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Abstract

We propose a unified data-driven framework based on inverse optimal transport that can
learn adaptive, nonlinear interaction cost function from noisy and incomplete empirical
matching matrix and predict new matching in various matching contexts. We emphasize
that the discrete optimal transport plays the role of a variational principle which gives
rise to an optimization based framework for modeling the observed empirical matching
data. Our formulation leads to a non-convex optimization problem which can be solved
efficiently by an alternating optimization method. A key novel aspect of our formulation is
the incorporation of marginal relaxation via regularized Wasserstein distance, significantly
improving the robustness of the method in the face of noisy or missing empirical matching
data. Our model falls into the category of prescriptive models, which not only predict
potential future matching, but is also able to explain what leads to empirical matching
and quantifies the impact of changes in matching factors. The proposed approach has
wide applicability including predicting matching in online dating, labor market, college
application and crowdsourcing. We back up our claims with numerical experiments on
both synthetic data and real world data sets.
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1. Introduction

Matching is a key problem at the heart of many real-world applications, including online
dating (Hitsch et al., 2010), labor market (David, 2001), crowdsourcing (Yuen et al., 2011),
marriage (Becker, 1973), paper-to-reviewer assignment (Charlin et al., 2011), kidney trans-
plant donor matching (Dickerson and Sandholm, 2015) and ad allocation (Mehta et al.,
2013). Owing to the wide applicability and great importance of matching, 2012 Nobel prize
in economics were awarded to two economists Lloyd Shapley and Alvin Roth for their fun-
damental theoretic work (Gale and Shapley, 1962) and substantive empirical investigations,
experiments and practical design (Roth and Sotomayor, 1989, 1992) on matching. A good
matching of individuals from two sides (e.g., men vs. women, students vs. school, papers
vs. reviewers) is essential to the overall health of the specific market/community. However,
matching is a challenging problem due to two major complications: individuals from both
sides exhibit various observable and latent features, which makes “suitability of a match”
far more complex to assess; and the matching is implicitly, but significantly, influenced by
the supply limitations of individuals from each side, so that the supply of an item can only
satisfy a small number of users even though it is preferred by many. These two issues must
be properly tackled in an optimal matching system.

In many matching problems, feature and preference data can be collected from individ-
uals of either or both sides of the matching. Then a central planner may use such data sets
to infer suitable matching or assignment. The feature and preference data collected in this
way, however, can be incomplete, noisy, and biased for two reasons:

• an individual may not be aware of the competitors from her own side and/or limited
quantity of her preferred match from the opposite side

• collection of a full spectrum of features is inherently difficult or even infeasible (e.g.,
a student’s merit outside of her school curriculum in college admission, or religious
belief of a person in a marriage, may not be included in the collected data)

The former factor prevents individuals from listing their orders of preferences and position-
ing themselves strategically in the market, and the latter results in feature data set that is
incomplete and biased.

One possible approach is to use observed (and perhaps latent) features of individuals
to generate rating matrix for user-item combinations as in many recomender systems (RS).
However, this approach is not suitable given the bias and noise in collected feature or
preference data and limited supply constraints in our matching problems. For example, in
a standard movie RS problem, a movie can receive numerous high ratings and be watched
by many people. In contrary, in a matching-based college admission problem, a student
can enter only one college. Therefore, an optimal matching cannot be obtained solely based
on personal ratings and preferences—the population of both sides also need to be taken
into consideration in a matching problem. This significant difference between standard
recommendation and matching demands for new theoretical and algorithmic developments.

Our approach to tackle the aforementioned challenges in matching inference is to con-
sider a generalized framework based on inverse optimal transport, where the diversified
population of each side of the matching is naturally modeled as a probability distribution,
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and the bilateral preference of two individuals in a potential match is captured by a match-
ing reward (or equivalently, negative matching cost). More specifically, we obtain kernel
representation of the cost by learning the feature interaction matrix from the matching
data, under which the total social surplus is supposed to be maximal in a healthy match-
ing market as suggested by economists (Carlier and Ekeland, 2010). Moreover, we employ
a robust and flexible Wasserstein metric to learn feature-enriched marginal distributions,
which proves to be very effective and robust in dealing with incomplete/noisy data in the
matching problem.

From a broader perspective, our approach is in the framework of optimization based on
variational principles—the observed data are results of some optimization with an unknown
objective function (or a known objective function with unknown parameters) that models
the problem, and the goal is to learn the objective function (or its parameters) from the data.
This approach is a type of prescriptive analytics: it exploits the motivation and mechanism
of the subject, and produces results that are interpretable and meaningful to human. The
solution process is more instructive and can make use of the observed data more effectively.
In this broader sense, our proposed approach based on inverse optimal transport is in a
similar spirit as inverse reinforcement learning (Ng et al., 2000). Furthermore, the learned
objective can be used to understand the effect of various factors in a matching and infer
optimal matching strategy given new data. For instance, in online dating, riders allocation,
and many other settings, the central planners (Tinder, OkCupid, Uber, Lyft, etc.) can use
such prescriptive models to improve customer experience and align social good with their
own profit goal.

Our work is the first to establish a systematic framework for optimal matching learning
using incomplete, noisy data under limited-supply constraints. In particular, we advocate
a nonlinear representation of cost/reward in a matching and view the matching strategy
as a solution of (regularized) optimal transport. The equilibrium of certain matching mar-
kets, such as marriage, with simplifying assumptions, coincide with optimal transport plans
(Becker, 1973). Even for matching markets with complex structure and factors, whose
matching mechanism is not yet completely unveiled, the proposed model serves as a pow-
erful modeling tool to study those matchings. In terms of algorithmic development, we
derive a highly efficient learning method to estimate the parameters in the cost function
representation in the presence of computationally complex Wasserstein metrics. Numerical
results show that our method contrasts favorably to other matching approaches in terms
of robustness and efficiency, and can be used to infer optimal matching for new data sets
accurately.

The rest of this paper is organized as follows: we briefly summarize related work in Sec-
tion 2 and review discrete optimal transport and its regularized version as well as their close
connections in Section 3. Section 4 describes the setup of proposed model and introduces
our robust formulation via regularized Wasserstein distance, which tries to capture match-
ing mechanism by leveraging regularized optimal transport. The derivation of optimization
algorithm is detailed in Section 5. We evaluate our model in section 6 on both synthetic
data and real-world data sets. The last section concludes the paper and points to several
directions for potential future research.
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2. Related Work

In this section, we briefly summarize some related work, including matching, ecological
inference, recommender systems, distance metric learning and reciprocal recommendation.

2.1. Matching

Matching has been widely studied in economics community since the seminal work of Koop-
mans and Beckmann (1957). Gale and Shapley (1962) studied optimal matching in college
admission, marriage market and proposed the famous Gale-Shapley algorithm. Becker
(1973) gave a theoretic analysis in marriage market matching. Roth and Sotomayor (1992)
did a thorough study and analysis in two-sided matching. Chiappori et al. (2010); Car-
lier and Ekeland (2010) used optimal transport theory to study the equilibrium of cer-
tain matching markets. Galichon and Salanié (2010) theoretically justified the usage of
entropy-regularized optimal transport plan to model empirical matching in the presence
of unobserved characteristics. Another interesting work (Charlin et al., 2011) proposed to
predict optimal matching from learning suitability score in paper-to-review context where
they used well-known linear regression, collaborative filtering algorithms to learn suitabil-
ity scores. There are also some work studying dynamic matching theory and applications
such as kidney exchange (Dickerson et al., 2012; Dickerson and Sandholm, 2015) and barter
exchange (Anderson et al., 2017; Ashlagi et al., 2017).

A recent work closely related to ours is (Dupuy et al., 2016), where they worked with
regularized optimal transport plan and modeled the cost by a bilinear form using an affinity
matrix learned from data. By contrast, our work models the cost using a nonlinear kernel
representation and incorporate regularized Wasserstein distance to tackle the challenging
issues due the incomplete and noisy data in real-world matching problems.

2.2. Ecological Inference

Ecological inference infers the nature of individual level behavior using aggregate (histori-
cally called “ecological”) data, and is of particular interest to political scientists, sociologists,
historians and epidemiologists. Due to privacy or cost issue, individual level data are elud-
ing from researchers, hence the inference made through aggregate data are often subject
to ecological fallacy 1. Previously, people proposed neighborhood model (Freedman et al.,
1991), ecological regression (Goodman, 1953) and King’s method (King, 2013). A recent
progress (Flaxman et al., 2015) is made by using additional information and leverage kernel
embedding of distributions, distribution regression to approach this problem.

