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Abstract—Short range channels commonly arise in millimeter
wave (mmWave) wearable settings, where the length of the
antenna arrays can be comparable to the distance between
the radios. Conventional mmWave MIMO channel estimation
techniques based on the far field assumption may perform poorly
in short range settings due to the large angular spread and,
hence, high available rank. We propose a geometry-aided message
passing algorithm that exploits structure in short range line-of-
sight (LoS) channels for spatial sub-Nyquist channel estimation.
Our approach parametrizes the channel using angle-of-arrivals
(AoAs) that are locally defined for subarrays of an antenna
array. Furthermore, it leverages the dependencies between the
local AoAs using factors based on the array geometry. We show
that the LoS MIMO channel can be reconstructed using the
derived local AoA estimates and the known transceiver geometry.
The proposed approach achieves a reasonable rate with greatly
reduced pilot transmissions when compared to exhaustive beam
search-based local AoA estimation.

Index Terms—AoA estimation, Mm-wave, message passing

I. INTRODUCTION

Millimeter wave radio architectures can be different from
the architectures that are commonly used at lower carrier
frequencies [1]. The smaller wavelengths at millimeter wave
(mmWave) allow the use of a large number of antennas. The
number of available radio frequency (RF) chains, however,
can be far less than the number of antenna elements, to
minimize the power consumption and the cost of mmWave
systems [1]. The hybrid beamforming architecture, used in the
IEEE 802.11ay standard, is one such example. High spectral
efficiency can be achieved in a beamforming system if its
antenna arrays are configured properly. Such configuration can
be achieved if the channel between the transmitter (TX) and
the receiver (RX) is known.

Channel estimation can be challenging in hybrid beamform-
ing systems due to a limited number of RF chains [1]. To
reduce the overhead in learning the channel, prior work has
exploited low rank and sparse nature of mmWave channels
[2]. Most of these algorithms, however, make a far field
assumption, i.e., the distance between the TX and the RX is
larger than the length of the antenna arrays at the TX and the
RX [3]. In typical mmWave wearable settings, the far field
assumption may not be applicable. For instance, short range
line-of-sight (LoS) channels can have rank that is larger than
one due to the sufficient angular separability [4]. In contrast,
far field LoS channels have a rank one structure. In [4], the
authors provide mathematical criteria for the LoS channel rank

depending on various parameters. Similarly, dictionaries used
for compressive channel estimation in which far field channels
have a sparse representation may not be appropriate in short
range settings. Therefore, there is a need to develop algorithms
that exploit the short range channel structure to minimize the
training overhead for channel estimation.

In this paper, we propose a geometry-aided message passing
algorithm for short range LoS channel estimation. We con-
sider a point-to-point multiple-input multiple-output (MIMO)
communication scenario, where the TX node is equipped with
a fully digital architecture and a relatively small number of
antennas, while the RX node comprises a large antenna array
and a subarray-based hybrid beamforming architecture. Such a
setup may be useful in an on-body mmWave sensor network.
Assuming channel reciprocity, the estimated channel at the RX
node can be used to design the corresponding hybrid beam-
forming structures for both data transmission and reception.
We assume that the far field assumption holds for the subarray
specific channels but not for the full channel. Under such
an assumption, we define local angle-of-arrivals (AoAs) for
each RX subarray. Our algorithm estimates the local AoAs
using the pilots sent from the TX antennas, while exploiting
the dependencies among the local AoAs that arise from the
geometry of the RX antenna array. The full MIMO channel
is then estimated from local AoA information corresponding
to two outermost TX antennas of the TX antenna array.
The proposed technique has low complexity and performs
significantly better than the maximum likelihood approach
that recovers local AoAs independently. Simulation results
indicate that our algorithm can be used to greatly reduce the
training required for LoS channel estimation when compared
to conventional techniques.

