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Abstract

Motivation: Neuronal synapses transmit electrochemical signals between cells through
the coordinated action of presynaptic vesicles, ion channels, scaffolding and adapter
proteins, and membrane receptors. In situ structural characterization of numerous
synaptic proteins simultaneously through multiplexed imaging facilitates a “bottom-up’
approach to synapse classification and phenotypic description. Objective automation of
efficient and reliable synapse detection within these datasets is essential for the
high-throughput investigation of synaptic features. Convolutional neural networks can
solve this generalized problem of synapse detection, however, these architectures require
large numbers of training examples to optimize their thousands of parameters.

Results: We propose DoGNet, a neural network architecture that closes the gap
between classical computer vision blob detectors, such as Difference of Gaussians (DoG)
filters, and modern convolutional networks. DoGNet is optimized to analyze highly
multiplexed microscopy data. Its small number of training parameters allows DoGNet
to be trained with few examples, which facilitates its application to new datasets
without overfitting. We evaluate the method on multiplexed fluorescence imaging data
from both primary mouse neuronal cultures and mouse cortex tissue slices. We show
that DoGNet outperforms convolutional networks with a low-to-moderate number of
training examples, and DoGNet is efficiently transferred between datasets collected
from separate research groups. DoGNet synapse localizations can then be used to guide
the segmentation of individual synaptic protein locations and spatial extents, revealing
their spatial organization and relative abundances within individual synapses.

Availability: The source code is publicly available:
https://github.com/kulikovv/dognet

)

Author summary

Multiplexed fluorescence imaging of synaptic proteins facilitates high throughput
investigations in neuroscience and drug discovery. Currently, there are several
approaches to synapse detection using computational image processing. Unsupervised
techniques rely on the a priori knowledge of synapse properties, such as size, intensity,
and co-localization of synapse markers in each channel. For each experimental replicate,
these parameters are typically tuned manually in order to obtain appropriate results. In
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contrast, supervised methods like modern convolutional networks require massive
amounts of manually labeled data, and are sensitive to signal/noise ratios. As an
alternative, here we propose DoGNet, a neural architecture that closes the gap between
classical computer vision blob detectors, such as Difference of Gaussians (DoG) filters,
and modern convolutional networks. This approach leverages the strengths of each
approach, including automatic tuning of detection parameters, prior knowledge of the
synaptic signal shape, and requiring only several training examples. Overall, DoGNet is
a new tool for blob detection from multiplexed fluorescence images consisting of several
up to dozens of fluorescence channels that requires minimal supervision due to its few
input parameters. It offers the ability to capture complex dependencies between
synaptic signals in distinct imaging planes, acting as a trainable frequency filter.

Introduction

Neuronal synapses are the fundamental sites of electrochemical signal transmission
within the brain that underlie learning and memory. The protein compositions within
both presynaptic and postsynaptic synaptic densities crucially determine the stability
and transmission sensitivity of individual synapses [1,2]. The analysis of synapse
protein abundances, localizations, and morphologies offers better understanding of
neuronal function, as well as ultimately psychiatric and neurological diseases [3,4].
However, the high spatial density and structural complexity of synapses both in wvitro
and in vivo requires new computational tools for the objective and efficient
identification and structural profiling of diverse populations of synapses.

Fluorescence microscopy (FM) combines molecular discrimination with
high-throughput, low-cost image acquisition of large fields of view of neuronal synapses
within intact specimens using modern confocal imaging instruments. Immunostaining
techniques [5,6] can be used to identify synapses as puncta within fluorescence
microscopy images to distinguish distinct types of synapses based on molecular
composition. However, phenotypic classification of individual synapses in FM images is
challenging because of the morphological complexities of variable structural features of
synapses, including synaptic boutons, presynaptic vesicles, and synaptic clefts, which
cannot be resolved using conventional light microscopy.

Manual synapse detection and classification quickly becomes intractable for even
moderately sized datasets, thus necessitating automated processing. In recent years,
deep convolutional neural networks (ConvNets) have become state-of-the-art tools for
image classification [7] and segmentation [8], and have been extended to electron
microscopy images of neuronal synapses [9,10]. ConvNets, however, requires thousands
of learnable parameters and therefore requires a large amount of training data to avoid
overfitting. Furthermore, even when sufficient training data is available, ConvNets may
fail to generalize to new experimental conditions that result in modified image
properties. Both of these factors complicate the use of ConvNets for synapse detection
in fluorescence microscopy images, often rendering traditional blob detection techniques
such as [11] preferable.

In this work, we introduce a new neural network architecture for synapse detection
in multiplexed immunofluorescence images. Compared with ConvNets, the new
architecture achieves a considerable reduction in the number of learnable parameters by

replacing the generic filters of ConvNets with Difference of Gaussians (DoG) filters [12].

This replacement is motivated by the fact that in FM images, typical mammalian
synapses are close in size to the diffraction limit of light. Consequently, individual
synapses are resolved as blobs due to the convolution of the microscope point spread
function with the underlying fluorescence labels, and approximately Gaussian [13,14].
DoG filters are known to be good blob detectors and have few parameters. The DoGNet
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architecture uses multiple trainable DoG filters applied to multiple input channels and,
potentially, in a hierarchical way (Deep DoGNets). The parameters of the DoG filters

inside DoGNets are trained in an end-to-end fashion together with other network layers.

We use linear weights layer to combine the response maps of different DoG filters
together into a probabilistic map.

We post-process this probability map in order to estimate the centers of synapses and
describe their properties. For each synapse, the output of our system gives the location
and the shape of the punctum for each protein marker, with desired confidence level.