Our work differs from classical ecological inference problem and methods in four ways.
First, we assume access to empirical matching at individual-level granularity which is not
available in standard ecological inference setting. Second, in our framework, we focus on
learning the preference of two sides in the matching and propose a novel and efficient
method to learn it, after which inference/prediction problem becomes trivial as preference
is known. Third, different from previous statistical methods, we adopt a model-based
approach, leverages optimal transport to model matching and draw a connection between
these two fields. Lastly, thanks to the model-based approach, we are able to shed light on

1. https://en.wikipedia.org/wiki/Ecological_fallacy
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what factors lead to empirical matching and quantitatively estimate the influence caused by
changes of those factors, which are beyond the reach of traditional statistical approaches.

2.3. Recommender Systems

Collaborative filtering (CF) type recommender systems share many similarities with opti-
mal matching problem as both need to learn user preference from rating/matching data
and predict rating/matching in a collaborative manner. Matrix-factorization based mod-
els (Mnih and Salakhutdinov, 2008; Salakhutdinov and Mnih, 2008) enjoyed great success
in Netflix Prize Competition. Rendle (2010, 2012) proposed factorization machine model
with strong sparse predictive power and ability to mimic several state-of-the-art, specific
factorization methods. Recently there is trend of combining collaborative filtering with
deep learning (He and Chua, 2017; He et al., 2017). Most items recommended by conven-
tional recommender systems, however, are non-exclusive and can be consumed by many
customers such as movies and music. They do not take supply limit of either or both sides
into consideration hence may perform poorly in matching context.

2.4. Distance Metric Learning

Our model essentially aims to learn an adaptive, nonlinear representation of the matching
cost. This is closely related to, but more general than, ground metric learning. Prior re-
search on learning different distance metrics in various contexts are fruitful, such as learn-
ing cosine similarity for face verification (Nguyen and Bai, 2010), learning Mahalanobis
distance for clustering (Xing et al., 2003) and face identification (Guillaumin et al., 2009).
However, distance learning for optimal transport distance is largely unexplored. Cuturi
and Avis (2014) proposed to learn the ground metric by minimizing the difference of two
convex polyhedral functions. Wang and Guibas (2012) formulated a SVM-like minimization
problem to learn Earth Mover’s distance. Both approaches work with Wasserstein distance
which involves solving linear programming as subroutine hence may be computationally too
expensive. This paper works with regularized optimal transport distance, involving solving
a matrix scaling problem as subroutine which is much lighter than linear programming.

2.5. Reciprocal Recommendation

Another line of related research is reciprocal recommendation (Brozovsky and Petricek,
2007; Pizzato et al., 2013), which also tries to model two-side preference by computing
reciprocal score via a hand-craft score function. By a sharp contrast, our model learns how
two sides interact with each other from observed noisy/incomplete matching in a data-driven
fashion.

3. Background and Preliminaries

In this section, we present Kantorovich’s formulation of optimal transportation problem (in
discretized setting) and its regularized version.
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3.1. Optimal Transport

Given two probability vectors µ ∈ Σm and ν ∈ Σn, where Σd := {x ∈ Rd+|1Tx = 1} is the
standard (d − 1)-dimensional probability simplex, denote the transport polytope of µ and
ν by

U(µ,ν) := {π ∈ Rm×n+ |π1 = µ, πT1 = ν}

namely the set of all m× n non-negative matrices satisfying marginal constraints specified
by µ,ν. Note that U(µ,ν) is a convex, closed and bounded set containing joint probability
distributions with µ and ν as marginals. Furthermore, if given a cost matrix C = [Cij ] ∈
Rm×n where Cij measures the cost of moving a unit mass from µi to νj , define

d(C,µ,ν) := min
π∈U(µ,ν)

〈π,C〉

where 〈A,B〉 = Tr(ATB) is the Frobenius inner product for matrices. This quantity de-
scribes how to optimally redistribute µ to ν so that the total cost is minimized, hence
providing a means to measure the similarity between the two distributions. In particular,
when C ∈Md, that is, C is in the cone of distance matrices (Brickell et al., 2008), defined
as

Md := {C ∈ Rd×d+ |Cii = 0, Cij = Cji, Cij ≤ Cik + Ckj , ∀i, j, k},

then it is shown that d(C) is a distance (or metric) on Σd (Villani, 2008), named the optimal
transport distance (also known as the 1-Wasserstein distance or the earth mover distance).
The minimizer π is called the optimal transport plan.

In discrete case, computing OT distance amounts to solving a linear programming prob-
lem, for which there exists dedicated algorithm with time complexity O(n3 log n) (Pele and
Werman, 2009). Nevertheless, this is still too computationally expensive in large scale
settings. In addition, OT plan π typically admits a sparse form which is not robust in data-
driven applications. We refer readers to Villani (2008); Peyré et al. (2017) for a thorough
theoretical and computational treatment of optimal transport.

3.2. Regularized Optimal Transport

To address the aforementioned computational difficulty, Cuturi (2013) proposed to use a
computationally-friendly approximation of OT distance by introducing entropic regulariza-
tion. This also mitigates the sparsity and improve the smoothness of OT plan. Concretely,
consider

dλ(C,µ,ν) := min
π∈U(µ,ν)

{〈π,C〉 −H(π)/λ}

where H(π) is the discrete entropy defined by

H(π) = −
m,n∑
i,j=1

πij(log πij − 1),

and λ > 0 is the regularization parameter controlling the trade-off between sparsity and
uniformity of π. We refer the above quantity as regularized optimal transport (ROT)
distance (regularized Wasserstein distance) though it is not an actual distance measure.

6



Learning to Match via Inverse Optimal Transport

Algorithm 1 Sinkhorn-Knopp Algorithm

Input: marginal distributions µ,ν, cost matrix C, regularization parameter λ
K = exp(−λC)
a = 1
while not converge do
b← ν

KTa
a← µ

Kb
end while
π = diag(a)K diag(b)
return π,a, b

Due to the strict convexity introduced by entropy, dλ(C,µ,ν) admits a unique minimizer
with full support πλ(C,µ,ν), which we call regularized optimal transport plan in the sequel.
The ROT plan πλ has a semi-closed form solution

πλ = diag(a)K diag(b) (1)

where a ∈ Rm, b ∈ Rn are positive vectors and are uniquely determined up to a mul-
tiplicative constant and K := exp(−λC) is the component-wise exponential of −λC. We
can efficiently compute a and b by Sinkhorn-Knopp matrix scaling algorithm (Sinkhorn and
Knopp, 1967), also known as iterative proportional fitting procedure (IPFP). The algorithm
alternately scales rows and columns of K to fit the specified marginals. See Algorithm 1
for detailed description of the Sinkhorn-Knopp algorithm.

Not surprisingly, we have

lim
λ→∞

dλ(C,µ,ν) = d(C,µ,ν)

ROT distance converges to OT distance as λ tends to infinity, i.e., entropic regularization
diminishes. Moreover, let

Π(C,µ,ν) = {π|〈π,C〉 = min
π∈U(µ,ν)

〈π,C〉}

be the set of all OT plan and
π? = arg max

π∈Π(C,µ,ν)
H(π)

be the joint distribution with highest entropy within Π(C,µ,ν), then

lim
λ→∞

πλ = π?

in another word, ROT plan converges to the most uniform OT plan and the rate of con-
vergence is exponential, as shown by Cominetti and San Mart́ın (1994). The generalization
of entropic regularization, Tsallis entropy regularized optimal transport also receives more
and more attention and is studied by Muzellec et al. (2017).

ROT has more favorable computational properties than OT does, as it only involves
component-wise operation and matrix-vector multiplication, all of which are of quadratic
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complexity, and can be parallelized (Cuturi, 2013). This fact makes ROT popular for
measuring dissimilarity between potentially unnormalized distributions in many research
fields: machine learning (Geneway et al., 2017; Rolet et al., 2016; Laclau et al., 2017),
computer vision (Cuturi and Doucet, 2014) and image processing (Papadakis, 2015).

Besides computation efficiency, we argue in next section why it is more appropriate to
use ROT in our setting from a modeling perspective.

4. Learning to Match

For the ease of exposition, we refer two sides of the matching market as users and items.
The methodology is suitable in various applications where optimal matching is considered
under supply limitations, such as marriage market, cab hailing, college admission, organ
allocation, paper matching ans so on. Suppose we have m user profiles {ui}i∈[m] ⊂ Rp,
n item profiles {vj}j∈[n] ⊂ Rq and Nij , the count of times (ui,vj) appears in matching.
Let N =

∑m,n
i,j=1Nij be the number of all matchings, [π̂ij ] = [Nij/N ] be the observed

matching matrix and µ̂ = π̂1, ν̂ = π̂T1 be the sample marginals. Suppose we are also given
two cost matrices Cu and Cv, measuring user-user dissimilarity and item-item dissimilarity
respectively, we can then select two appropriate constants λu and λv and use dλu(Cu,µ1,µ2)
and dλv(Cv,ν1,ν2) to measure the dissimilarity of probability distributions µ1,µ2 over user
profile space and that of ν1,ν2 over item profile space.

