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Abstract—Voice synthesis uses a voice model to synthesize arbi-
trary phrases. Advances in voice synthesis have made it possible
to create an accurate voice model of a targeted individual, which
can then in turn be used to generate spoofed audio in his or
her voice. Generating an accurate voice model of target’s voice
requires the availability of a corpus of the target’s speech.

This paper makes the observation that the increasing popular-
ity of voice interfaces that use cloud-backed speech recognition
(e.g., Siri, Google Assistant, Amazon Alexa) increases the public’s
vulnerability to voice synthesis attacks. That is, our growing
dependence on voice interfaces fosters the collection of our
voices. As our main contribution, we show that voice recognition
and voice accumulation (that is, the accumulation of users’
voices) are separable. This paper introduces techniques for locally
sanitizing voice inputs before they are transmitted to the cloud
for processing. In essence, such methods employ audio processing
techniques to remove distinctive voice characteristics, leaving only
the information that is necessary for the cloud-based services
to perform speech recognition. Our preliminary experiments
show that our defenses prevent state-of-the-art voice synthesis
techniques from constructing convincing forgeries of a user’s
speech, while still permitting accurate voice recognition.

I. INTRODUCTION

A person’s voice is an integral part of his or her identity.
It often serves as an implicit authentication mechanism to
identify a remote but familiar person in a non-face-to-face
setting such as a phone call. The ability to identify a known
person based on their voice alone is an evolutionary skill
(e.g., enabling a child to quickly locate its parents) and is an
ingrained and automated process that requires little conscious
effort [31].

That humans regularly authenticate each other based solely
on voice lends to a number of potential impersonation attacks,
which notably include voice spearphishing and various other
forms of social engineering. The ease at which such attacks
can be conducted has increased due to advances in speech
synthesis. Emerging services such as Adobe Voco [1], Lyre-
bird.ai [15, 16] and Google WaveNet [13] aim to produce
artificial speech in a person’s voice that is indistinguishable
from that person’s real voice. Surprisingly, producing believ-
able synthetic speech does not require a large corpus of audio
data. For example, it has been reported that Adobe Voco can
mimic a person’s speech with as little as 20 minutes of the
targeted speaker’s recordings [1, 2], and Lyrebird.ai can create
a digital version of a voice from a one minute speech sample.

Advances in voice synthesis open up a large number of
potential attacks. An adversary who has access to a speech

sample of a target victim could apply voice synthesis to au-
thenticate as the victim to banks and other commercial entities
that rely on voice authentication [19–21]. Forged speech could
also be used to impugn reputations (e.g., for political gain)
or plant false evidence. In general, voice synthesis poses
a significant security threat wherever voice is used as an
authenticator.

A core requirement of such attacks is that the adversary
must have access to a corpus of voice recordings of its target.

The ability to obtain such samples is buoyed by the rising
popularity of voice input. Voice input has become ubiquitous
and a common method of computer-human interaction, in
no small part because it is a natural (to humans) method
of communication. Smartphones, tablets, wearables and other
IoT devices often come equipped with voice assistants (VAs)
such as Alexa, Siri, Google Now and Cortana. Dedicated VA
devices such as Amazon Echo and Google Home have found
their way into living rooms, constantly listening to users’
voice input and providing quick responses. Users of these
devices regularly surrender their voice data, making them more
vulnerable to future voice synthesis attacks.

Currently, only the voice assistant service providers have
access to the voice samples of a user. However, it is unclear
due to conflicting reports whether the application developers
will get access to user’s voice samples [3, 8]. For example, it
had been reported that Google Home allowed access to raw
voice command audio to application developers while Amazon
Echo also plans to do so in the future [8]. Thus, the increased
use of voice input increases the opportunities to gain access
to raw voice samples of the users.