We have validated the performance of this new architecture by comparing several
variations of DoGNets to popular types of ConvNet architectures including U-Nets [8]
and Fully Convolutional Networks [15] for the task of synapse detection. The
comparison is performed on four different datasets including a synthetic dataset, an
annotated real dataset from previous work [16,17], and another human annotated
dataset acquired with PRISM multiplexed imaging [6]. Apart from outperforming
ConvNet architectures, the DoGNet approach achieves accuracy comparable to
inter-human agreement on the dataset from [6]. Finally, we have shown that a DoGNet
trained on one correlated Array Tomography and Electron Microscopy dataset can be
successfully applied to an Array Tomography (AT) dataset without associated Electron
Microscopy images, which may facilitate accurate synapse detection in large datasets
where correlated EM data are not available.

Overall, the system is based on the DoGNet detector and a post-processing pipeline
that reveals synaptic structure consistent with known synaptic protein localization, and
provides a wealth of data for further downstream phenotypic analysis, thereby achieving
successful automation of synapse detection in neuronal FM images. Notably, the
DoGNet architecture is not specific to such images, and can be applied to other
microscopy modalities where objects of interest show a punctate spatial patterning, or
where, more generally, a certain image analysis task may be performed via learnable
blob detection such as single molecule segmentation in super-resolution microscopy and
single particle tracking [18], detection of clusters or endosomes in immunofluorescence
images [19], and detection of puncta in fluorescence in situ hybridization (FISH)
datasets [20,21].

Fig 1. Single layer DoGNet inference pipeline. Synaptic protein channels from
the PRISM [6] dataset are used as input images. Each channel of the input images are
convolved with a number of the Difference of Gaussian filters. This processing is
performed using the sigmoid function convolved with (or multipled by) the per-pixel
weighted sum of intermediate maps. The DoGNet is trained to predict the probability
map for each pixel as belonging to a synapse. Synapses locations and parameters of
their proteins (such as average intensities and shapes) are extracted by fitting Gaussians
to the intensities of individual proteins in the vicinities of the local maxima of the
resulting probability map. The scalebar on the large scale image equals 25 pm (5 pm in
the cropped region).

Related work. Automation of synapse detection and large-scale investigation of
neuronal organization has seen considerable progress in recent years. Most work has
been dedicated to the segmentation of electron microscopy datasets, with modern
high-throughput pipelines for automated segmentation and morphological
reconstruction of synapses [8-10,22,23]. Much of this progress may be credited to deep
convolutional networks. Segmentation accuracy of these approaches can be increased by
making “deeper” networks [24], adding dilated/“a-trous” convolution [25] or using
“hourglass” architectures [8,26] that include downscaling/upscaling parts with so-called
skip connections. ConvNets typically outperform random forest and other classical
machine learning approaches that are dependent on hand-crafted features such as those
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proposed in [27,28]. At the same time, while it is possible to reduce the number of
training examples needed by splitting the segmentation pipeline into several smaller
pipelines [10], the challenge of reducnig the number of training parameters without
sacrificing segmentation accuracy remains.

Within the context of neuronal immunofluorescence images, synapses are typically
defined by the colocalization of pre- and postsynaptic proteins within puncta that have
sizes on the order of the diffraction limit of 250 nm. One fully automated method using
priors, which quantifies synaptic elements and complete synapses based on pre- and
postsynaptic labeling plus a dendritic or cell surface marker, was previously proposed
and applied successfully [29]. Alternatively, a machine learning approach to synapse
detection was proposed in [30,31], where a support vector machine (SVM) was used to
estimate the confidence of a pixel being a synapse, depending on a small number of
neighboring pixels. Synapse positions were then computed from these confidence values
by evaluating local confidence profiles and comparing them with a minimum confidence
value. Finally, in [32], a probabilistic approach to synapse detection on AT volumes was
proposed. The principal idea of this approach was to estimate the probability of a pixel
being a punctum within each tissue slice, and then calculating the joint distribution of
presynapic and postsynapic proteins between neighbouring slices. Our work was mainly
inspired by works [32] and [11], that produced the state-of-the-art results in synapse
detection on fluorescence images.

More conventional machine vision techniques have also been applied for synapse
detection [6,11,12]. These methods aim at detecting regions that differ in brightness
compared with neighboring regions. The most common approach for this task is
convolution with a Laplacian filter [12]. The Laplacian filter can be computed as the
limiting case of the difference between two Gaussian smoothed images. Since
convolution with a Gaussian kernel is a linear operation, convolution with the difference
of two Gaussian kernels can be used instead of seeking the difference between smooth
images. The usage of Difference of Gaussians for synapse detection was proposed in [11]
with manually defined filter parameters. Here, we introduce a new DoGNet architecture
that integrates the use of simple DoG filters for blob detection with machine, deep
learning, thereby combining the strengths of the preceding published
approaches [8,11,32]. Our approach offers the ability to capture complex dependencies
between synaptic signals in distinct imaging planes, acting as a trainable frequency
filter.

Materials and methods

Our synapse puncta detection procedure consists of two steps: an application of the
pre-trained DoGNet architecture to imaging planes of the source image and a
post-processing of its output. In a nutshell, DoGNet is a standard convolutional neural
network with convolution kernels reparametrized using the Difference-of-Gaussians
(DoG) as shown in Fig 2. The DoGNet architecture applies a small number of DoG

filters to each protein channel and then combines the outputs of the filtering operations.

We train that network end-to-end using the backpropagation algorithm [33].
Accordingly, we describe the operation of our procedure by first discussing the
properties of trainable DoG filters. We then discuss single layer and deep versions of the
DoGNet architecture, and the training processes for both. Finally, we present in detail
the post-processing procedure.