II. SYSTEM AND CHANNEL MODEL

We consider a point-to-point1 MIMO system with a
subarray-based hybrid beamforming architecture at the RX
illustrated in Fig 1. Let NRF be the number of RF chains
and corresponding analog subarrays at the RX. We use Nrx

to denote the number of antennas at the RX. Each of the
NRF subarrays at the RX is considered to be λ/2 spaced
uniform linear array with N antennas, where λ denotes the

1Extension to multiuser scenario is straightforward if each TX is assigned
with orthogonal pilots.
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Fig. 1. Example of a short range system for NRF = 4, N = 4, and Ntx = 4.
The angle-of-arrival varies across subarrays when r is comparable to Lrx.

wavelength corresponding to the mmWave carrier frequency.
Furthermore, the Nrx = NNRF antennas at the RX are
assumed to be collinear. Each subarray is equipped with an
analog beamforming architecture with phase shifters. The TX
is equipped with a fully digital architecture with NRF RF
chains and Ntx = NRF antennas.

We consider a narrowband setting and define H ∈ CNrx×Ntx

as the channel matrix. The length of the antenna arrays
at the TX and the RX are Ltx and Lrx, and the distance
between the midpoint of the arrays at the TX and the RX is
denoted by r. While the spacing between successive elements
in each RX subarray is assumed to be λ/2, the spacing
between the successive subarrays can be arbitrarily larger than
λ/2. We assume that inter-subarray spacing is uniform across
successive RX subarrays, and is determined by Lrx and NRF.
Similarly, the spacing between the TX antennas can be larger
than λ/2. The assumptions like the use of uniform subarray
spacing, and narrowband setting are made for simplicity of
exposition. The ideas underlying our approach, however, can
be extended to any TX/RX array geometry.

Now, we describe the channel and the system model in the
hybrid beamforming setup. We use di,j to denote the distance
between the ith antenna at the RX and the jth antenna at the
TX. The (i, j)th entry of the channel is then [4]

H(i, j) =
λ

4πdi,j
e−j2πdi,j/λ. (1)

We define hk,` ∈ CN , a vector in H, as the channel between
the kth subarray at the RX and the `th RF chain at the TX.
Let t`[m] ∈ C be the pilot transmitted by the TX in the
mth training slot. In the same slot, the RX applies conjugate
transpose of wk[m] ∈ CN to its kth subarray to acquire
channel measurement yk[m]. Under perfect synchronization,
the channel measurement is

yk[m] = w∗
k[m]

NRF∑
`=1

hk,`t`[m] + vk[m], (2)

where vk[m] ∼ Nc(0, σ
2) is circularly symmetric Gaussian

noise with zero mean and variance σ2. As H has NN2
RF

entries and the RX can acquire NRF channel measurements
in parallel, standard channel estimation based on exhaustive
search requires a training overhead of O(NN2

RF/NRF). In
this paper, we show that, by utilizing the known geometry
of the RX antenna array, a reasonable approximation of H

can be estimated with a small fraction of O(NNRF) pilot
transmissions.

III. GEOMETRY-AIDED CHANNEL RECONSTRUCTION

The idea underlying the proposed short range LoS channel
estimation approach is best understood using local AoA esti-
mation. For ease of exposition, consider a scenario in which
the first antenna at the TX transmits known pilots and the
rest of the NRF − 1 antennas are inactive. For an indicator
function I, setting t`[m] = I`=1 in (2) results in the desired
condition. Ignoring the TX antenna index `, we define θk as
the local AoA made by the ray between the midpoints of the
kth RX subarray and the first TX antenna2, with the normal
to the RX array. We make an assumption that the AoAs seen
by the N individual antennas within subarray k are invariant,
and can be approximated by the local AoA θk. The angles
{θk}NRF

k=1 , however, can vary with the subarray index k, as seen
in Fig. 1. In mmWave wearables, the far field approximation is
reasonable to each subarray while it does not apply to the full
array. For example, the size of a VR headset can span over
multiple subarrays lengths. In this paper, we model θk as a
realization of a random variable Θk, and propose an algorithm
to estimate the local AoAs from the channel measurements
while exploiting the dependencies among {θk}NRF

k=1 .