This paper aims to reduce the threat of voice synthesis
attacks for ordinary users. We concede that much voice data
is already in the public domain—certainly, it is not difficult
to obtain audio recordings of celebrities and politicians, or of
ordinarily users who post their own video or audio content
to publicly accessible social media (e.g., YouTube). Such
users are already vulnerable to voice synthesis attacks and
the techniques that we propose in this paper unfortunately
do not attempt to protect them. Rather, our aim is to present
wide-scale vulnerability to voice synthesis attacks by changing
the norm – that is, by permitting the use of voice-based
services (e.g., VAs) while preventing the collection of users’
raw (unmodified) voice inputs.

We propose a defense that prevents an adversary with access
to recordings of voice commands, issued by users to VAs, from



building a voice model of a targeted user’s voice. Our proposal
is based on the following two observations:

1) A user does not need to sound like herself to use a voice
assistant. The first step in generating a response to a
user’s voice command is conversion of speech to text, i.e.,
speech recognition. Modern speech recognition systems
are oblivious to unique characteristics of a person’s voice,
and thus, are able to transcribe audio from thousands of
users. Therefore, altering a user’s voice so that it does
not sound like the user herself does not prevent her from
using VAs1.

2) Speech recognition systems do not need all the in-
formation present in spoken audio. The first step in
speech recognition is usually a feature extraction step
that converts the high dimensional input audio into low
dimensional feature vectors which are then used as inputs
to machine learning models for transcribing the audio.
Removing some of the information from the high di-
mensional audio, that is anyway thrown away during the
feature extraction, will not affect the speech recognition
process but can be used to alter the voice characteristics
of the audio.

In brief, our proposed defense extracts audio information
from voice commands that are relevant for speech recog-
nition while perturbing other features that represent unique
characteristics of a user’s voice. Put plainly, we strip out
identifying information in audio, which significantly hinders
(if not makes impossible) the task of speech synthesis. Our ap-
proach could be applied locally—in particular, on smartphones
and smartspeaker devices—as a “security filter” that prevents
third parties (whether they be the speech recognition service
itself, third-party developers, or even network eavesdroppers)
from being able to construct convincing synthesized voices.
Additionally, our proposed defense has the benefit that it
does not require any modifications to the cloud-based speech
recognition systems.

In what follows, we describe our initial design and prototype
of our defense. Our preliminary experiments, including a small
(IRB-approved) user-study, show that our proposed approach
prevents the constructing of convincing voice synthesis models
while imposing minimal effects on the accuracy of speech
recognition.

II. RELATED WORK

We believe we are the first to propose filtering raw voice au-
dio data for the purposes of thwarting voice synthesis attacks.
However, existing work has proposed several approaches for
achieving privacy-preserving voice recognition:

Smaragdis et al. [37] propose a privacy-preserving speech
recognition system as an instance of secure multiparty com-
putation, where one party (the transcriber) has a private model

1The speaker based personalization supported by various VAs is not
hampered by such alteration, since the speaker detection is done locally on the
client device (e.g., smartphone) and only applies to the activation keywords
for the voice assistants.

for performing speech recognition while the other parties have
private audio data that need to be transcribed without revealing
the audio content to the transcriber. However, their work does
not describe the performance or accuracy of such a system
and is limited to HMM-based speech recognition systems. Ad-
ditionally, secure-multiparty computation is computationally
expensive and requires both parties to cooperate. In contrast,
our approach can be deployed locally and does not require any
changes to existing speech recognition services.

Pathak et al. [33] provide a number of techniques for
privacy-preserving speech processing. They describe various
frameworks that aim to make conventional speech process-
ing algorithms based on statistical methods, such as HMM,
privacy-preserving by computing various operations via secure
operations such as secure multiparty computations, additive
secret sharing, and secure logsum. Their techniques are im-
pressive, but suffer from practical limitations due to their
dependence on computationally expensive cryptography. Their
framework also does not achieve good speech recognition
accuracy; in contrast, our defense is intended for advanced
and (arguably) accurate services such as Google’s, Apple’s,
and Microsoft’s cloud-based speech recognition systems.