Difference-of-Gaussians filters. In classical computer vision, the DoG filter is
perhaps the most popular operation for blob detection. As follows from its name, DoG
filtering corresponds to applying two Gaussian filters to the same real-valued image and
then subtracting the results. As the difference between two different low-pass filtered
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Fig 2. (a) The architecture of shallow DoGNet. The input image channels (for example
synapsin, vGlut, and PSD95) are each processed by five trainable DoG filters. The
weighted sum (with trainable weights) combines the resulting 15 DoG layer output maps
into a single map. The sigmoid function converts the latter map into a pixel probability
map. (b,c,d) The variations of the Difference of Gaussians that we use in each DoG
layer. (b) An isotropic Difference of Gaussians. (¢) An anisotropic difference of

Gaussians. Each Gaussian is described by a pair of variance values and a rotation angle.

(d) A 3D Isotropic Difference of Gaussians. Surfaces show filter values along z slices.

images, the DoG is actually a band-pass filter, which removes high frequency
components representing noise as well as some low frequency components representing
the background variation of the image. The frequency components in the preserved
band are assumed to be associated with the edges and blobs that are of interest. DoG
filters are often regarded as approximations to Laplacian-of-Gaussian filters that require
more operations to compute.

Depending on the parameterization of the underlying Gaussian filters, DoG filters
may vary in their complexity. For example, in the most common case, one considers the
difference of two isotropic Gaussian probability distribution functions as the filter kernel:

2, .2 2,2
DoG Isotropic[wy, we, 01, 02](x, y) = wy exp —% — Wg exp _Z —|—2y (1)
207 205

This version of the DoG filter depends on four parameters, namely the amplitude
coefficients w; and ws, as well as the bandwidth parameters o7 and o3. The shape of
the resulting function is depicted in Fig 2(b). The amplitudes wq and ws can be
replaced by normalizing coefficients 1/27oq and 1/2woy respectively, reducing the
number of trainable parameters to just two.

The four- and the two-parameter DoG filters described above are suitable for
detecting isotropic blobs. For anisotropic blob detection, pairs of anisotropic Gaussians
with zero means and shared orientations may be more suitable. In this case, we
parameterize an anisotropic zero-mean Gaussian as:

Gw,JI,Uy,Oé(xﬂ y) =w exp(—ax2 - 2b$y - Cy2) (2)

where for an orientation angle « € [0;7) the coefficients a, b, ¢ are defined as:

cos?a  sin?a

a=0 4 20 (3)

2 2
20% 203

sin2a  sin 2«

2 2
402 4ay

b=—

sinfa cos?a

_ 5
¢ 202 + 207 (5)
The anisotropic DoG filter is then defined as:

DoG Ansotropic[wy, W2, 01,5, 01,4, 02,5, T2y, &) (T, y) = (6)

Gw1,0’1,z,01,y7a - Gw2,0’1,w,01,y,a

We refer to the DoG filter (6) as the Anisotropic or seven-parameter DoG filter based
on the number of associated parameters. The five-parameter DoG filter can be obtained
by fixing the constants w; and ws to be normalizing, i.e. w; = 1/27,/5; ;0;,. An
example of anisotropic Difference of Gaussians is depicted in Fig 2(c). The usage of
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anisotropic difference of Gaussians allows detecting different kinds of elongated blobs
with only three additional trainable parameters per filter (compared to the two- or
four-parameter versions).

Overall, DoG filters provide a simple way to parameterize blob-detecting linear
filters using a small number of parameters. They can also be extended to
three-dimensional blob detection in a straightforward manner. Since in three dimensions
generic linear filters come with an even larger number of parameters, the use of DoG
parameterization is even better justified. Here, one natural choice would be to use
differences of Gaussian filters that are isotropic within axial slices and use a different
variance (bandwidth) along the axial dimensions:

x2 + y2 22
5,2 @) (7)

DoG 3D[wla w2,01,02,01, 2, UQ,Z] = Gwl,al,ULZ - ng,o'rz,a'g,z (8)

Guw,o0. (337 Y, z) =w eXP(_

Generally, as axial resolution in 3D fluorescence microscopy is typically lower, o, ; is
also taken to be larger than o;. The filter (8) provides a six-parameter parameterization
of a family of 3D blob detection filters (one of which is visualized in Fig 2(d)), whereas
a generic 3D filter takes O(d?) parameters, where d is the spatial window size.

“Shallow” DoGNet. The shallow (single layer) Difference of Gaussians network
(DoGNet) is a neural network built around DoG filters Fig 2(a). It takes as an input a
multiplexed fluorescence image, applies multiple DoG filters (1),(6) or (8) to each of the
input channels. Subsequently, DoGNet combines the obtained maps linearly (which in
deep learning terminology corresponds to applying 1 x 1 convolution). The latter step
obtains a single map of the same spatial resolution as the input image. Finally, a
sigmoid non-linearity is applied to convert the applied maps into probability maps. The
pipeline is shown in Fig 1.

More formally, we define a single-layer DoGNet as

V(X560 = {7,8,¢}) = S(X ® DoGp,) ® v+ (), 9)

where X denotes the input multiplexed image, ® is the 2D convolution operation, and
the vector 5 denotes the parameters of all DoG filters. Assuming that the input
contains N channels, and each channel is filtered with M DoG filters, the application of
all DoG results in M x N maps. Those maps are then combined into K maps using a
pixel-wise linear operation (which can be treated as a convolution with 1 x 1 filters).
The tensor corresponding to such linear combination and containing K x M x N values
is denoted 7.