4.1. Modeling Observed Matching Matrix

Becker (1973) pointed out that equilibrium of some matching markets coincide with optimal
transport plans which are often highly sparse. The implication of this theory is far from
being realistic, though, as we observe heterogeneous matchings in real world. Galichon and
Salanié (2015) argued that there are latent features having significant impact on matching
but unfortunately unobservable to researchers. Hence they proposed to leverage a combi-
nation of pure optimal transport plan and mutual information of two sides of matching to
model empirical matching data which is exactly entropy-regularized optimal transport.

Furthermore, the observed matching matrix π̂ (hence the empirical marginals) often
contains noisy, corrupted, and/or missing entries, consequently it is more robust to employ
a regularized optimal transport plan rather than enforce an exact matching to empirical
data in cost function learning.

To that end, we propose to use regularized optimal transport plan πλ(C,µ,ν) in our
learning task. This also has several important benefits that take the following aspects into
modeling consideration in addition to unobserved latent features:

• Enforced Diversity. Diversity is enforced in certain matchings as is the case when
admission committee making decisions on applicants, diversity is often an important
criterion and underrepresented minorities may be preferred. Entropy term captures
the uncertainty introduced by diversity. The idea of connecting entropy with matching
to capture/promote diversity is also adopted, for example, by Agrawal et al. (2018)
and Ahmed et al. (2017).
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• Aggregated Data. Sometimes due to privacy issues or insufficient number of matched
pairs, only grouped or aggregated data, rather than individual data are available. Ac-
cordingly, the aggregated matching is usually denser than individual level matching
and is less likely to exhibit sparsity.

4.2. Cost Function via Kernel Representation

The cost function Cij = c(ui,vj) is of critical importance as it determines utility loss of user
ui and item vj . The lower the cost is, the more likely user ui will match item vj , subject
to supply limit of items. A main contribution of this work is to learn an adaptive, nonlinear
representation of the cost function from empirical matching data. To that end, we present
several properties of cost function in optimal matching that support the feasibility.

First of all, we show in the following proposition that the cost function C is not unique
in general but can be uniquely determined in a special and important case.

Proposition 1 Given two marginal probability vectors µ ∈ Σm, ν ∈ Σn, define F :
Rm×n → U(µ,ν), F (C) = πλ(C,µ,ν) is the ROT plan of C. Then F is in general not
injective, however, when m = n and F is restricted on Mn, F|Mn(C) is injective.

Proof One can easily verify that F is well-defined from the strict convexity of ROT. The
optimality condition of ROT reads as

πλ(C,µ,ν) = exp(λ(−C + a1T + 1bT ))

where a ∈ Rm and b ∈ Rn are Lagrangian multipliers dependent on C and λ such that
πλ(C,µ,ν) ∈ U(µ,ν). Therefore, πλ(C + ε11T ,µ,ν) = exp(λ(−C − ε11T + (a+ ε1)1T +
1bT )) = πλ(C,µ,ν) for any ε > 0. Therefore F is in general not injective.

If m = n and C1, C2 ∈Mn, by the semi-closed form (1) of ROT plan, there exist positive
vectors a1, b1 and a2, b2 such that

πλ(C1,µ,ν) = diag(a1) exp(−λC1) diag(b1)

πλ(C2,µ,ν) = diag(a2) exp(−λC2) diag(b2)

If πλ(C1,µ,ν) = πλ(C2,µ,ν), we have

exp(−λC1) = diag(a) exp(−λC2) diag(b)

where exp(·) is component-wise exponential, a = log a2
a1

, b = log b2b1 .

Since C1, C2 are symmetric matrices, it follows that a = sb. By appropriately rescaling
a and b to make them equal, we have

exp(−λC1) = diag(w) exp(−λC2) diag(w)

where w = a/
√
s. Inspecting (i, i) entry of both sides, we immediately conclude that w = 1

and C1 = C2.

Actually, the general non-uniqueness or non-identifiability of cost C is quite natural. For
instance, in an online auction setting, if all bidders raise their bids by the same amount, the

9



Li, Ye, Zhou and Zha

result of the auction will not change because the rank of bidders remain the same and the
original winner still wins the auction. Therefore, by observing empirical matching alone, we
can not determine cost matrix definitively without further assumption. Proposition 1 guar-
antees the uniqueness of learned cost if we model it as a distance matrix, e.g. Mahalanobis
distance (Cij =

√
(ui − vj)TM(ui − vj), where M is a positive definite matrix). However,

in many cases, cost may grow nonlinearly in the difference of features. An even more serious
issue is that if the number of features of two sides of matching are inconsistent or two sides
do not lie in the same feature space at all, it would be infeasible to use a distance metric
to capture the cost between them due to such dimension incompatibility.

Therefore, as generalized distance functions (Schölkopf, 2001), kernel representation
which is able to measure matching cost even when features of two sides do not lie in the
same feature space can be leveraged to model the cost function, i.e.,

c(ui,vj) = k(Gui, Dvj)

where k(x,y) is a specific (possibly nonlinear) kernel, G ∈ Rr×p and D ∈ Rr×q are two
unknown linear transformations to be learned. Gu, Dv can be interpreted as the latent
profile associated with users and items and are studied by Agarwal and Chen (2009).

For a wide class of commonly used kernels including linear kernel, polynomial kernel
and sigmoid kernel, they depend only on the inner product of two arguments through an
activation function f , i.e. k(x,y) = f(xTy). For such kernels, we have

c(ui,vj) = f(uTi G
TDvj)

and it suffices to learn A = GTD. In this case, cost matrix

C(A) = f(UTAV )

is parametrized by A and we refer A as interaction matrix. Here we apply f component-wise
on UTAV . For ease of presentation, we will work with kernels of this form in the sequel.
With kernel function representation, it is still likely that a matching matrix corresponds to
multiple cost matrices, and we will be contented with finding one of them that explains the
observed empirical matching.

4.3. Kernel Inference with Wasserstein Marginal Regularization

A straight forward way to learn C(A) in kernel representation is estimating parameter A
through minimizing negative log likelihood

min
A
−

m∑
i=1

n∑
j=1

π̂ij log πij (2)

where π = πλ(C(A), µ̂, ν̂), i.e., one enforces the optimal plan π to satisfy π1 = µ̂ and
πT1 = ν̂. Note that (2) is equivalent to minimizing the reverse Kullback-Leibler divergence
(Bishop, 2006) of ROT plan π with respect to empirical matching π̂, i.e.,

min
A

KL(π̂‖π)

10
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This is the formulation proposed in Dupuy et al. (2016) which we refer as inverse optimal
transport formulation (IOT) in the sequel.

In this variation principle based framework, the ROT plan π has the same marginals as
the empirical matching π̂ does, which is reasonable if the marginal information of empirical
matching is sufficiently accurate. In practice, however, the size of samples available is hardly
enough, hence the empirical marginals inferred from samples can be incomplete and noisy.
To see why this is the case, suppose the ground space D = {1,−1}d, µ,ν ∈ R2d are two

discrete probability distributions over D and π0 ∈ R2d×2d is the ground truth matching
matrix between µ,ν. Let {X1, X2, · · · , XN} ⊂ R2d×2d be i.i.d random matrices, where
X1 = Eij with probability π0

ij . Then empirical matching matrix is given by π̂ = X̄ =
1
N

∑N
n=1Xn and two empirical marginals are µ̂ = X̄1, ν̂ = X̄T1. By Bretagnolle-Huber-

Carol inequality (Bretagnolle and Huber, 1979; Wellner et al., 2013), for any ε > 0, we
have

P(‖µ̂− µ‖1 > ε) < 22d exp(
−N

2
ε2) = exp(2d ln 2− ε2

2
N)

P(‖ν̂ − ν‖1 > ε) < 22d exp(
−N

2
ε2) = exp(2d ln 2− ε2

2
N)

Hence

P(max{‖µ̂− µ‖1, ‖ν̂ − ν‖1} > ε) = P({‖µ̂− µ‖1 > ε} ∪ {‖ν̂ − ν‖1 > ε})
≤ P(‖µ̂− µ‖1 > ε) + P(‖ν̂ − ν‖1 > ε)

< 2 exp(2d ln 2− ε2

2
N)

To ensure with at least 1 − δ probability, the maximum error in marginal distributions
max{‖µ̂−µ‖1, ‖ν̂−ν‖1} ≤ ε, we might need N(ε, δ) = 2

ε2
(2d ln 2+ln 2

δ ) samples. Note that
N(ε, δ) is quadratic in 1

ε and exponential in d, indicating that practically there are hardly
enough samples for us to obtain accurate estimate of marginal distributions µ,ν.