A. Construction of likelihood functions for local AoAs

As each subchannel is assumed to satisfy the far field
approximation, the local AoAs can be estimated using standard
compressed sensing (CS) [5]. We use shifted Zadoff-Chu
(ZC) sequences as analog RX beamformer weights wk[m]
for channel acquisition, as ZC sequences can be realized in
beamforming systems with unimodulus constraints, and have
good properties for AoA estimation [6]. For instance, CS-
based AoA estimation with ZC sequences is efficient, if the
AoAs come from a set of angles that are defined by the discrete
Fourier transform. We define zk ∈ CN as the ZC sequence
used at the kth subarray of the RX. Spatially diverse channel
measurements are acquired at the RX by applying different
random circulant shifts of zk to its kth subarray.

For pilot transmission from the first antenna at the TX, the
mth channel measurement at the kth RX subarray is

yk[m] = w∗
k[m]hk,1 + vk[m]. (3)

We define a Vandermonde vector of length N as aN (θ) =
[1, e−jπsin(θ), e−j2πsin(θ), .., e−j(N−1)πsin(θ)]T . Under the far
field assumption for subchannels, hk,1 can be approximated
as αkaN (θk), where αk is an unknown complex gain. The
channel measurement yk[m] is then

yk[m] = αkw
∗
k[m]aN (θk) + vk[m]. (4)

A collection of M projections of aN (θk), obtained using RX
beam training vectors {wk[m]}Mm=1, is defined as yk ∈ CM .
In this paper, the first M − 1 beam training vectors, i.e.,
{wk[m]}M−1

m=1 , are chosen as M − 1 distinct random circulant
shifts of zk. The vector wk[M ] is defined as wk[M ] =

2In general, θk,` denotes the local AoA between TX antenna ` and RX
subarray k. An identical AoA estimation process is carried out for each `.



wk[1] � [1,−1,−1, .. − 1]T , where � denotes the element-
wise product. The M th measurement is defined differently so
that the unknown gain αk can be estimated. With ηk defined
as the first entry of wk[1], it can be observed from (4) that
yk[1]+yk[M ] is a noisy version of 2αkηk. An estimate of αk

is then α̂k = (yk[1] + yk[M ])/2ηk.
The gain compensated channel measurements are defined

as ỹk = yk/α̂k. The compression matrix associated with
the kth subarray is defined as Ak ∈ CM×N , where the
mth row of Ak is Ak(m, :) = w∗

k[m]. From (4), it can
be observed that yk = αkAkaN (θk) + vk. We ignore the
errors in estimating αk to conclude that ỹk is a realization
of Nc(AkaN (θk), σ

2I/|α̂k|2). Thus, the scaled likelihood
function p(θk) is defined as

p(θk) = exp
(
−|α̂k|2‖ỹk −AkaN (θk)‖2/σ2

)
. (5)

A possible way to estimate θk is by maximizing p(θk) in (5).

B. Statistical dependency among local AoAs

In this section, we design geometry factors to model the
strong dependencies among local the AoAs {θk}NRF

k=1 . For a
specific θ1, it can be observed from Fig. 1 that θ2 is a function
of the distance between the first antenna at the TX and the first
subarray of the RX. As this distance is typically bounded, θ2
takes a range of values that depend on θ1. The maximum
likelihood (ML) estimator that independently maximizes (5)
over {θk}NRF

k=1 does not exploit such dependency, and may
result in poor local AoA estimates.