To each of the obtained K maps, the bias value (j is added, and finally all obtained
values are passed through the element-wise sigmoid non-linearity
S(z) =1/(1 4+ exp(—=x)). Overall, 6 in (9) denotes all learnable parameters of the
DoGNet.

In the case of the single-layer DoGNet, the output has a single map (i.e. K = 1).
Except for the last sigmoid operation, the single-layer DoGNet contains only linear
operations and can be regarded as a special parameterization of the linear filtering
operator that maps the input M maps to several output maps, usually two maps.

Deep DoGNet. The deep DoGNet architecture is obtained simply by stacking
multiple DoGNet layers (9):

‘:I)()(7 9 == {91 e HT}) == \1’(\11( .o ‘I’(X7 91) ey GT,l); 9T)7 (10)

where T is the number of stacked single layers DoGNets, and 6; denotes the learnable
parameters of the ¢-th layer. The final number of maps K is once again set to one, so
that the whole network outputs a single probability map. However, the numbers of
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layers K; that are output by the intermediate DoGNet layers would typically be greater
than one. In our experiments the number of sequential layers T was set to three.

Element-wise multiplication. Inspired by an idea from [32], instead of producing
a single probability map, our network delivers two independent maps and using the
element-wise product of those maps we get the final map. We have implemented this
approach as a separate layer and that does not require any trainable parameters. In the
case of synapses, this step allows reducing the effect of displacement between pre- and
postsynaptic punctae by learning probability maps independently for pre and
postsynaptic signals. Given several probability maps (for pre- and postsynaptic
punctae) the element-wise products will act as a logical operator ? AND,” highlighting
the intersection between those maps, where the synaptic cleft is located. In our research
we use element-wise multiplication not only for DoGNets but for baselines as well, they
all benefit from this layers.

DoGNet initialization. We have found that appropriate parameter initialization
is key to obtaining reproducible results with our approach. Popular neural networks
have a redundant number of parameters and are initialized by sampling their values
from a Gaussian distribution. This initialization is not suitable for DoGNets because of
the relatively small number of parameters. Instead, we use a strategy from object
detection frameworks [34]. This approach consists of initialization with a range of
reasonable states (priors). An optimization procedure selects the best priors and tunes
their parameters. In DoGNet we use Laplacian of Gaussians with different sizes that are
sampled from a regular grid as priors. Specifically, we obtain the Gaussian variance
(sigma) by splitting the line segment [0.5, 2] into equal parts. The number of parts
depends on the number of DoGs reserved for each image plane (in our experiments that
number was set to five). We set the difference-variance in the Laplacian of Gaussians to
0.01. For example, if we set the number of DoGs for a channel to 3, the sigmas will be
0.5, 1.25, and 2, respectively.

Training DoGNets. We train the described architecture by minimizing the
softdice loss (11) proposed in [35] between the predicted probability map ¥(X;6) and a
ground truth mask Y:

2. Y, V(X50)

oY) = o+ v,

(11)

Here, sums are taken over individual pixels, and in the ground-truth map Y, all pixels
belonging to synapses are marked with ones, while the background pixels are marked
with zeros. In the experiments we found that on the imbalanced data typical for synapse
detection problems, this loss performs better than standard binary cross entropy.

In order to optimize this loss function, partial derivatives with respect to DoGNet
parameters dL/df must be obtained, which may be accomplished via
backpropagation [33]. The backpropagation process computes the partial derivatives
with respect to the filter parameters at each of the spatial positions within the spatial
support of the filter (which we limit to 15 pixels). The partial derivatives with respect
to the DoGNet parameters are then obtained by differentiating formulas (1),(6) or (8)
at each spatial location and multiplying by the respective derivatives.

The ground truth mask Y, as well as the input images X for the training process are
obtained using a combination of manual annotation and artificial augmentation. The
synapse detection in FM images is a challenging and arguably ambiguous task even for
human experts. Furthermore, even a small, 100 x 100 pixel region of an image might
contain more than 80 synapses. In practice it is impossible to annotate the borders of
each synapse accurately, therefore the experts were asked to mark the centroid of
synapses only, corresponding to the synaptic cleft, after which all pixels within a radius
of 0.8um were assigned to the corresponding synapse. We trained DoGNets for 5000
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epochs. Each epoch is a set of ten randomly cropped subsamples 64 x 64 from the
annotated training dataset. Because DoGNets have few parameters, we found that the
training processes converged rapidly typically requiring only several minutes on an
NVidia Titan-X GPU for the datasets described below. Once trained, inference can be
performed on a CPU as well as on a GPU using the implementations of Gaussian
filtering that may be optimized for a particular computing architecture. Our
implementation uses the PyTorch deep learning framework [36], which allows for concise
code and benefits from automatic differentiation routines.

Post-processing

Because both shallow and deep versions of DoGNet produce probability maps rather
than lists of synapse locations and parameters, these probability maps need to be
postprocessed in order to identify synapse locations and properties. Toward this end,
first, we reject points with low confidence by truncating the probability maps using a
threshold of 7 of 0.5. In order to extract synapse locations from the probability map
produced by the DoGNet, we need to find local maxima. In standard fashion, we
greedily pick local maxima in the probability map, traversing them in the order of
decreasing probability values while suppressing all maxima within a cut-off radius

R = 1.6pm from previously identified maxima (so called non-mazima suppression) [37].

The output of this procedure is the x and y locations of synaptic puncta.

The next step is to describe each detected punctum with a vector containing the
information about the detected synapse. To obtain a descriptor for a synapse, we select
a small window of the same radius R = 1.6um around its location, fit Gaussian
distributions to each of the input channels, and for each protein marker we store the
average intensity, the displacement of the Gaussian mean with respect to the window
center, the Gaussian orientation, and its asymmetry. Evaluating the quality of such a
descriptor is left for future work.