If using IOT formulation with noisy estimate of marginal distributions, it causes a
systematic error no smaller than max{‖∆µ‖1, ‖∆ν‖1} as shown in proposition 2.

Proposition 2 If empirical µ̂, ν̂ are off from true µ,ν by ∆µ,∆ν, then the matching
matrix πIOT recovered by solving equation (2) has error lower bounded by

‖π0 − πIOT‖1 ≥ max{‖∆µ‖1, ‖∆ν‖1}

where ‖π‖1 =
∑m,n

i,j=1 |πij |, µ̂,µ ∈ Rm and ν̂,ν ∈ Rn, π0 is the ground truth matching

matrix, πIOT = πλ(C(A?), µ̂, ν̂) and A? is the solution of equation (2).

Proof We know π0 ∈ U(µ,ν) and πIOT ∈ U(µ̂, ν̂). By triangle inequality, we have

m∑
i=1

n∑
j=1

|(π0)ij − (πIOT )ij | ≥
m∑
i=1

|
n∑
j=1

(π0)ij − (πIOT )ij | =
m∑
i=1

|µi − µ̂i| = ‖∆µ‖1

11
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Interchanging the summation and applying triangle inequality again, we obtain

n∑
j=1

m∑
i=1

|(π0)ij − (πIOT )ij | ≥ ‖∆ν‖1

Therefore, we conclude

‖π0 − πIOT‖1 ≥ max{‖∆µ‖1, ‖∆ν‖1}

We have seen that inaccurate marginal information can serious harm the recovery per-
formance of ground truth matching matrix. Not unexpectedly, it could mislead us to learn
an inaccurate cost matrix as well, as stated in proposition 4.

Lemma 3 Suppose M ∈ Rm×n and f(a, b) = ‖a1T + 1bT −M‖2F . Then we have

f(a, b) ≥ ‖M‖2F − fTA+f

where f = [(M1)T ,1TM ]T , A =

[
nIm×m 1m1Tn
1n1

T
m mIn×n

]
, A+ is the Moore-Penrose inverse of

matrix A and ‖M‖F =
√∑m

i=1

∑n
j=1M

2
ij is Frobenius norm. In particular, if M can not

be written as M = a1T + 1bT , the lower bound is strictly positive, i.e.,

f(a, b) ≥ ‖M‖2F − fTA+f > 0

Proof See Appendix A.

Proposition 4 Suppose π0 ∈ Rm×n is the ground truth matching matrix, π̂ ∈ Rm×n is an
empirical matching matrix. Let C0 be the ground truth cost matrix giving rise to π0 and
CIOT = arg minC∈Rm×n KL(π̂||C, π̂1, π̂T1) be the learned cost matrix via IOT formulation
that gives rise to π̂, i.e. π0 = πλ(C0, π01, π

T
0 1) and π̂ = πλ(CIOT , π̂1, π̂T1). Denote

∆C = C0−CIOT and ∆ log π = log π0−log π̂ and further assume (∆ log π)ij are independent
(absolutely) continuous random variables (w.r.t. Lebesgue measure), we have

‖∆C‖2F ≥
1

λ2
(‖∆ log π‖2F − fTA+f) > 0 a.e. (3)

where f = [(∆ log π1)T ,1T∆ log π]T , A =

[
nIm×m 1m1Tn
1n1

T
m mIn×n

]
, A+ is the Moore-Penrose

inverse of matrix A and ‖M‖F =
√∑m

i=1

∑n
j=1M

2
ij is Frobenius norm.

Proof First we show that min
C∈Rm×n

KL(π̂||C, π̂1, π̂T1) = 0, i.e., π̂ = πλ(CIOT , π̂1T , π̂T1),

any empirical matching can be realized as regularized optimal transport plan for some cost
matrix.

12
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Given arbitrary α ∈ Rm,β ∈ Rn, let C̃ = α1>+1β>− 1
λ log π̂, we see easily verify that

π̂,α,β solve the KKT condition of ROT

min
π∈U(π̂1,π̂T 1)

〈C̃, π〉 − H(π)

λ

Hence π̂ = πλ(C̃, π̂1T , π̂T1) and min
C∈Rm×n

KL(π̂||C, π̂1, π̂T1) = 0. Therefore, any minimizer

CIOT (need not be C̃) of the problem min
C∈Rm×n

KL(π̂||C, π̂1, π̂T1) must satisfy

π̂ = πλ(CIOT , π̂1T , π̂T1)

By the optimality condition of ROT, we know that there exist a, b such that

πλ(C,µ,ν) = exp(λ(−C + aT1 + 1bT ))

hence there exist a0, b0, â, b̂ such that

C0 = a01
T + 1bT0 −

1

λ
log π0

CIOT = â1T + 1b̂
T − 1

λ
log π̂

Take difference and denote a0 − â, b0 − b̂ by ∆a,∆b respectively, we have

∆C = ∆a1T + 1∆bT − 1

λ
∆ log π

Since singular matrices have zero Lebesgue measure and (∆ log π)ij are independent con-
tinuous random variables, we have

P(∆ log π = a1T + 1bT ) ≤ P(det(∆ log π) = 0) = 0

By lemma 3, we obtain

‖∆C‖2F ≥
1

λ2
(‖∆ log π‖2F − fTA+f) > 0 a.e.

If we use the inaccurate cost matrix learned via IOT approach, it could negatively affect
the quality of future matching prediction, as justified in proposition 5.

Proposition 5 Let C0 be any ground truth cost matrix, CIOT be any learned cost matrix
via IOT formulation and assume CIOT 6∈ {C|C = C0 +a1T + 1bT for some a, b}. Suppose
the ground truth matching matrix is π0 = πλ(C0,µ,ν) and the predicted matching matrix
is πpredict = πλ(CIOT ,µ,ν). Denote ∆C = C0 − CIOT and ∆ log π = log π0 − log πpredict,
we have

‖∆ log π‖2F ≥ λ2(‖∆C‖2F − fTA+f) > 0 (4)

where f = [(∆C1)T ,1T∆C]T , A =

[
nIm×m 1m1Tn
1n1

T
m mIn×n

]
, A+ is the Moore-Penrose inverse of

matrix A and ‖M‖F =
√∑m

i=1

∑n
j=1M

2
ij is Frobenius norm.

13
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Proof The proof is almost identical to that of proposition 4 except for interchanging the
role of ∆C and ∆ log π. We hence omit the details here.

To address aforementioned issues, we hence propose a more robust formulation with
Wasserstein marginal relaxation, dropping the hard marginal constraint. Concretely, we
consider the following optimization problem.

min
A,µ∈Σm,ν∈Σn

−
m∑
i=1

n∑
j=1

π̂ij log πij + δ
(
dλu(Cu,µ, µ̂) + dλv(Cv,ν, ν̂)

)
(5)

where π = πλ(C(A),µ,ν) is the regularized optimal transport plan, δ is the relaxation
parameter controlling the fitness of marginals, λ, λu, λv are hyper-parameters controlling
the regularity of regularized Wasserstein distance. We refer this formulation as robust
inverse optimal transport (RIOT) in the sequel. Interestingly, we note that Chizat et al.
(2016) proposed a similar but different formulation in solving unbalanced optimal transport
problem.

The intuition of this RIOT formulation is that instead of enforcing noisy empirical
marginals as hard constraints, we incorporate them as soft constraints in objective function.
We use regularized Wasserstein distance as regularization because of the following reasons:

• as approximated Wasserstein distance, it drives µ,ν to µ̂, ν̂, but at the same time it
also allows some uncertainty hence is able to robustify the result;

• in presence of missing entries in marginals, Wassertein distance is still well defined
while other measures such as KL are not;

• Wasserstein distance can be applied to continuous, discrete, or even mixed distribu-
tions;

• computation of regularized Wasserstein distance (Cuturi, 2013) is efficient and hence
potentially more scalable for large scale problem (5) in practice.

To be precise, the robustness in RIOT specifically means that RIOT outperforms IOT,
in terms of the quality of learned matching matrix and cost matrix, when the observed
joint distributions π̂ and marginal distributions µ̂ and ν̂ are inaccurate due to insufficient
and noisy samples, which is generally the case in real-world applications. In this situation,
enforcing hard constraints to the inaccurate distributions is shown to cause severe bias
in the estimation of the ground cost C, which will further induce errors in the matching
when applied to testing data. The robustness of RIOT over IOT is verified by empirical
experiment results in Section 6.1.