Ballesteros and Moreno propose scrambling of a private
speech message to a non-secret target speech signal using a
secret key, which the receiver unscrambles using the same
shared secret [27]. The target speech signal’s plaintext is
different from that of the secret message, so as to fool an
eavesdropping adversary. However, the technique requires both
cooperation between the sender and receiver of the scrambled
signal as well as out-of-band key sharing.

More generally, techniques that prevent speech recogni-
tion services from learning the transcription (e.g., via secure
multiparty computation) are not applicable to our problem,
since in our setting, transcriptions are required by the service
provider to respond to voice commands. All major existing VA
systems (including Google Home, Amazon Alexa, and Siri)
use proprietary, cloud-based speech recognition; it is unlikely
that these services would choose to deploy expensive and
poorly scalable cryptographic-based protocols. In contrast, our
proposed defense aims to improve the privacy of voice data
for existing and already deployed systems that are widely used
by millions of users worldwide without requiring any changes
to the speech recognition systems.

Most relevant to this paper are recent studies by Vaidya
et al. [38] and Carlini et al. [29]; there, the authors show
the feasibility of specially crafting audio that is intelligible
to computer speech recognition services but not to human
listeners. Our work borrows the use of MFCCs to extract audio
information from their approach, and removes additional audio
features that provide uniqueness to a person’s voice.

III. THREAT MODEL

We consider an adversary whose goal is to impersonate a
targeted individual’s voice. The adversary achieves its goal of
generating spoofed audio in the target’s voice by building an
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accurate model of his voice by using speech synthesis services
such as Adobe Voco or Lyrebird.ai. Crucially, to be successful,
the adversary needs to first collect a corpus of the target user’s
speech.

Acquiring voice samples: Our threat model assumes that
the adversary requires high quality voice speech samples of the
target to build its voice model. As an example means of col-
lecting voice samples, an adversary could create a (legitimate)
voice application2 for a voice assistant, which provides raw
voice command audio data to the application. Alternatively,
a speech recognition service may itself be malicious and/or
sell users’ speech data to other parties. Finally, if speech is
transmitted unencrypted (which hopefully is a rarity) during
a voice-over-IP call, a network eavesdropper could trivially
collect a corpus.

We emphasize that in this paper, we explicitly do not con-
sider voice collection from in-person conversations, postings
of audio on social media websites (e.g., YouTube), broadcast
media (e.g., TV), or other sources. We acknowledge that
highly skilled and committed adversaries can likely obtain
audio of a specific person, for example, by physically planting
a listening device near the target. Our goal is to change the
norm such that the collection of ordinary users’ audio is much
more difficult. Specifically, we want to enable ordinary users to
use VAs while minimizing their risk to voice synthesis attacks.

Generating voice models: Our threat model assumes that
the adversary has access to services such as Adobe Voco or
Lyrebird.ai that can be used to create a voice model of a
person’s voice from the acquired voice samples.

Lyrebird.ai, at its current state of deployment, is able to
create a voice model of a person’s voice and synthesize
arbitrary audio that share the voice characteristics of that
person. We tested how well Lyrebird.ai is able to imitate a
person’s speech by replaying the synthesized phrases against
the speaker recognition (as opposed to speech recognition)
systems that are built into personal voice assistants. Siri and
Google Assistant both employ speaker recognition on their
respective activation phrases “Hey Siri” and “Ok Google” to
identify the active user and to provide a more personalized
experience based on the user’s identity [11, 18]. One of the
authors trained both Google Assistant and Siri on a Google
Home and iPhone 8 Plus, respectively, with his voice. To
ensure that the VAs were not tricked by another speaker’s
voice, we successfully verified the voice assistants did not
accept the respective activation phrases generated by MacOS’
say text-to-speech command. We then created a voice model
of the first author’s voice using Lyrebird.ai and used the
service to synthesize the activation keywords. Both of the
synthesized phrases were successfully able to trick Siri and
Google Assistant into believing that the phrases were spoken
by the registered user. Although this is an admittedly small ex-
periment and we acknowledge that much more sensitive voice
authentication systems exist, it demonstrates the feasibility of

2These are sometimes called skills.

defeating widely deployed speaker recognition systems—in
particular, those that guard our smartphone devices.