Results

Datasets. The proposed method and a set of baselines were evaluated on four
independent datasets for which synapses were annotated manually: [Collman15] dataset
of conjugate array tomography (cAT) images [16], [Weiler1] dataset of array
tomography (AT) images [17], [PRISM] dataset of multiplexed confocal microscopy
images [6], and a synthetic dataset that we generate here. Each published experimental
dataset was obtained using fluorescence imaging based on commercially available
antibodies, with synapsin, vGlut, and PSD-95 markers common to the datasets. At the
end of section, we additionally perform comparisons using synthetic dataset with
excitatory and inhibitory synapse sub-types.

Compared methods. In each of our trials we compared several DoGNet
configurations with several baseline methods including reduced version of the fully
convolutional network (FCN) [15], and an encoder-decoder network with skip
connections (U-net) [8]. An exhaustive comparison between different deep architectures
is a nearly impossible task, mostly because of an infinite number of possible
configurations. Nevertheless, we have done our best to tune the parameters of the
baseline methods. The best-performing variants of the baseline architectures (FCN,
Unet) were used in the experiments and are described in detail in the supplementary
material. To make our evaluation more direct, we have designed the competitive
networks to have the same receptive field (FOV) (arbitrarily chosen to 15 pixels). We
have also evaluated two manually-tuned methods, namely the probabilistic synapse
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detection method [32] and the image processing pipeline proposed in [38]. Detailed
technical background on these architectures are described in supplementary materials.

The DoGNet architecture has two major options: Shallow and Deep, with the
Shallow option corresponding to a single layer and the Deep option corresponding to
number of sequential layers. The second word in our notation Isotropic or Anisotropic
indicates the number of degrees of freedom in the DoG parameterization, e.g. “Isotropic”
denotes four-degree DoG (1). The number of DoG filters for each channel was arbitrary
set to five. We also evaluated a simple ablation denoted as Direct that takes the
Shallow Isotropic DoGNet architecture and replaces DoG-parameterized filters with
15 x 15 unconstrained filters (thus using “Direct” parameterization)(see Supplementary
Information)

Error metrics. The quality of synapse detection was estimated using the standard
metrics: precision, recall, and Fl-score, with the output of each method consisting of
the set of points denoting synapse coordinates. True positives were estimated as the
number of paired points between annotation and detection provided the distance
between them was less than half of the mean synapse radius (p = 0.6um). To avoid
multiple detections of synapses (false positives), we require that each detected point can
be matched at most once. Detections and annotations without pairs were considered to
be false positives and false negatives, respectively. The precision measure was then
computed as the ratio of true positives to all positives, and the recall measure as the
ratio of true positives to all synapses contained in the annotation. The F1-score
combines the precision and recall in one criterion by taking the double product of recall
and precision divided over their sum. For evaluation purposes, we also added the AUC
criterion corresponding to the area under the ROC curve obtained by varying the
confidence threshold 7. This criterion is stable to the threshold choice and depends on
the quality of the probability map produced by a method. For different thresholds, we
estimated the conjunctions between probability map and ground truth binary
segmentation pixel-wise.

For quantitative comparison, we have also used the absolute difference in counting
(|DiC|). This metric merely computes the difference between the number of synapses
detected using a method and the ground truth. This measure does not answer the
question of how well a synapse was localized but still gives additional insight into
quantitative results.

Since the training procedure is a probabilistic process depending on initialization
and data sampling, we estimate each value as the mean of five independent runs.

Results on PRISM dataset

To verify our method on PRISM data [6], we performed manual dense annotation of
several image regions of a dataset of FM images obtained using this technique. The
manual annotation was performed by two experts using synapsin, vGlut, Bassoon and
PSD-95 channels. Each expert annotated three regions. The total set was made of six
regions and split into training, validation (392 synaptic locations) and testing subsets
(173 synaptic locations). Each subset consisted of two regions annotated by different
experts, with test regions overlapped in order to estimate inter-expert agreement. For
synapse annotation, we developed a graphical user interface. This software allows
selecting image channels and regions. As we solve the task of semantic segmentation
during the training, we need a densely annotated image region. We mark each synapse
with a point approximately at the synaptic cleft.

Evaluation against baselines is presented in Table 1. Due to circular puncta shape
and the relatively small displacement of markers, the optimal method was Shallow
Anisotropic with only 107 trainable parameters. This configuration also performed
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Method | # params | F1 Score Precision Recall AUC [DiC|
ConvNets

Direct 3392 0.74 0.66 0.84 0.85 17.67
FCN 3002 0.75 0.73 0.77 0.84 7.44
Unet 622 0.80 0.78 0.83 0.88 10.44
DoGNets

Shallow Isotropic 62 0.78 0.72 0.87 0.91 15.22
Shallow Anisotropic 107 0.83 0.81 0.86 0.91 4.89
Deep Isotropic 140 0.81 0.81 0.82 0.89 9.78
Deep Anisotropic 230 0.80 0.81 0.80 0.83 7.89
Manually tuned methods

Nieland 2014 [38] - 0.78 0.72 0.84 0.82 1.
Simhal 2017 [32] - 0.50 0.45 0.58 0.68 21.

Table 1. Comparison of several variations of DoGNets and several baselines on PRISM
dataset.

Trial F1 Score Precision Recall
Shallow Isotropic vs Expert 1 0.83 0.83 0.84
Shallow Isotropic vs Expert 2 0.87 0.91 0.83
Shallow Isotropic vs Expert 3 0.86 0.90 0.83
Expert 1 vs Expert 2 0.82 0.86 0.78
Expert 3 vs Expert 2 0.81 0.81 0.8
Expert 3 vs Expert 1 0.77 0.79 0.8

Table 2. Agreement between DoGNet and three independent human experts on the
task of synapse detection on the PRISM dataset.

considerably better than the Direct Ablation approach, highlighting the advantage of
using DoG parameterization in place of direct parameterization of the filters.

