypronetofalsepositives;thestoryissimilar
under(S3),withHL-LSperformingbetterintermsof
falsepositivesbutworseintermsoffalsenegatives.
Allmethodsperformwellintermsoffalsepositives
under(S4),howeveriRFandHL-LSalsosufferfrom
manyfalsenegatives.

Resultsforassessingpredictionperformanceinterms
ofintegratedroot mean-squarederror(RMSE)are
giveninFigure6. SBARTandDP-Forestsperform
verysimilarlyintermsofRMSE.Allothermethods
performsubstantiallyworseunderallsettings. This
islikelyduetoa multitudeoffactors. First,any
falsenegativeswillcontributetopoorpredictiveper-
formance.Second,SBARTandDP-Forestsareable
totakeadvantageofunderlyingsmoothnessinthere-
sponsefunctionwhichadditivegrovesanditerative
randomforestscannot,whileHLandHL-LSsuffer
fromanincorrectmodelspecification.

SBARTandDP-Forestsarecompetitiveintermsof
runtime. Forexample,onasinglereplicateof(S4),
SBARTandDP-Foreststook118secondsand241sec-
ondsrespectivelytoobtain40,000samplesfromthe
posterior.Bycomparison,iRFtook279second,HL-
LStook91seconds,andadditivegrovestook4966
seconds.Additivegroveswasbyfartheslowestproce-
dure,duetothefactthatrecursivefeatureelimination
isused. Weconcludethat,underthesesettings,DP-
Forestsoutperformallcompetitorsareacompetitive
computationalbudget.
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Method RMSE

DP-Forests 1.00
iRF 1.22
HL 1.18
AdditiveGroves 1.16

Table1: Cross-validationestimateofroot mean-
squaredpredictionerrorontheBostonhousingdataset
normalizedbytheRMSEoftheDP-Forest.

WealsoconsiderthepubliclyavailableBostonhous-
ingdatasetofHarrisonandRubinfeld(1978).Analy-
sisoftheinteractionstructurespresentinthisdataset
waspreviouslyundertakenbyRadchenkoandJames
(2010)andVoandPati(2016).Thisdatasetconsists
ofP=13predictorsandN =506neighborhoods,
andacontinuousresponsecorrespondingtotheme-
dianhousevalueinagivenneighborhood.

Wecomparethemethodsintermsofgoodness-of-fit,
whichisevaluatedusinga5-foldcrossvalidatedesti-
mateofrootmeansquaredpredictionerror. Results
aregiveninTable1. Forprediction,theDP-Forest
andSBARToutperformthecompetingmethods.

TheDP-Forestincludesmostofthepredictorsinthe
model.Thiscanbecontrastedwiththefitofasparse
additivemodel(SPAM)Ravikumaretal.(2007)and
thefitoftheVANISHmodelreportedbyRadchenko
andJames(2010),whichincludeonlyasmallnumber
ofpredictors. LiketheVANISHalgorithm,theDP-
Forestselectsoneinteraction:thereisstrongevidence
ofaninteractionbetweenDIS(distancetoanemploy-
mentcenterinBoston)andLSTAT(theproportionof
individualsinaneighborhoodwhoarelower-status).
Thisinteractionwashighlystable,andwasselectedby
everyfittothedataduringcross-validation;addition-
ally,thisinteractionwasselectedbyadditivegrovesin
4outof5foldsduringcross-validation.Interestingly,
thisinteractionwasreportedlynotselectedbyVAN-
ISH,whichinsteadselectsaninteractionbetweenthe
variablesNOX(nitrus-oxideconcentration)andLSTAT.

Figure7givesavisualizationoftheLSTAT-DISinterac-
tion.Tosummarizetheinteractionweusea“fit-the-
fit”strategyandfitageneralizedadditivemodelto
thefitted-valuesoftheDP-Forestwithathinplate
splinetermfortheinteraction(Wood,2003). The
plotthendisplaystheLSTAT-specificeffectofDISfor
the10th,20th,...,90thquantilesofLSTAT.ThisGAM
nearlyreproducesthefittedvaluesfromtheDP-Forest
andiseasiertovisualize. WeseeinFigure7aclear
interactionbetweenDISandLSTAT
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4.68

6.29
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9.53

11.36
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15.62
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.Intuitively,oneex-
pectsthatthecloseraneighborhoodistoanindustry
centerthemoreexpensivethehousingwillbe. This
iscorrectforareaswithfewerlower-statusindividu-

Figure7:Graphicalsummaryoftheeffectofdistance
DISonMEDVforvariousvaluesofLSTAT.

als;however,thistrenddoesnotholdwhenthereisa
higherpercentageoflower-statusindividuals. Were-
markalsothatthedataiswellsupportednear0for
allvaluesofLSTAT,sothatthisbehaviorisunlikelyto
beduetoextrapolation,thoughextrapolationmaybe
anissueforlargevaluesofbothLSTATandDIS.

5 DISCUSSION

Wehaveintroduced Dirichletprocessforests(DP-
Forests)andappliedthemtotheproblemofinterac-
tiondetection. Wedemonstratedonbothsynthetic
andrealdatathatDP-Forestsleadtoimprovedin-
teractiondetection. Additionally,wedemonstrated
that DP-Forestsarehighlycompetitive withcom-
monlyusedmachinelearningtechniquesfordetecting
low-orderinteractions.

Thereareanumberofmodificationsonemightmake
toimproveperformancefurther.Onepossibilityisto
allowσµ toalsovaryby mixturecomponent. This
wouldallowdifferentmixturecomponentstohavedif-
ferentsignallevels;forexample,undersimulation(S4),
wewouldexpectthatasmallervalueofσ2µisappro-
priateforthemixturecomponentresponsibleforx5
relativetox4. TheproposedDP-Forestsmodelcap-
turesthisfeatureonlyindirectlythroughthenumber
oftreesassignedtoeachmixturecomponent.

Additionally,it wouldbeinterestingtoquantify
theimprovementinperformanceofDP-Forestsover
SBARTtheoretically.ItisunknownwhetherSBART
isvariable-selectionconsistent,andestablishingtheo-
reticallythatDP-Forestsareconsistentforinteraction
detectionwhileSBARTisnotremainsanopenprob-
lem.
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