We assume access to Cu and Cv in our model because learning user-user/item-item
similarity is relatively easier than our task, there are many existing work dedicated to that
end (Cheung and Tian, 2004; Agarwal and Bharadwaj, 2013) and we want to single out
and highlight our main contribution—learning the cost matrix that gives rise to observed
matching and leverage it to infer matching for new data sets. In fact, our framework can
also be extended to learn Cu and Cv jointly if needed, the optimization algorithm of which
tends to be much more complex, though. See Appendix B for the extension. We postpone
the detailed algorithmic derivation of the solution to (5) to next section.
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4.4. Predict New Matching

After obtaining interaction matrix A from solving RIOT, we may then leverage it to pre-
dict new matching. Concretely, for a group of new users {ũi}i∈[m] and items {ṽj}j∈[n], two
marginal distributions, i.e., users profile distribution µ̃ and item profile distribution ν̃ can
be easily obtained. First compute the cost matrix C̃ij = f(ũTi Aṽj) using kernel represen-
tation and apply Sinkhorn-Knopp algorithm to computing π̃λ(C̃, µ̃, ν̃), which gives us the
predicted matching of the given groups of users and items.

See Figure 1 for illustration of the complete pipeline or proposed learning-to-match frame-
work.

(a) Empirical Matching

Learn Interaction (RIOT)

Type I Type II Type III

Type I

Type II

Type III

feature_1 feature_2 … feature_n

feature_1

feature_2

…

feature_n

(b) Interaction Matrix

Compute Cost

(c) Cost Matrix

cost( , ) = 𝐾(𝑢$%&'	), 𝑣$%&'	))	)

(d) Predicted Matching

Type I Type II Type III

Type I

Type II

Type III

Make Prediction

Figure 1: From noisy (a) empirical matching matrix, we learn (b) the interaction matrix via
our proposed RIOT formulation. We then use kernel representation to compute
(c) cost matrix and predict (d) matching matrix for new data. utype I ,vtype II are
feature vectors of type I men and type II women.
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5. Derivation of Optimization Algorithm

Since the constraint set of ROT problem satisfies Slater’s condition (Boyd and Vanden-
berghe, 2004), we have by strong duality that

dλ(C,µ,ν) = max
z
〈z,µ〉+ 〈zC ,ν〉 − 1

λ

where zCj = 1
λ log cj− 1

λ log(
∑m

i=1 e
λ(zi−Cij)). z, zC are essentially the Lagrangian multipliers

corresponding to constraints π1 = µ and πT1 = ν. See also Genevay et al. (2016). Hence
we have

dλu(Cu,µ, µ̂) = max
z
〈z,µ〉+ 〈zCu , µ̂〉 − 1

λu

dλv(Cv,ν, ν̂) = max
w
〈w,ν〉+ 〈wCv , ν̂〉 − 1

λv

where zCu
j = 1

λu
log r̂j− 1

λu
log(

∑m
i=1 e

λu(zi−Cuij)) and wCv
j = 1

λv
log ĉj− 1

λv
log(

∑n
i=1 e

λv(wi−Cvij)).

Given sample marginals, once z,w are fixed, zCu ,wCv are also fixed. We can then convert
(5) into a min-max problem

min
A,µ,ν

max
z,w
−

m∑
i=1

n∑
j=1

π̂ij log πij + δ
(
〈z,µ〉+ 〈zCu , µ̂〉+ 〈w,ν〉+ 〈wCv , ν̂〉

)
(6)

where constants are omitted. The optimal solution is a saddle-point of the objective in (6).
To solve this min-max problem, we alternately update the primal variable (A,µ,ν) and
dual variable (z,w), each time with the other ones fixed.

5.1. Update (A,µ,ν) for fixed (z,w)

Now z,w, zCu ,wCv are all fixed. Note that

πij = eλ(ai+bj−Cij)

for some positive vectors a, b, such that π1 = µ, πT1 = ν, and 1Tπ1 = 1. Thus we may
rewrite the minimization in this stage as

min
A,a,b

n∑
j=1

π̂ij log πij + δ(〈z, π1〉+ 〈w, πT1〉)

s.t.

m∑
i=1

n∑
j=1

eλ(ai+bj−Cij) = 1

(7)

For fixed A, denote the optimum of objective function in equation (7) subject to the
constraint by E(C(A)). Recall that the ultimate goal in this step is to find the interaction
matrix A that cost C depends on, such that the minimum above can be attained. For any
A, we have kernel representation C(A) parameterized by interaction matrix A. Therefore
the minimization above is equivalent to

min
A
E(C(A))
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To minimize E(C(A)), the critical step is to evaluate gradient ∇AE(C(A)) and by envelope
theorem (Milgrom and Segal, 2002) we have

Proposition 6 The gradient ∇AE(C(A)) is

∇AE =
m∑
i=1

n∑
j=1

λ[π̂ij + (θ − δ(zi + wj))πij ]C
′
ij(A)

where θ is the Lagrangian multiplier of the constrained minimization problem in equation
(7).

Proof By chain rule, we have that

∇AE =
m∑
i=1

n∑
j=1

∂E

∂Cij

∂Cij
A

With the kernel representation, C ′ij(A) is easily available. For fixed C = C(A), by envelop
theorem (Milgrom and Segal, 2002), we have

∇CijE(C) =
∂

∂C
−

m∑
i=1

n∑
j=1

π̂ij log πij + δ〈z, π1〉+ δ〈w, πT1〉 − θ(
m,n∑
i,j=1

eλ(ai+bj−Cij))

= (− π̂ij
πij

+ δ(zi + wj)− θ)
∂πij
∂Cij

= λ[π̂ij + (θ − δ(zi + wj))πij ]

Hence in each evaluation of ∇CE, we need to solve E(C(A)) once. If we denote ξi = eλai ,
ηj = eλbj , Zij = e−λCij and Mij = δ(zi + wj)Zij , then computing E(C(A)) is equivalent to
solving

min
ξ,η

−〈µ̂, log ξ〉 − 〈ν̂, log η〉+ ξTMη

s.t. ξTZη = 1
(8)

Note that this is a non-convex optimization problem, both the objective function and
constraints are non-convex which is difficult to solve in general. However, once we fix η,
the problem with respect to ξ alone is a convex problem and vice versa. We can solve this
problem efficiently by alternately updating ξ,η.

Proposition 7 Denote the objective in equation (8) by

h(ξ,η) = −〈µ̂, log ξ〉 − 〈ν̂, log η〉+ ξTMη

Initialize ξ(0),η(0) and alternately update ξ(k),η(k) in the following fashion

ξ(k) = arg min
ξTZη(k−1)=1

h(ξ,η(k−1)) (9)
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η(k) = arg min
ξ(k)

T
Zη=1

h(ξ(k),η) (10)

If limk→∞(ξ(k),η(k), θ
(k)
1 , θ

(k)
2 ) = (ξ?,η?, θ?1, θ

?
2), then θ?1 = θ?2 and (ξ?,η?) is a local mini-

mizer of h, where θ
(k)
1 and θ

(k)
2 are Lagrangian multipliers corresponding to problem (9) and

(10) respectively.

Proof From the definition of E(C(A)) in equation (7) it is easily seen that h(ξ,η) is lower
bounded. Moreover, since

h(ξ(k),η(k)) ≤ h(ξ(k),η(k−1)) ≤ h(ξ(k−1),η(k−1))

there exists a convergent subsequence of {h(ξ(k),η(k))} and we denote the limit by h?.
The KKT condition of equation (9) and (10) are

− µ̂

ξ(k)
+Mη(k−1) − θ(k)

1 Zη(k−1) = 0 (11)

ξ(k)TZη(k−1) = 1

− ν̂

η(k)
+MT ξ(k) − θ(k)

2 ZT ξ(k) = 0 (12)

ξ(k)TZη(k) = 1

Let k tend to infinity and take inner product with ξ? for equation (11) and take inner
product with η? for equation (12), compare two equations and use the fact that both µ̂ and
ν̂ are probability vectors, we find that θ?1 = θ?2 and (ξ?,η?) solves the KKT condition of con-
strained problem (9) and (10). Therefore, (ξ?,η?) is a local minimizer and h? = h(ξ?,η?)
is a local minimum.

Once we obtain (ξ?,η?, θ?), we can then get (a, b, θ) by setting a = 1
λ log ξ? and b =

1
λ log η? and θ = θ?. Then plug in (a, b, θ) to evaluate ∇CE for the current C = C(A).