We performed several analyses in order to evaluate agreement between three
independent human experts as well as between the experts and our method (Table 2).
Importantly, the proposed network agreed with the Experts similarly to the agreement
between the Experts themselves.

Results on Collmanl5 dataset

In this dataset, the alignment of electron microscopy (EM) and array tomography (AT)
images provides the ground truth for synapse detection using fluorescence markers.
Using high resolution EM data synaptic clefts and pre- versus post- synaptic sites can
be identified unambiguously, which was used as validation for the synapse detections
from fluorescence data (Fig 3(a)). The dataset contains 27 slices of 6310 x 4520 pixels
each, with a resolution of 2.23 x 2.23 x 70 nm, and contains annotation with pixel-level
segmentation of synaptic clefts. In order to fit our training procedure, we have used
only synaptic cleft centroid coordinates. The EM resolution is much greater, so AT data
were interpolated to be aligned with EM data. Provided we utilize solely AT data, its
original resolution of 0.1um per pixel can be recovered without losing any information.
The first five slices were used as the train dataset, whereas the remainder (slices 6-27)
served as the test dataset.

Results of our evaluation (Table 3) show that shallow DoGNets exhibit highest
performance in terms of the Fl-measure. The receptive field 15 x 15 pixels followed by
inter-channel element-wise multiplication allow capturing highly displaced markers
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Method params | F1 Score Precision Recall AUC |DiC]
ConvNets

Direct 3392 0.69 0.79 0.62 0.88 11.19
FCN 3002 0.71 0.72 0.70 0.79  4.12
Unet 622 0.73 0.73 0.73 0.91 4.26
DoGNets

Shallow Isotropic 62 0.75 0.74 0.76 0.90  4.25
Shallow Anisotropic 107 0.75 0.75 0.76 0.88 4.26
Shallow3D 61 0.68 0.62 0.77 0.65 9.13
Deep Isotropic 140 0.73 0.77 0.71 0.97 4.99
Deep Anisotropic 230 0.71 0.77 0.33 0.87 7.72
Manually tuned methods

Nieland 2014 [38] - 0.37 0.49 0.32 0.63 16.5
Simhal 2017 [32] - 0.65 0.52 0.89 0.74 -

Table 3. Comparison of several variations of DoGNets and several baselines on the
[Collman15] dataset. The ‘Shallow3D’ network uses the 3D version of DoGNet, while
other variants operate on 2D slices independently. Optimal performance was obtained
using Shallow DoGNets.

puncta combinations. Displacements in marker punctae occur because synapses are 3D
objects with random orientations. Therefore, the presynaptic and postsynaptic signals
in the image plane produce displaced peaks up to a half of a micron. The
closest-performing ConvNet architecture was U-net with 622 trainable parameters;
increasing the number of its parameters led to overfitting and therefore lower
performance on the test dataset examined here.

The AT stains include markers specific for excitatory (vGlut, PSD95) and inhibitory
(GABAergic, gephyrin) synapses. In our experiments, the use of inhibitory markers did
not improve the detection scores. Moreover, the precision of all trainable methods was
considerably lower using only inhibitory markers (synapsin, GABA, gephyrin).

Fig 3. Results of DoGNet synapse detection on distinct datasets. Yellow arrows denote
synapse orientation from presynaptic to postsynaptic sides. (a) The Collmanl5 dataset
is a mixture of EM and FM images (EM is shown in grayscale, the red, green, and blue
channels show the intensity of synapsin, vGlut, and PSD95 respectively). (b) The
PRISM dataset. False color scheme has red channel corresponding to synapsin, blue to
PSD95, and green to the cytoskeletal marker MAP2, which indicates how synapses are
distributed along microtubules. (¢) The Weiler14 dataset. The red, green, and blue
channels show the intensity of synapsin, vGlut, and PSD95, respectively.

Results on Weiler dataset

The Weiler dataset [17] consists of 12 different neural tissue samples. Each sample was
stained with a number of distinct antibodies including synapsin vGlut, and PSD-95. For
each stain, 70 aligned slices were acquired using array tomography (AT). Each slice was
a 3164 x 1971 pixel image with spatial resolution of 0.2um per-pixel. This dataset does
not have any published annotation.

We investigated the ability of DoGNets to generalize across distinct datasets by
applying networks trained on the well-annotated [Collman15] dataset, which was
annotated using serial electron microscopy data, to the previously unlabeled AT dataset
[Weiler14] [17]. Generally, the staining of [17] is similar to the Collmanl5 dataset [16].
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Method | # params | F1 Score Prec. Recall AUC |DiC|
ConvNets

Direct 3392 0.72 (0.03)+  0.79 0.66 0.88 5.33
FCN 3002 0.64 (-0.07)] 0.85 0.51 0.84 19.
Unet 622 0.79 (0.06)+ 0.85 0.74 097  4.33
DoGNets

Shallow Isotropic 62 0.85 (0.1)1 0.83 088 0.96 3.33
Shallow Anisotropic 107 0.83 (0.08)t 0.88 0.78 094  3.33
Deep Isotropic 140 0.88 (0.15)1 0.83 0.95 0.93  3.33
Deep Anisotropic 230 0.71 (0.0) 0.80 0.63 090 7.33
Manually tuned methods

Nieland 2014 [38] - 0.64 (027)1 066 062 044 2.
Simhal 2017 [32] - 0.65 (0.0) 0.81 0.55 0.55 13.