IV. STRAWMAN SOLUTION:
CLIENT-SIDE SPEECH RECOGNITION

We can trivially prevent an adversary from getting access to
voice data by performing only client-side speech recognition.
However, there are various practical challenges that prohibit
such a solution:

Cloud-based speech recognition allows for large, complex
models to be trained, deployed, and updated transparently
without affecting client-facing services. Such speech recogni-
tion models require significant computing power since state-of-
the-art systems rely heavily on computationally expensive deep
neural networks. Cloud deployment also allows for constant
improvements in speech recognition without requiring updates
to client-side software or any service downtime for clients.
Sending raw audio to remote servers also allows service
providers to gather more data for improving the performance
of their speech recognition systems. The majority of com-
mercially deployed speech recognition systems use supervised
machine learning techniques [7, 12] that can potentially benefit
from access to more data for training or testing. In particular,
Alexa, Siri, Google Assistant and Cortana all reportedly use
recorded voice commands to improve thee performance and
accuracy of their voice-based service offerings [22–25].

Additionally, existing open source client-side speech recog-
nition tools (e.g., CMU Sphinx [26] and Mozzila’s Deep-
Speech [17] generally have worse accuracy compared to
current cloud-based speech recognition services [28]. Client
devices such as smartphones and in-home assistants are usually
too resource constrained to employ the better performing
speech recognition techniques that are used by cloud-based
services.

Aside from the technical benefits of cloud-based speech
recognition, service providers may also consider their speech
recognition models to be intellectual property. Pushing such
models to client devices would increase the risk of reverse
engineering and could, in turn, lead to the leakage of trade
secrets. We posit that the the ability to maintain speech
recognition as a closed, cloud-based, black-box service is
likely a powerful motivator for service providers.

V. AUDIO SANITIZER

Our high-level approach to reducing the threat of voice
synthesis attacks is to make it more difficult to collect corpora
of ordinary users’ voices. We introduce the concept of an
audio sanitizer, a software audio processor that filters and
modifies the voice characteristics of the speaker from audio
commands before they leave the client device. Altering such
features transforms the voice in the audio commands that is
available to the adversary, making it difficult to extract the
original voice characteristics of the speaker and reducing the
accuracy of the speaker’s voice model.

The unique characteristics of a person’s voice can be
attributed to the anatomy of various organs involved in the
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process of generating the voice. To identify the audio features
that capture the uniqueness of a person’s voice, we identify
features used in speaker recognition to identify a speaker
from his voice. Since the goal of speaker recognition is
to tell users apart from each other based on their voice
characteristics, we believe that modifying the features used
for speaker recognition provides a good starting point for the
audio sanitizer.

Speaker recognition system typically employ the following
three types of features [39]:

1) Short-term spectral features: These features are extracted
from short overlapping frames and correlate to voice
timbre. Common spectral features include Mel-frequency
cepstral coefficients (MFCCs) and linear predictive cep-
stral coefficients (LPCCs).

2) Prosodic and spectro-temporal features: These features
include pitch, rhythm, tempo, pause and other segmental
information and capture the speaking style and intonation.

3) High level features: These features represent speaker
behavior or lexical clues and are usually extracted using
a lexicon.

We focus on a subset of these features—namely MFCCs,
pitch, tempo and pause—and modify them to alter the voice
characteristics of the spoken audio. Our perturbations are
random, but are applied consistently for the audio of a given
individual speaker. (Otherwise, if our modifications were ran-
domly chosen per sample, then an adversary who collects a
sufficient number of samples could recover the underlying
voice characteristics by “subtracting away” the mean of the
applied random distribution.)