A careful analysis of the KKT condition of equations (9) and (10) shows that θ
(k)
1 and

θ
(k)
2 are roots of

p(θ) =

〈
µ̂� (Zη(k−1))

(M − θZ)η(k−1)
,1

〉
, q(θ) =

〈
ν̂ � (ZT ξ(k))

(M − θZ)T ξ(k)
,1

〉
respectively. The univariate root finding problem can be solved efficiently by off-the-shelf

package. After obtaining θ
(k)
1 , θ

(k)
2 , we can update

ξ(k) =
µ̂

(M − θ(k)
1 Z)η(k−1)

, η(k) =
ν̂

(M − θ(k)
2 Z)T ξ(k)

directly. Computationally, this approach to solving problem (9) and (10) is much cheaper
than gradient-type iterative methods when m and/or n are large.
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5.2. Update (z,w) for fixed (A,µ,ν)

When (A,µ,ν) are fixed, π is also fixed, we then only need to solve

max
z,w
〈z, π1〉+ 〈zCu , µ̂〉+ 〈w, πT1〉+ 〈wCv , ν̂〉

and one immediately recognizes this is equivalent to applying Sinkhorn-Knopp algorithm
to compute dλu(Cu,µ, µ̂) and dλv(Cv,ν, ν̂).

To summarize, in each iteration, we perform a gradient-type update for A, followed by two
calls of Sinkhorn-Knopp algorithm to compute dλu(Cu,µ, µ̂) and dλv(Cv,ν, ν̂). Algorithm
2 details the algorithm. Note that this algorithm only finds a local minimum of equation 5.

Algorithm 2 Solve RIOT

Input: observed matching matrix π̂, cost matrices Cu, Cv, regularization parameter
λ, λu, λv
for l = 1, 2, · · · , L do
Z ← exp(−λC)
M ← δ(z1T + 1wT )� Z
Initialize ξ(0),η(0)

for k = 1, 2, · · · ,K do

θ
(k)
1 ← root of p(θ)

θ
(k)
2 ← root of q(θ)

ξ(k) ← µ̂

(M−θ(k)1 Z)η(k−1)

η(k) ← ν̂

(M−θ(k)2 Z)T ξ(k)

end for
a← 1

λ log ξ(k), b← 1
λη

(k), θ = θ
(k)
1

π ← exp(λ(a1T + 1bT − C))

∇A ←
m,n∑
i,j=1

λ[π̂ij + (θ − δ(zi + wj)πij ]C
′
ij(A)

A← A− s∇A
a1 ← Sinkhorn-Knopp(Cu, π1, µ̂, λu)[1]
a2 ← Sinkhorn-Knopp(Cv, π

T1, ν̂, λv)[1]
z ← 1

λu
loga1, w ← 1

λv
loga2

end for

6. Experiments

In this section, we evaluate our proposed RIOT model on both synthetic data and real
world data sets. For synthetic data set, we illustrate its robustness against IOT and show
our model can achieve better performance in learning cost matrix C than IOT could. For
election data set, we show our method can effectively learn meaningful preference of voters
based on their demographics. For taxi trip data set, we demonstrate that the proposed
model is able to predict matching of taxi drivers and passengers fairly accurate. For marriage
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data set, we demonstrate the applicability of RIOT in predicting new matching and make
recommendation accordingly by comparing it with baseline and state-of-art recommender
systems.

6.1. Synthetic Data

We set λ = λu = λv = 1 and simulate m = 10 user profiles {ui} ⊂ R10, n = 10 item profiles
{vj} ⊂ R8, two probability vectors µ0,ν0 ∈ R10, an interaction matrix A0 of size 10 × 8
and pick polynomial kernel k(x,y) = (γxTy + c0)d where γ = 0.05, c0 = 1, d = 2, hence
C0ij = (0.05uTi Avj +1)2. For Cu, Cv, we randomly generate m and n points from N (0, 5I2)
on plane and use their Euclidean distance matrix as Cu and Cv. The ground truth entropy-
regularized optimal transport plan is given by π0 = πλ(C0,µ0,ν0). We independently
sample N samples from π0 and then compute empirical matching matrix π̂ accordingly. In
algorithm 2, we set the number of iterations of inner loop K = 20.
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Figure 2: Comparison of recovery performance of fixed marginal approach (IOT) and
marginal relaxation approach (RIOT). For sample size N , we sample from π0,
compute empiricla matching π̂ and run algorithm 2 for 50 times. The shaded
region is one standard deviation.

6.1.1. Improved Robustness

To produce Figure 2, we set the number of iterations in outer loop L = 50, learning
rate s = 10. For each N ∈ {50, 100, 200, 500, 1000, 2000} we run algorithm 2 and record
Kullback-Leibler divergence between learned matching matrix πIOT, πRIOT and ground
truth matching matrix π0. Figure 2 shows that RIOT with different relaxation parameters

20



Learning to Match via Inverse Optimal Transport

0 2 4 6 8

0

2

4

6

8 0.005

0.010

0.015

0.020

0.025

0.030

(a) π0

0 2 4 6 8

0

2

4

6

8 0.005

0.010

0.015

0.020

0.025

0.030

0.035

(b) π̂

0 2 4 6 8

0

2

4

6

8 0.005

0.010

0.015

0.020

0.025

0.030

0.035

(c) πRIOT

0 2 4 6 8

0

2

4

6

8 0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

(d) πIOT

Figure 3: Comparison of (a) actual matching matrix π0 (b) noised matching matrix π̂
(KL(π0‖π̂) = 1.269) (c) matching matrix πRIOT learned by marginal relaxation
approach (KL(π0‖πRIOT) = 0.219) (d) matching matrix πIOT learned with fixed
marginal approach (KL(π0‖πIOT) = 0.464) (sample size N = 200)

demonstrate improved robustness than IOT does when noise size is large. If δ is set too large
(e.g. δ = 0.05), however, the entropy term tends to dominate and negatively affect recovery
performance when noise size is modestly small. If δ is tuned carefully (e.g. δ = 0.005),
RIOT can achieve comparable performance even when noise size is quite small. Moreover,
we observe that curves corresponding to different δ intersect with the curve of fixed marginal
at different noise size. Therefore, when prior knowledge or statistical estimate of noise size
is available, we may tune δ accordingly to achieve best practical performance. In addition,
we observe notable variation of KL divergence between π0 and πIOT when sample size is
small (e.g., N = 50), in contrast, one standard deviation of KL(π0||πRIOT ) is negligible,
supporting our argument of RIOT being more robust than IOT.

To produce Figure 3, we set sample size N = 200 and relaxation parameter δ = 0.001
with other parameters same as those for producing Figure 2. Figure 3 visually illustrates
π0, π̂, πRIOT and πIOT and we see that when sample size is small, sampling noise can
significantly corrupts= the ground truth matching matrix. πRIOT exhibits less distortion
compared to πIOT, which demonstrates improved robustness again. Numerical results also
back up our observation.

KL(π0‖π̂) = 1.269, KL(π0‖πRIOT) = 0.219, KL(π0‖πIOT) = 0.464

Compared to IOT, marginal relaxation via regularized Wasserstein distance does help im-
prove the robustness of solution.

6.1.2. Superior Learning Performance

To produce Figure 4, we set sample size N = 200, relaxation parameter δ = 0.001, the
number of iterations in outer loop L = 100 and learning rate s = 1, we then run algorithm
2 to compare the performance of learning cost matrix C0. To avoid non-uniqueness/non-
identifiability issue, we use

d(C1, C2) = min
D=a1T +1bT +C1

‖D − C2)‖F
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to measure the closeness of cost matrices C1 and C2 and denote the minimizer of d(C,C0)
by C̃. The results are shown below,

d(CRIOT , C0) = 7.831, d(CIOT , C0) = 12.439

where CRIOT , CIOT are cost matrices learned by RIOT formulation and IOT formulation
respectively. Compared to CIOT , CRIOT learned via our proposed method almost halves
the distance to ground truth cost matrix. Figure 4 also illustrates that our model can learn
the structure of cost matrix better than IOT does. Our approach improves the learning
performance and is able to reveal the structure of ground truth cost matrix.

To sum up, we show that with appropriately tuned relaxation parameter, RIOT is superior
to IOT in terms of both robustness and learning performance.
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Figure 4: Comparison of (a) ground truth cost matrix C0 (b) C̃RIOT, the minimizer of
d(CRIOT , C0) and (c) C̃IOT, the minimizer of d(CIOT , C0)
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Figure 5: Interaction matrix learned by RIOT for election data set
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6.2. Election data set

We show in this subsection that RIOT can effectively learn the user-item interaction by
applying it to 2012 presidential election data of Florida. The experiment setup is similar to
that of Muzellec et al. (2017)2.