Table 4. The quantitative validation of DoGNet trained on [Collmanl5] cAT dataset
and applied to [Weilerl4] dataset. Differences with F1 scores on [Collmanl5] cAT
dataset are shown in parentheses.

Thus, we first performed a coarse alignment by resizing [Collman15] images and
applying linear transforms to the intensities of each channel so that the magnification
factors, means, and standard deviations of the intensity distributions were matched.
The architectures trained on [Collmanl5] were then evaluated on [Weiler14].

Qualitative examples of this cross-dataset transfer are shown in Figure 3. For
quantitative validation we generated manual annotations of two randomly selected
regions of the [Weiler14] dataset using the same software that we have used for [PRISM]
annotation. We observed that the levels of agreement between the results of the
DoGNet Shallow Anisotropic trained on [Collmanl15] dataset and each of the experts
were similar to the level of inter-expert agreement (in terms of the F1 score).

The results of this cross-dataset validation are shown in Table 4. Importantly, while
the performance of compared methods, did not diminish dramatically. In fact, the
DoGNets actually improved in their performance, which we attribute to the fact that in
the Weiler dataset all expert annotations were based on FM images, rendering the
analysis more straightforward in comparison with the [Collmanl15] synapses that are
visible in EM data but not in the FM data that were not included.

Synthetic dataset

In order to further evaluate our approach rigorously in a fully controlled setting, we also
applied it to a synthetic dataset. The goal of the evaluation of DoGNet using synthetic
data was to estimate the quality of synapse detection compared with baseline
procedures for distinct levels of signal-to-noise ratio; including the presence of spurious
synapses; and for different presynaptic-to-postsynaptic markers displacements on image
planes to emulate the 3D structure of synapse. Further, this systematic evaluation using
synthetic data addresses questions regarding meta-parameter choice, methodological
limitations, and the justification of neural network usage for synapse detection tasks.
Because the number of training samples was unlimited, deep networks with a large
number of parameters were unlikely to overfit the data.

Our dataset models three entities: true synapses, spurious synapses that emulates
false bindings, and random noise. We emulated true synapses and spurious synapses
using Gaussian probability density functions placed in different image planes with
additive white noise, where each image plane refers to a specific protein marker such as
synapsin, vGlut, PSD-95, vGat or gephyrin. To assess the generalized performance of
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different architectures, in our synthetic experiments we simulated both excitatory and
inhibitory synapses.

Spurious synapses are made to emulate false bindings in combination with random
noise in order to act as a distraction for the classifier to evaluate its robustness. An
actual synapse has intensity peaks at least in one presynaptic and in one postsynaptic
image plane, while spurious synapses have peaks only in presynaptic or postsynaptic
channels, but never in both. An example of a true excitatory synapse might be a signal
that has a punctum in synapsin, vGlut and PSD-95 markers separated by a distance
less than a half of a micron. An inhibitory synapse would have punctae in synapsin,
vGat and gephyrin. The displacement in markers punctae, caused by the 3D structure
of synapses, makes the process of differentiation between actual and spurious synapses
considerably more challenging, thereby rendering the simulation more realistic. The
intensity of the synaptic signal were emulated using Log-Normal distribution with zero
mean and o = 0.1.

Modeling synapses using isotropic Gaussians in our synthetic dataset enables the
initial evaluation of purely isotropic DoGNets. First the sensitivity of the approach to
signal-to-noise ratio was evaluated (Fig 4). Results indicate that small convolutional
neural networks are sensitive to initialization and may become trapped in local minima,
whereas DoGNet performance was more robust, although DoGNets initialized randomly
rather than using our initialization scheme also suffered from local minima. Importantly,
deeper architectures were capable of handling larger displacements between punctae
(Fig 5). This result is anticipated because multi-layer architectures have larger receptive
fields and capture more non-linearities, allowing the capture of more complex relations
in the data. For example, in the presence of substantial displacements, at least one
additional convolution layer followed by an element-wise multiplication was needed to
perform a logical AND operation between pre and post synaptic channels after blob
detection [32].

We also present a study of training with limited examples. We have evaluated
trainable methods (Direct, FCN, U-Net, Shallow Isotropic, Deep Isotropic) on fixed size
crop without any augmentation in search of minimal size of image region when each
method starts work suitable the signal-to-noise ration was sent to approx 4.5 and the
maximal displacement to two pixels. We present the results of this study in (Fig 6). We
show that Shallow and Deep DoGNets are able to learn a simple signal like a
multiplexed blob form only few samples.

Fig 4. Method sensitivity to signal-to-noise ratio. A comparison of
manually-tuned methods, deep architecture baselines, and DoGNets. The bar chart
shows differences in methods in area-under-curve (AUC) measure for different
signal-to-noise ratios. DoGNets are more robust to noise than manually tuned methods,
with low variation in AUC between DoGNet runs.

Fig 5. Methods sensitivity to punctae displacement. With increasing
displacement, it is more difficult to discriminate between true synapses and spurious
synapses. The quality of the segmentation map produced by DoGNets decreases more
slowly than that of other methods.