In addition to modifying the identifying features of a
speakers voice, we also remove the extraneous information
present in the audio that is not required for speech recognition.
Recall that the first step in speech recognition is feature
extraction, which converts high dimensional, raw audio to
low dimensional feature vectors. To preserve the acoustic
information relevant for speech recognition, we first compute
the MFCCs of the input audio and then convert the MFCCs
back to audio signal by adding white noise [29]. Importantly,
performing an MFCC and then inverting the MFCC back to an
audio signal is a lossy operation that cannot be reversed (since
information is lost). Here, our goal is to keep only the audio
that is required for speech recognition while losing information
that is useful to construct accurate voice models.

As we discuss in more detail in the next section, for each
speaker, we choose a parameter for each feature such that
the resulting sanitized audio has minimal voice characteristics
of the speaker and is accurately transcribed by the speech
recognition service.

VI. EVALUATION

We evaluate our proposed audio sanitizer by analyzing the
degree to which it can degrade the quality of voice models
to conduct speech synthesis attacks while simultaneously
enabling accurate speech recognition.

Feature Modification

Pitch Shift up or down by 0 - 1
5

th octave
Tempo Change by 85% - 115%
Pause Introduce 0 - 15ms of pause at random 1% positions.
MFCCs Nbands: 100, Numcep: 100, Wintime: 0.025s, Hoptime: 0.01s

TABLE I: Modifications performed to various features by the
audio sanitizer.

A. Impact on Speech Recognition

We evaluate the impact of sanitizing audio (audio output
from the audio sanitizer) by comparing the transcription accu-
racy of the unsanitized (unmodified) and the sanitized audio.
Ideally, sanitized audio should provide identical accuracy to
the baseline unsanitized audio.

We choose a random subset of 500 audio samples from
the West Point Company English speech data corpus from
the University of Pennsylvania’s Linguistic Data Consortium
(LDC) [32]. The LDC corpus consists of both male and
female, American English-language speakers, each speaking
short, multiple sentences. Our subset is comprised of 130
different speakers, with 53 females and 77 males. We measure
our impact on speech recognition quality using Google’s
and IBM’s cloud-based speech recognition services [14, 34].
To quantify the accuracy of speech recognition systems, we
consider the Levenshtein edit distance between the words of
the correct, expected transcription and the best transcription
provided by the speech recognition service. We report the
normalized word edit distance by dividing Levenshtein edit
distance by the number of words in the baseline transcription.

For each audio sample in the corpus, we first transcribe
the unsanitized audio file to establish the baseline accuracy
using the online speech recognition services. Each file is then
sanitized using the audio sanitizer, which modifies the features
that provide unique characteristics to a speaker’s voice (see
§V). To permanently remove the extraneous audio not required
for speech recognition, we compute the MFCCs for each audio
and then invert those MFCCs and add white noise to generate
the sanitized audio [30]. The audio sanitizer first perfroms the
lossy MFCC step and then modifies the pitch, tempo and pause
features to produce the sanitized audio. Finally, we transcribe
the sanitized audio file generated by the audio sanitizer using
the online speech recognition services.

Table I shows the features and the level of modifications
performed to each of those features for each audio file.
For example, for male speakers, we increase the pitch by
0 to 1

5 th octave, randomly choosing the octave value in the
specified range. To modify the tempo, we multiply the tempo
of the audio by a number chosen uniformly at random from
[0.85, 1.15].

Figure 1 shows the cumulative distribution (CDF) of the
normalized edit distances for the unsanitized and sanitized
audio samples when using Google’s and IBM’s speech recog-
nition services. For Google’s speech recognition service, the
best-case accuracy (i.e., having a perfect transcription and a
normalized edit distance of zero) drops from 83.2% to 60.4%
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Fig. 1: Impact of audio sanitizer on transcription accuracy.

Same speaker Different speaker

Baseline 47 45
Unsanitized audio 23 25
Sanitized audio 22 20

TABLE II: Number of participants assigned to each baseline
condition and each of the four test conditions.

when the audio sanitizer is used. In the case of IBM’s speech
recognition service, sanitizing the audio decreases the accuracy
from 70.8% to 50.1%.