We derive the geometry factor g(θ2|θ1) that represents the
distribution of Θ2 conditioned on Θ1 = θ1. We define r1 as
the distance between the first TX antenna and the midpoint of
the RX array, and sk as the distance of the kth RX subarray
from the midpoint of the RX. For a given r1, the distance r11
in Fig. 1 can be solved from

(r11cos θ1)
2 + (r11sin θ1 + s1)

2 = r21 (6)
and, subsequently, the local AoA θ2 can be expressed as

θ2 = tan−1

(
s1 − s2 + r11sin θ1

r11cos θ1

)
. (7)

From (6) and (7), it can be observed that there is a unique θ2
for a given θ1 and r1. Let G be the mapping from θ1 and r1
to θ2, i.e., θ2 = G(θ1, r1). We assume that r ∈ [rmin, rmax].
For example, it is reasonable to assume rmin ≈ 15 cm and
rmax ≈ 80 cm in on-body communication setups. The distance
r1 known to lie in [rmin − Ltx/2, rmax + Ltx/2]. We assume
that r1 is uniformly distributed within this interval to get

g(θ2|θ1) =
1

D

∫ rmax+Ltx/2

rmin−Ltx/2

δ(θ2 − G(θ1, r1))dr1, (8)

where D = rmax−rmin+Ltx and δ(·) denotes the Dirac-delta
function indicating θ2 = G(θ1, r1). Similarly, other conditional
distributions, i.e., {g(θk|θn)}k,n, can be estimated with the
arguments used to compute g(θ2|θ1). The geometry factors
do not depend on the channel measurements, and can be
computed offline based on the array geometry at the RX.
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Fig. 2. Factor graphs in forward and backward passes of message passing
for NRF = 4. The random variable Θk models a realization of θk .

C. Geometry-aided message passing

Now, we explain our algorithm that combines information
about {Θk}NRF

k=1 from the likelihood functions (5) and the
geometry factors (8). The factor graph [7] corresponding to
our algorithm is shown in Fig. 2. The circular nodes in
Fig. 2 denote random variables, and the rectangular nodes
contain factors or likelihoods. A message flowing out of a
node represents a distribution of a random variable, from the
node’s perspective. Messages are sent between the circular
nodes and the rectangular nodes to obtain better estimates of
{θk}NRF

k=1 when compared to the ML estimator. Our algorithm
includes a forward pass, i.e., sequential flow of messages
among {Θk}NRF

k=1 , and a backward pass in which message
flows occur in the opposite direction. The messages in both
directions are computed using the sum-product algorithm [7].

We explain how messages are constructed in the forward
pass. In the first iteration of the forward pass, the likelihood
function p(θ1) is sent to node Θ1, which forwards P fwd

out (θ1) =
p(θ1) to the geometry factor that contains g(θ2|θ1). Using the
two functions, the geometry factor forwards message P fwd

in (θ2)
to node Θ2, defined by

P fwd
in (θ2) =

∫ π/2

−π/2

P fwd
out (θ1)g(θ2|θ1)dθ1. (9)

The distribution P fwd
in (θ2) is essentially P fwd

out (θ1)g(θ2|θ1)
marginalized over θ1. In other words, P fwd

in (θ2) represents the
belief about Θ2, i.e., a scaled probability distribution of Θ2

believed by the geometry factor, using information about Θ1.
Note that P fwd

in (θ2) provides side information about Θ2 that
is independent of the measurements acquired by the second
subarray. This side information comes from the observations
in the first subarray, and the statistical dependency between θ1
and θ2. The node Θ2 combines information from the channel
measurements, i.e., p(θ2), with the one from P fwd

in (θ2), using
P fwd
out (θ2) = p(θ2)P

fwd
in (θ2). (10)

The message in (10) is sent to the factor containing g(θ3|θ2),
which computes the belief about Θ3 with g(θ3|θ2) and
P fwd
out (θ2). The process of message flows continues until the

last node with ΘNRF
is reached. The messages in (9) and (10)

can be generalized, by setting θ1 to θk−1 and θ2 to θk, to obtain
recursive equations. The forward pass computes message
inflows {P fwd

in (θk)}NRF

k=2 using the recursive equations.