The data set contains more than 9.23 × 106 voters profile, each voter has features like
gender, age, race, party and whether the voter voted in 2008 election. 0-1 encoding are used
for gender (M:1, F:0) and voting in 2008 (Yes:1, No:0), age is linearly mapped onto [0, 1]
and we use one-hot encoding for both race and party. We obtain the empiricl matching
data from exit poll provided by GALLUP3. The empirical matching matrix π̂ is 3-by-5
matrix, candidates are either Democratic or Republican, or from a third party and voters
are categorized into five races (White, Black, Hispanic, Asian and Other). We use mean
profile as features for each race and one-hot encoding as features for candidates. We set
λ = λu = λv = 1, δ = 5× 10−3,K = 20, for Cu, Cv, we randomly generate m and n points
from N (0, 5I2) on plane and use their Euclidean distance matrix as Cu and Cv. Polynomial
kernel Cij = (0.2uTi Avj + 1)2 is used for this experiment. We run RIOT for this data set
and the learned interaction matrix is shown in Figure 5.

In Figure 5, the lighter the color of a cell is, the lower the cost caused by that feature
combination is. Take ‘Age’ column as an example, (‘Democratic’, ‘Age’) is the darkest and
(‘Republican’, ‘Age’) is the lightest among the column, it means that elder voters are more
likely to favor Republican candidate as it has lower cost compared to supporting Democratic
candidate. Other cells can be interpreted in a similar manner.

From Figure 5, we see that most white voters tend to support Republican candidate
Romney while black voters tend to support Democratic candidate Obama, Democratic and
Republican voters tend to support candidate from their own party, elder voters tend to
support Romney while female voters tend to support Obama. All above observations are
consistent with CNN’s4 exit polls. This demonstrates that RIOT can learn meaningful
interaction preference from empirical matching effectively.

6.3. New York Taxi data set

We demonstrate in this subsection that the proposed RIOT framework is able to predict
fairly accurate matching on New York Taxi data set 5. This data set contains 1458644 taxi
trip records from January to June in 2016 in New York city. Each trip record is associated
with one of the two data vendors (Creative Mobile Technologies, LLC and VeriFone Inc.)
and contains detailed trip information such as pickup/drop-off time, longitude, latitude
and so on. As no unique identifiers of taxis are provided, we can not predict new matching
on individual level. Instead, we predict matching between data vendors and passengers (a
passenger is matched with one of the data vendors if a taxi associated with that data vendor
rides with the passenger).

2. part of the experiment in this subsection is based on the code kindly shared by Boris Muzel-
lec(https://github.com/BorisMuzellec/TROT)

3. http://news.gallup.com/poll/160373/democrats-racially-diverse-republicans-mostly-white.aspx
4. http://www.cnn.com/election/2012/results/state/FL/president/
5. https://www.kaggle.com/c/nyc-taxi-trip-duration/data
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To reflect the proximity of passengers and taxis, we cluster all trip records into 50 regions
and plot them in Figure 6. If a passenger and a taxi are in the same region, it indicates they
are close to each other and it is desirable to match them up. Further, since we do not have
real-time location of taxis, we use the last known drop-off location as taxis’ current location.
This assumption is usually not true in large time scale as taxis are likely to leave the region
and search for next passenger. To alleviate this issue, we only use trip records within a
short time period, 6:00-6:30pm on Friday, June 3rd to predict matching of 6:00-6:30pm on
Friday, June 10. Moreover, this is typically the rush hour in New York city and location
of taxis are not likely to change dramatically during the period. Vendors’ features are the
distribution of associated taxis across 50 regions, i.e., U ∈ R50×2, passengers’ features are
simply the one-hot encoding of their current location, i.e, V ∈ R50×50. So the interaction
matrix A ∈ R50×50. We set λ = λu = λv = 1, δ = 1×10−3,K = 20, for Cu, Cv, we randomly
generate m and n points from N (0, 5I2) on plane and use their Euclidean distance matrix
as Cu and Cv. Linear kernel Cij = 0.2uTi Avj + 1 is used for this experiment.

The comparison of the actual matching πnew and the predicted matching πpredicted is
shown in Figure 7. Visually speaking, we see that the predicted matching is able to capture
the pattern of actual empirical matching and the prediction is fairly accurate. Quantitative
result is also reported, measured in Kullback-Leibler divergence

KL(πnew||πpredicted) = 0.1659.

6.4. Marriage data set

In this subsection, we illustrate the applicability of our model in suggesting new match-
ing and it can make more accurate and realistic recommendations than conventional rec-
ommender systems do. Once the interaction between two sides of matching market is
learned, one may use that to predict matching for new groups and make recommenda-
tions accordingly. We compare our RIOT with baseline random predictor model (Ran-
dom), classical SVD model (Koren et al., 2009) and item-based collaborative filtering model
(itemKNN) (Cremonesi et al., 2010), probabilistic matrix factorization model (PMF) (Mnih
and Salakhutdinov, 2008) and the state-of-art factorization machine model (FM) (Rendle,
2012). To fit conventional recommender systems in our setting, one possible approach is
simply treating each cell of matching matrix as rating and ignoring the underlying matching
mechanism. In RIOT, we set λ = λu = λv = 1, relaxation parameter δ = 0.001, inner itera-
tion K = 20 and use polynomial kernel k(x,y) = (0.2xTy+0.8)2. For Cu, Cv, we randomly
generate m and n points from N (0, 5I2) on plane and use their Euclidean distance matrix
as Cu and Cv.

We evaluate all models on Dutch Household Survey (DHS) data set 6 from 2005 to
2014 excluding 2008 (due to data field inconsistency). After data cleaning, the data set
consists of 2475 pairs of couple. For each person we extract 11 features including educa-
tion level, height, weight, health and 6 characteristic traits, namely irresponsible, accurate,
ever-ready, disciplined, ordered, clumsy and detail-oriented. Education levels are first cat-
egorized into elementary, middle and high and then mapped linearly onto [0, 1]. Height
and weight are normalized by dividing the largest height/weight. Health and characteristic

6. https://www.dhsdata.nl/site/users/login
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Figure 6: Clusters of Taxi Trip Records

features are measured on 0-5 scale and rescaled onto [0, 1]. We use k-means algorithm to
cluster men/women into ncluster = 50 groups, respectively. We select each cluster center
as representative. Performing clustering can better illustrate the applicability of our model
in distributional setting and also helps reduce problem size. We train all models on train-
ing data set and measure error between predicted and test matching matrix by root mean
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Figure 7: Comparison between actual matching πnew (top) and predicted matching
πpredicted (bottom) between 6:00-6:30pm on Friday, June 10th in New York city.
Ticks of x-axis are labels of regions.

square error (RMSE) and mean absolute error (MAE) using 5-fold cross-validation. The
result is shown in Table 1.

Random PMF SVD itemKNN RIOT FM

RMSE 54.5 8.4 29.9 2.4 2.3 3.6

MAE 36.6 2.0 16.8 1.6 1.5 2.8

Table 1: Average error of 5-fold cross-validation measured in RMSE and MAE (×10−4)

In both measures, RIOT beats other conventional RS competitors. The comparison
clearly shows that being able to take supply limitation into consideration and capture
matching mechanism is of critical importance in suggest matching in such context and our
proposed RIOT model can do a better job than conventional recommender systems do.

7. Conclusion

In this paper, we develop a novel, unified, data-driven inverse-optimal-transport-based
matching framework RIOT which can learn adaptive, nonlinear interaction preference from
noisy/incomplete empirical matching matrix in various matching contexts. The proposed
RIOT is shown to be more robust than the state of the art IOT formulation and exhibits
better performance in learning cost. Moreover, our framework can be extended to make
recommendations based on predicted matching and outperforms conventional recommender
systems in matching context.