Our initial implementation of the audio sanitizer shows
promise: in the worst case, transcription is perfect more than
half of the time. However, we anticipate that accuracy could be
significantly increased by more intelligently performing voice
modifications. In particular, in our initial version of the audio
sanitizer, we use a fixed set of modifications (see Table I) for
all speakers. Given significant variations in people’s voices,
we can likely achieve improved accuracy results by ana-
lyzing individual voice characteristics and choosing specific
parameter ranges on a per-speaker basis. We posit that by
moving away from a one-size-fits-all model and performing
per-speaker audio sanitization, we can make our sanitizer less
coarse and more focused by removing only the information
that makes an individual speaker’s voice distinctive.

B. Privacy Gain

To conduct a speech synthesis attack, the attacker requires a
corpus of the targeted user’s speech. We evaluate the efficacy
of the audio sanitizer by comparing attacks’ effectiveness
when the corpus is based on unmodified speech (the current
norm) and speech that has been filtered by the audio sani-
tizer. More concretely, we examine the adversary’s ability to
successfully launch an attack—that is, cause actual human
listeners to conflate a synthesized voice with a legitimate
recording of a speaker. To perform such an evaluation, we
conduct a small user study to measure how well the attacker
is able to fool human listeners when (i) using a voice model
created from unsanitized voice commands and (ii) comparing
that to the case in which the voice is is based on sanitized
audio.

Baseline: 
Attention Check, 

Response

Part A

Test Condition: 
Attention Check,

Response

Part B

Human/Computer 
Speech Question

Part C

Demographics

Part D

Fig. 2: Sections and flow of the user study.

Metric Percentage
Gender
Female 41.3%
Male 54.3%
Other 2.1%

Ethnicity
Caucasian 75.0%
African American 8.7%
Hispanic 4.3%
Asian 7.7%
Other 4.3%

Metric Percentage
Age
18-29 years 38.0%
30-49 years 47.8%
50-64 years 9.8%
65+ years 1.0%

Education
H.S. or below 9.8%
Some college 32.6%
B.S. or above 55.4%

TABLE III: Participant demographics for the user study.
Percentages may not add to 100% due to non-response or
selection of multiple options.

a) User Study: Our user study is designed to determine
the success rate of an attacker when attempting to trick human
evaluators with synthesized audio. The user study presents the
participants with different pairs of audio samples and asks
them to specify whether they think the audio samples were
spoken by the same person.

Figure 2 illustrates the design of our online user survey. In
Part A of the survey, participants listen to two short audio
samples with different speech content and are then asked
about the content of the first audio as an attention check.
The two audio samples are normal speech samples either from
the same speaker or two different speakers, shown evenly to
the participants. On the next page of the survey, participants
are asked to describe the relationship between the speakers of
both audio samples using a five-point scale, from “definitely
spoken by same speaker (person)” to “definitely spoken by
different speaker (person)”. Part A was designed to establish
a baseline accuracy of how well survey participants are able to
correctly identify whether two voice samples reflect the same
or different speakers.

Part B of the study measures whether participants can
determine the relationship between the speakers of two audio
samples, when one of the audio is synthesized from a voice
model. The survey participants listen to two short audio
samples with different speech content. The first audio is always
a normal speech audio from a single speaker, the second audio
is always a synthesized audio generated from a voice model
chosen based on the following two factors:

1) Voice model: the voice model is generated by either using
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unsanitized audio or sanitized audio.
2) Speaker: the speaker can either be same or different

speaker with respect to the first audio.
Using a full factorial design, we consider the four conditions
based on the above two factors for choosing the second audio
in Part B as shown in Table II. All voice synthesis was
performed using the Lyrebird.ai service. Participants are first
asked about the content of the first audio as an attention check.
On the next survey page, participants are asked to describe the
relationship between the speakers of both audio samples, again
on a five-point scale ranging from “definitely spoken by same
speaker (person)” to “definitely spoken by different speaker
(person)”.