The forward pass does not exploit information about
{θn}NRF

n=k to generate side information about θk−1. The
backward pass overcomes this issue by performing mes-
sage flows in the opposite direction of the forward pass.
In the first iteration, message from the N th

RF node, i.e.,
P bwd
out (θNRF

) = p(θNRF
), flows into the geometry factor

containing g(θNRF−1|θNRF
). The geometry factor then sends

a belief about ΘNRF−1, defined as P bwd
in (θNRF−1), based on

p(θNRF). Similarly, the backward pass is computed using

P bwd
in (θk−1) =

∫ π/2

−π/2
P bwd
out (θk)g(θk−1|θk)dθk, (11)

P bwd
out (θk) = p(θk)P bwd

in (θk). (12)
It can be observed that nodes Θ1 and ΘNRF

do not receive side
information in the forward and backward passes. Therefore,
we set P fwd

in (θ1) = U(θ1) and P bwd
in (θNRF

) = U(θNRF
),

where U(θ) denotes a uniform distribution over θ.
At the end of forward and backward passes, each node

k obtains side information in the form of P fwd
in (θk) and

P bwd
in (θk), and also has access to the likelihood p(θk). The

three sources of information about Θk can be combined by
defining a new distribution pgmp(θk), i.e.,

pgmp(θk) = p(θk)P fwd
in (θk)P bwd

in (θk). (13)
Finally, the local AoA estimate with our geometry-aided mes-
sage passing algorithm is defined as θ̂k = arg max pgmp(θk).
For computational tractability, the integrals in (8), (9), and
(11) are computed using a discrete sum, assuming angular
resolution of κπ. Thus, the complexity of the algorithm is
O(NRF/κ

2). It can be noticed that the factor graph in our
algorithm models dependencies among adjacent local AoAs,
and does not include factors like g(θk|θn) for |k − n| > 1.
Incorporating such factors can result in short cycles, which
may not be desirable from a message passing perspective [8].

D. MIMO channel reconstruction from local AoA estimates

A reasonable approximation of the LoS MIMO channel
matrix can be estimated at the RX from the local AoA
estimates. First, we note that the RX knows the geometry of
its antenna array, and can compute the position vectors of all
the RX antenna elements relative to a common reference. Let
s1 and sNRF

denote the position vectors of the first and N th
RF

RX subarrays. We define s = (s1 − sNRF
)/‖s1 − sNRF

‖2 as
a unit vector along the antenna array at the RX. It can be
observed from Fig. 1 that the first TX antenna is at a distance
of r11 from the first RX subarray. Furthermore, the direction
of this TX antenna, relative to the RX array, can be found by
rotating s in the anti-clockwise direction by π/2 − θ1. For a
rotation matrix R(∆) given by

R(∆) =

[
cos(∆) − sin(∆)

sin(∆) cos(∆)

]
, (14)

the position vector of the first TX antenna is defined as
q1 = s1 + r11R(π/2 − θ1)s, where r11 can be computed
using triangulation from multiple local AoA estimates. The
position vector of the N th

RF TX antennas can be derived by
the algorithm in Section III-C to estimate the local AoAs
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Fig. 3. Likelihood functions {p(θk)}NRF
k=1 for a particular channel realization.

corresponding to the N th
RF TX. Finally, the coordinates of

the remaining TX antennas are acquired using the estimated
positions of the first and last TX antennas and the known TX
geometry. The LoS channel is constructed from the estimated
coordinates using (1). Note the TX training can be done
simultaneously using orthogonal spreading sequences for the
antennas.