Discussion

We introduce an efficient architecture (DoGNet) for the automatic detection of neuronal
synapses in both cultured primary neurons and brain tissue slices from multiplexed
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Fig 6. Methods sensitivity to small numbers of training examples.
Comparison of different trainable architecture baselines with DoGNets for various
amount of training data. In this experiment, the training sets corresponded to patches
of different sizes, ranging from 45 x 45 pixels (with approximately 12 synapses) to

128 x 128 (with approximately 96 synapses). The maximal displacement was set to two
pixels, the signal-to-noise ratio was fixed to 3.0, and no augmentation such as random
cropping was applied. Shallow DoGNets need only few examples to reach acceptable
performance. With a sufficient number of examples the baseline architecture can
perform as well as or better than DoGNets.

fluorescence images. Under some conditions, the accuracy of DoGNet accuracy
approaches the level of agreement between human annotations. DoGNet also
outperforms ConvNets when the number of training examples is limited. Importantly,
the DoGNet approach is capable of efficiently integrating a number of different input
images from multiplexed microscopy data with a larger number of channels, which can
be prohibitively difficult for human experts to accomplish efficiently. This allows for the
detection of synapses in large datasets and facilitates downstream quantitative analysis
of synaptic features including brightness or intensity, size, and asymmetry.

The robust automated detection of synapses is important for downstream synapse
classification, particularly as multiplexed imaging modalities such as PRISM are applied
to larger-scale genetic and compound screens, which rely on phenotypic classification of
synapses to understand the molecular basis of neurological diseases. By integrating
features of synapses detected using machine learning techniques, the proposed method
can be used to classify synapses to study their identities and spatial distributions. In
conjunction with dendrite and axon tracking [39], this approach may be used to build
connectivity maps, tracing synaptic connections for each individual neuron.

DoGNet is computationally efficient during both training and inference. Training
the simplest model Simple Isotropic required only 7.37 seconds on an NVidia TitanX
GPU and 37.84 seconds on Intel i7 CPU for 2000 epochs, which is several times faster
than training U-Net and FCN ConvNets. Each epoch is an array of ten patches 64 x 64
pixels randomly cropped from the training set. The inference process for a 1000 x 1000
image requires only 0.001 second on a Titan-X GPU and only 0.1 second on Intel i7
CPU. Most of this time is consumed by post-processing, making it suitable for both
high-throughput studies and small-scale experiments without GPU acceleration. The
proposed architecture is not specific to synaptic images, and can be applied to other
cellular or tissue features where objects of interest show punctate spatial patterning,
such as single molecule annotation in super-resolution imaging and single-particle
tracking, detection of exocytic vesicles, and detection of puncta in mRNA FISH and in
situ sequencing datasets [20,21]. In cases where high precision estimates of puncta
features, such as their spatial extent and centroid positions exists, it may be beneficial
to follow DoGNet segmentation with dedicated point spread function (PSF) fitting
methods such as Maximum Likelihood Estimation or Least Squares fitting. In this case,
DoGNet could be used to improve and streamline initial segmentation tasks that
generally occur prior to more robust PSF fitting methods in analysis pipelines [40,41].

Despite the preceding strengths, the proposed method also has several limitations,
most of which are common to supervised methods. First, DoGNet is useful for synapses
because synapse sizes are on the order of the resolution of the light microscope, and
thus present as diffraction limited spots. However, this approach would be unsuitable to
more complex, larger objects such as nuclei, bacterial cells, or possibly large organelles.
In summary, DoGNets are limited to the class of 2D signals with a convex shape and
limited radius (blobs). A second limitation is the dependency on the proper parameter
initialization scheme. For DoGNets, which have fewer parameters, improper
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initialization of a single parameter, for example setting o close to zero, can cause the
entire network to diverge. In contrast, ConvNets with a larger number of parameters
can more easily recover from improper initialization. Notwithstanding, we have found
that our initialization scheme for DoGNets works reliably across multiple runs and
distinct datasets. For practical use, shallow DoGNet seems to be more reliable than
deep DoGNets. We note that shallow DoGNet can still become a part of more complex
networks.

We have also shown the ability of DoGNets to transfer across datasets by training
them on one AT dataset [Collman15] and applying them to another, distinct dataset
[Weiler14]. This type of transfer may prove useful in the detection of synapses with
high confidence by training DoGNet on either cAT data sets such as [Collman15] [16] or
highly multiplexed datasets such as [PRISM] [6], which are more difficult to acquire
experimentally but facilitate synapse annotation with higher certainty. Specifically,
electron microscopy allows for highly robust synaptic annotation through conserved
features of the synaptic cleft and the post-synaptic density, whereas multiplexed
fluorescence data allow for accurate annotation of synapses through the colocalization of
multiple synaptic markers.

Conclusion

We present DoGNet — a new architecture for blob detection. While DoGNets are
applied here to synapse detection in multiplexed fluorescence and electron microscopy
datasets, they are more broadly applicable to other blob detection tasks in biomedical
image analysis.

Due to their low number of parameters, DoGNets can be trained in a matter of
minutes, and are suitable for non-GPU architectures because the application of a
pretrained DoGNet amounts to a sequence of Gaussian filtering and elementwise
operations. In our experiments, DoGNets were able to robustly detect millions of
synapses within several minutes in a fully automated manner, with accuracy comparable
to human annotations. This computational efficiency and robustness may prove
essential for the application of multiplexed imaging to high-throughput experimentation
including genetic and drug screens of neuronal and other cellular systems.

Supporting information

S1 Text. Baseline network architectures.

S2 Fig. Results of Shallow Isotropic DoGNet on PRISM dataset. The top
image is the original one, the middle is the probability map produced by DoGNet and
on the bottom is the overlay of detected synapses on the original image. Detected
synapses are denoted with a red arrow, indicating their orientation concerning pre- and
postsynaptic sides. The ground truth synapses locations are depicted using white
crosses. Yellow bounding box highlights the densely annotated region.

S3 Fig. Results of Deep Anisotropic DoGNet on the Weiler14 dataset.

S4 Fig. Results of Deep Isotropic DoGNet on the Collmanl5 dataset.
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