In the future, our work can be continued in multiple ways. First, our model does batch
prediction for a group of users and items and we would like to develop online algorithm to
deal with streaming data and make matching suggestion for a previous unseen user/item
in an online fashion. A recent method proposed by Perrot et al. (2016) that allows to
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update the plan using out-of-sample data without recomputing might be useful. From
business standpoint, we may study optimal pricing within our framework, i.e., how to set
a reasonable price and adjust item distribution in a most profitable way (Azaria et al.,
2013). In addition, we hope to combine impressive expressiveness of deep neural networks
to further boost the performance of our proposed model.
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Appendix A. Proof of Lemma 3

Proof
f(a, b) = xTAx− 2fTx+ ‖M‖2F

where x =

[
a
b

]
, f = [(M1)T ,1TM ]T and A =

[
nIm×m 1m1Tn
1n1

T
m mIn×n

]
. Note that A is a

positive semi-definite matrix, the algebraic multiplicity of its 0 eigenvalue is 1 and null(A) =
span{[1Tm,−1Tn ]T }. Moreover, f ⊥ null(A), hence the quadratic form f(a, b) admits a
minimum in null(A)⊥ and it is straightforward to obtain

min
a,b

f(a, b) = min
x
xTAx− 2fTx+ ‖M‖2F

= ‖M‖2F − fTA+f

where A+ is the Moore-Penrose inverse of matrix A. If M can not be written as M =
a1T + 1bT , then the minimum of f(a, b) must be positive, hence

f(a, b) ≥ min
a,b

f(a, b) = ‖M‖2F − fTA+f > 0

.
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Appendix B. Extension of RIOT model to learn Cu and Cv jointly

In this section, we extend proposed RIOT model to settings where Cu and Cv are unknown
and need to be learned jointly with the main cost matrix C(A). Following the same deriva-
tion, we end up with an optimization problem almost identical to the one in equation (5),
i.e.,

min
A,µ∈Σm,ν∈Σn,Cu,Cv

−
m∑
i=1

n∑
j=1

π̂ij log πij + δ
(
dλu(Cu,µ, µ̂) + dλv(Cv,ν, ν̂)

)
(13)

except for the fact that now we need to optimize two additional variables Cu and Cv. Gener-
icly, inverse problems are usually not well-posed, in our cases, if no constraints imposed on
Cu, Cv, one could trivially let, say Cu = 0m×m, Cv = 0n×n. To avoid such ill-posedness, we
assume that Cu ∈Mm ∩ Σm×m, Cv ∈Mn ∩ Σn×n, where Md is the cone of d× d distance
matrix and Σd is d− 1 simplex (see Section 3 for definition). Other regularization can also
be explored.

By strong duality, we may convert equation (13) to its dual problem in a similar fashion
as equation (6),

min
A,µ,ν,Cu,Cv

max
z,w
−

m∑
i=1

n∑
j=1

π̂ij log πij + δ
(
〈z,µ〉+ 〈zCu , µ̂〉+ 〈w,ν〉+ 〈wCv , ν̂〉

)
where zCu

j = 1
λu

log r̂j− 1
λu

log(
∑m

i=1 e
λu(zi−Cuij)) and wCv

j = 1
λv

log ĉj− 1
λv

log(
∑n

i=1 e
λv(wi−Cvij)).

One way to solve equation (14), without too many changes of proposed algorithm in
Section 5, is to rewrite it as

min
A,µ,ν

min
Cu,Cv

max
z,w
−

m∑
i=1

n∑
j=1

π̂ij log πij + δ
(
〈z,µ〉+ 〈zCu , µ̂〉+ 〈w,ν〉+ 〈wCv , ν̂〉

)
(14)

and alternatively update three groups of variables (A,µ,ν), (Cu, Cv) and (z,w).

B.1. Update (A,µ,ν), with (Cu, Cv) and (z,w) fixed

Once (Cu, Cv) and (z,w) fixed, zCu ,wCv are fixed as well, hence the optimization problem
at this stage becomes

min
A,µ,ν

−
m∑
i=1

n∑
j=1

π̂ij log πij + δ
(
〈z,µ〉+ 〈w,ν〉

)
where constants are omitted. This minimization problem is identical to that in subsection
5.1. Please see detailed update scheme for (A,µ,ν) there.

B.2. Update (Cu, Cv), with (A,µ,ν) and (z,w) fixed

If (A,µ,ν) and (z,w) are fixed, π is also fixed as it is the regularized OT plan determined
by parameters (A,µ,ν), hence the optimization problem at this stage becomes

min
Cu∈Mm∩Σm×m,Cv∈Mn∩Σn×n

δ
(
〈zCu , µ̂〉+ 〈wCv , ν̂〉

)
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and can be further splitted into two independent optimization problems

min
Cu∈Mm∩Σm×m

δ〈zCu , µ̂〉, min
Cv∈Mn∩Σn×n

δ〈wCv , ν̂〉 (15)

which can be solved simultaneously.
Both Md and Σd×d are convex sets, so is their intersection. Therefore we can perform

projected gradient method to solve two separate minimization problems in equation (15).

B.3. Update (z,w), with (A,µ,ν) and (Cu, Cv) fixed

When (A,µ,ν) and (Cu, Cv) are fixed, π is also fixed, we then only need to solve

max
z,w
〈z, π1〉+ 〈zCu , µ̂〉+ 〈w, πT1〉+ 〈wCv , ν̂〉

and one immediately recognizes this is equivalent to applying Sinkhorn-Knopp algorithm
to compute dλu(Cu,µ, µ̂) and dλv(Cv,ν, ν̂).

To summarize, to jointly learn C(A), Cu and Cv, we formulate an optimization problem
similar to that in equation (5) and propose an alternating algorithm to solve it by alternately
update (A,µ,ν), (Cu, Cv) and (z,w). Practically, the update of (Cu, Cv) requires expensive
projection ontoMd∩Σd×d, therefore we suggest learning Cu, Cv first and then using RIOT
formulation to learn the main cost matrix C(A), rather than learning three cost matrices
simultaneously.
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Appendix C. Hyper-parameter Tuning

There are many hyper-parameters in RIOT formulation, including regularization parameter
λ, λu, λv, relaxation parameter δ, kernel function k(·, ·), cost matrix for two sides Cu, Cv and
the number of iteration in inner loop K. With so many hyper-parameters, it would be very
expensive to perform grid-search type tuning. Two parameters, relaxation parameter δ and
kernel k(·, ·), turn out to be critical to the performance of RIOT. Therefore, we fixed other
hyper-parameters (based on coarse-tuning) and (fine) tuned these two hyper-parameters.

• λ, λu, λv: as mentioned in main paper, one main motivation of introducing entropy
regularization to optimal transport is computation. Too large λ usually causes numer-
ical instability in Sinkhorn-Knopp algorithm, hence we set λ = λu = λv = 1 across all
experiments.

• Cu, Cv: Randomly generate m and n points from N (0, 5I2) on plane and use their
Euclidean distance matrix as Cu and Cv. This setting is consistent across all experi-
ments.

• K: the number of iterations in inner loop should be large enough to ensure the iterative
algorithms described in proposition 7 to converge. In all experiments, we observed
the inner loop usually converges within 20 steps, hence we set K = 20.

• δ: Both small and large δ can regularize the problem quite well compared to IOT
when sample size is small. When sample size is large, empirical matching matrix is
usually accurate enough. In this case, large δ can introduce large bias whereas small
δ has comparable performance of IOT. In practice, we suggest users to select small
relaxation parameter. In our experiments, we found 10−3 is an appropriate order to
work with.

• k(·, ·): we primarily work with polynomial kernels (including linear kernels) in the pa-
per. Kernel function was chosen from {k(x,y) = (γxTy+c0)d|γ ∈ {0.05, 0.1, 0.2}, c0 ∈
{0.5, 0.8, 1, 2}, d ∈ {1, 2, 3}}
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Appendix D. Table of Notations

µ,ν marginal probability distributions
Σd d− 1-dimensional probability simplex
U(µ,ν) transport polytope
C cost matrix
A interaction matrix
CIOT cost matrix learned by IOT formulation
CRIOT cost matrix learned by RIOT formulation
λ regularization parameter of entropy regularization
dλ(C,µ,ν) regularized optimal transport distance
πλ(C,µ,ν) regularized optimal transport plan
π̂ empirical matching matrix
µ̂, ν̂ empirical marginal distributions
δ relaxation parameter in RIOT formulation
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Pierre-André Chiappori, Robert J McCann, and Lars P Nesheim. Hedonic price equilibria,
stable matching, and optimal transport: equivalence, topology, and uniqueness. Economic
Theory, 42(2):317–354, 2010.
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Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Technical report,
2017.

Luiz Pizzato, Tomasz Rej, Joshua Akehurst, Irena Koprinska, Kalina Yacef, and Judy Kay.
Recommending people to people: the nature of reciprocal recommenders with a case study
in online dating. User Modeling and User-Adapted Interaction, 23(5):447–488, 2013.

Steffen Rendle. Factorization machines. In Data Mining (ICDM), 2010 IEEE 10th Inter-
national Conference on, pages 995–1000. IEEE, 2010.

Steffen Rendle. Factorization machines with libfm. ACM Transactions on Intelligent Sys-
tems and Technology (TIST), 3(3):57, 2012.

Antoine Rolet, Marco Cuturi, and Gabriel Peyré. Fast dictionary learning with a smoothed
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