IV. SIMULATION RESULTS

We consider N = 16 antennas per subarray, and NRF = 4
subarrays for the hybrid beamforming architecture at the RX.
The TX is equipped with a fully digital architecture with
Ntx = 4 antennas and NRF = 4 RF chains. The carrier
frequency in the system is set to 60 GHz, which corresponds
to λ = 5 mm. The length of the arrays at the TX and the
RX are Ltx = 4 cm and Lrx = 18 cm. It may be possible to
mount the RX array on a augmented reality headset, and the
TX array on a wearable like smart watch. The spacing between
the midpoint of successive RX subarrays is 4.75 cm, and the
spacing between neighbouring TX antennas is 1.33 cm. The
TX and RX arrays are placed on a horizontal plane at a height
of 1.5 m, in a room of dimensions 5 m×5 m×3 m. The proper-
ties of the ceiling, side-walls, and the floor were set according
to the parameters in [4]. The channel in our simulations
has components corresponding to reflections from the walls
in addition to the LoS component. Our algorithm, however,
can only estimate the dominant signal path corresponding to
the LoS component. The distance between the transceivers,
i.e., r, is chosen uniformly at random from [rmin, rmax] for
rmin = 40 cm and rmax = 80 cm. The orientations of the TX
and RX arrays are chosen at random to cover a wide range of
possible configurations. The RX SNR for pilot measurements,
5 dB, is chosen to be fairly small to demonstrate the resilience
of the algorithm against estimation inaccuracies.

We evaluate three different algorithms in a short range
setting. The first method uses the ZC-based compression
matrix defined in Sec. III-A, and independently maximizes
the likelihood functions in (5). The second approach esti-
mates local AoAs using the proposed geometry-aided message
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Fig. 4. The proposed geometry-aided message passing approach results in
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Fig. 5. Short range channels can be estimated with fewer pilot transmissions
by exploiting local angle dependencies that arise from the array geometry.

passing algorithm. Our algorithm uses information from the
likelihoods, and the geometry factors that are based on the
RX array configuration. For a benchmark, we define the
third approach based on exhaustive beam search, i.e., the
DFT dictionary is used for Ak ∀ k, and M = 16 channel
measurements are acquired in each subarray. The resolution
in the angle (θ) space is set to = 0.125o, using κ = 1/1440.
An example of the likelihood functions {p(θk)}NRF

k=1 is shown
in Fig. 3. It can be observed that maximizing the likelihood
functions independently for M = 3 can result in local AoAs
that are significantly different from each other. The proposed
method, however, is able to “repair” the mismatched AoAs
using geometry factors and message passing. In Fig. 4, we plot
the empirical cumulative distribution function (ECDF) of the
errors in the local AoA estimates with the maximum likelihood
approach and the proposed method. It can be observed from
Fig. 4 that the local AoAs recovered by our algorithm are
significantly closer to those obtained with the benchmark,
when compared to the maximum likelihood approach.

The accuracy of the reconstructed MIMO channel is studied
using the achievable rate obtained with the estimated channel
as a figure of merit. The rate analysis with practical hybrid
beamforming structures is left for future study. Let H̃ =

ŨD̃Ṽ∗ denote the singular value decomposition (SVD) of the
estimated channel. Singular matrices Ũ and Ṽ are considered
to configure the precoders and the combiners at the TX and
the RX. The achievable rate of the system (assuming ideal
all-digital RX) is determined from the capacity of MIMO
channel Ũ∗HṼ. The simulation results are then averaged over
2500 random orientations. It can be observed from Fig. 5 that
channel estimation using the proposed algorithm results in
a reasonable achievable rate that is comparable to the one
achieved with exhaustive scan. While the exhaustive scan
requires 16 channel measurements per subarray, our algorithm
achieves good performance with just M = 3 measurements
per subarray. The performance gap to the perfect CSI case is
due to fairly low 5dB SNR available for estimation of both
local AoA θk,� and αk in (4), as well as, unaccounted non-LoS
components in the actual channel model.

V. CONCLUSIONS

Short range channels exhibit different structure when com-
pared to the commonly studied far field channels. For example,
the angles-of-arrival in a short range setting can vary across
multiple sections of the receive antenna array. In this paper, we
have shown that the angles can be statistically dependent, with
the dependencies determined by the receive array geometry.
We have developed a message passing algorithm that exploits
the statistical dependencies between the angles, for channel
estimation with sub-Nyquist measurements in the angular
domain. Our results indicate that geometry information can
serve as strong regularizer for the channel estimation problem.
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