Part B was designed to answer our primary condition of
interest: i.e., while using synthesized audio constructed from
a corpus of sanitized audio data, were the participants less able
to identify whether the speakers were the same or different?
We compare this to the case in which synthesized audio is
based on normal, unmodified audio. Put simply, we determine
whether the voice synthesis attacks are less convincing when
they are forced to train models based only on sanitized audio
samples.

In Part C, the participants again listen to the same pair of
audio from Part B. They are then asked about the speech in
both of the audio samples with options: “both are human
voices”, “first in human voice but second is a computer
generated voice”,“first is computer generated voice but second
is a human voice”, “both are computer generated voices” and
“not sure”. The goal of Part C was to indirectly measure
how well users can identify speech that is synthesized using
Lyrebird.ai.

The online survey concludes in Part D with demographic
questions about education, gender, ethnicity and age.

b) Recruitment: We used Amazon’s Mechanical Turk
(MTurk) crowdsourcing service to recruit participants for the
user study. We required participants to be at least 18 years old
and located in the United States. To improve data quality, we
also required participants to have at least 95% HIT approval
rate [35]. Participants were paid $1.00 for completing the
study, which was approved by the IRB at Georgetown Univer-
sity. The demographics of our participants are summarized in
Table III.

c) Results: In total, 104 MTurk workers participated and
completed our study. Table II shows the number of responses
across the baseline conditions and the four test conditions. We
exclude 11 responses as duplicates based on their originating
IP addresses and only consider their first response and also
exclude three responses that failed the attention checks. For
the remainder of the paper, we refer to the remaining 90
participants.

Table IV summaries the results of the user study and shows
the percentage of users that reported a given relationship
between the speakers of the two audio samples for the given
condition. For the baseline response, 65.2% of the participants
correctly identified the relationship between the speakers from
Part A of the survey; 76.6% correctly identified the same

Same Speaker Different Speaker

Same Different Same Different

Baseline 76.6% 21.3% 40.0% 53.3%
Unsanitized 30.4% 60.9% 12.0% 72.0%
Sanitized 9.1% 81.8% 0.0% 95.0%

TABLE IV: Summary of responses from the user study
for various conditions. Each cell shows the percentage of
participants that reported a given relationship (excluding the
“not sure” response) between the speakers of the two audio
samples for the given condition. For Baseline, the two audio
were human speech, for Unsanitized and Sanitized, the first
audio was human speech while the second was generated by
Lyrebird.ai.

speaker whereas 53.3% were able to correctly differentiate
between two different speakers. This shows that the majority
of the participants were able to correctly identify whether or
not two audio samples are from the same speaker.

We next focus on the case in which the survey participants
are tasked with identifying whether two samples originate
from the same speaker, when one of the samples is synthet-
ically generated using Lyrebird.ai. When the synthetic voice
was produced using a corpus of the first speaker’s unmodified
(non-sanitized) voice, 30.4% of the participants correctly iden-
tified that voices were from the same speaker. This corresponds
to the attacker’s success rate in impersonating the targeted
individual by spoofing his voice using synthesized speech
generated from his voice model built using unsanitized speech
audio. However, when the synthetic voice was produced using
a corpus of the first speaker’s modified (sanitized) voice, only
9.1% of the participants believed that the voices were from the
same speaker while 81.8% reported them to be from different
speakers. Our results show that the audio sanitizer is able to
significantly reduce the efficacy of the attack; that is, the attack
is far less successful when the attacker only has access to
sanitized speech audio samples.

In the case of different speakers, when the synthesized
voice was generated using a corpus of another speaker’s
unmodified (non-sanitized) voice, 72.0% of the participants
correctly identified the voices to be from different speakers
while 12.0% reported them to be from the same speaker.
However, the use of a sanitized audio corpus to synthesize the
audio for another speaker resulted in 95.0% of the participants
correctly identifying the voices to be from different speakers
and none of the participants reporting the voices to be from
the same speaker.

In summary, the results from our user study show that given
the current quality of Lyrebird.ai’s voice synthesis, an attacker
with access to unmodified speech audio samples of the targeted
individual can synthesize convincing spoofed speech samples
in the target’s voice. However, sanitization of the audio to
remove the voice characteristics prevents the attacker from
generating an accurate voice model, resulting in synthesized
spoofed audio that are far less convincing.
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VII. DISCUSSION

We conclude by discussing in more detail the benefits,
limitations, and deployment considerations surrounding our
audio sanitizer defense.

Detection of Computer Generated Audio by Humans. In
Part C of the online survey, we asked the survey participants
to identify whether the two audio samples presented to them
were spoken by a human or were computer generated. 76.7%
of the participants correctly identified the first audio to be
human generated speech while the second one being computer
generated across all four conditions. This shows that the users,
with the current state of voice synthesis, are able to correctly
identify computer generated voices. However, this does not
diminish the threat posed by the collection of voice data for the
purpose of building voice models for malicious purposes, since
further improvements in the underlying technologies for voice
synthesis and conversational voice assistants will increase pri-
vacy risks. Additionally, the availability of more training data
for creating a voice model is likely to improve the accuracy
of the synthesized voice. For example, the synthesized audio
used in our user study were generated from voice models,
with each model built using 40 short audio samples. As stated
by the Lyrebird.ai voice synthesis service, providing more
training samples improves the quality of the voice model and
the synthesized speech.

Practical Deployment. A major goal of our proposed audio
sanitizer is to improve the privacy of users without requiring
any support from various transcription services. Our defense
requires only the manipulation of audio on client devices
before it is sent to the remote transcription services. Any
device that accepts voice commands and does not perform
speech recognition locally can leverage the audio sanitizer. To
be effective, the audio sanitizer has to be placed somewhere
in the path between the user and the transcription service so
that it can intercept and sanitize the audio that comprises the
voice command.

One possible point of interception is the communication
link between the client device and the remote service. The
audio sanitizer can capture the voice command from network
packets and then forward it to the service after sanitization.
However, the communication between the client device and the
remote transcription service usually happens over an encrypted
channel3.

A more practical point of interception of audio data is within
the client device itself, after the audio has been recorded by
the microphone(s) and before it leaves the device. Relatedly,
mechanisms for tracking and intercepting sensor data before
delivering it to applications have previously been explored [36,
40]. For example, Xu and Zhu [40] propose a framework for
Android smartphones that allows users to control the data
generated by various sensors based on user-defined policies
for the requesting application before forwarding the sensor

3We verified that Google Home and Amazon Echo use encrypted TLS
connection to send voice commands to remote servers.

data to that application. In particular, for audio data recorded
by a microphone, their approach allows replacement of actual
audio with mock data or with the addition of random noise.
Thus, we can leverage such existing mechanisms on devices
running Android to allow the audio sanitizer to intercept and
sanitize the audio from the microphone before it is delivered
to the application.

For in-home assistants with dedicated hardware such as
Amazon Echo or Google Home, our defense can be deployed
in a less subtle way. An ideal scenario would be to allow the
user to run custom software on these devices. That way, we
can directly integrate the audio sanitizer on such devices. A
motivating example is the Amazon Echo that runs FireOS,
which is an Android-based operating system [9, 10] and thus,
can possibly use the same strategy as other Android devices.

Additional Benefits. In addition to thwarting an adversary’s
attempt to build an accurate voice model of targeted speaker,
the audio sanitizer also allow service providers to make
stronger claims about user privacy. Current devices such as
Amazon Echo and Google Home record and transmit any
sound they hear after the activation word. Thus, any accidental
triggering of such always-on voice assistants during confiden-
tial conversations poses a significant threat to user privacy [6].
As highlighted by recent events, governments can subpoena
service providers for any such recordings [4, 5], which can
harm a provider’s efforts to alleviate public concern about the
privacy risks of installing always-on listening devices. Service
provides may opt to build audio sanitizers into their appliances
and applications, as a way of assuaging privacy concerns.
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