A Collaborative Learning Based Approach for
Parameter Configuration of Cellular Networks

Jie Chuai*, Zhitang Chen*, Guochen Liu*, Xueying Guof, Xiaoxiao WangT, Xin Liuf,
Chongming Zhu?, and Feiyi Shen?
*Noah’s Ark Lab, Huawei Technologies, China
TDepaItment of Computer Science, University of California, Davis, CA, USA
THuawei Technologies, China
Email: *chuaijie @huawei.com, *chenzhitang2 @huawei.com, *liuguochenl @huawei.com, Tguoxueying@outlook.oom,
Txxwa@ucdavis.edu, Txinliu@ucdavis.edu, J:Zhuchongming@huawei.com, ishenfeiyi@huawei.com

Abstract—Cellular network performance depends heavily on
the configuration of its network parameters. Current practice
of parameter configuration relies largely on expert experience,
which is often suboptimal, time-consuming, and error-prone.
Therefore, it is desirable to automate this process to improve the
accuracy and efficiency via learning-based approaches. However,
such approaches need to address several challenges in real
operational networks: the lack of diverse historical data, a limited
amount of experiment budget set by network operators, and
highly complex and unknown network performance functions.
To address those challenges, we propose a collaborative learning
approach to leverage data from different cells to boost the
learning efficiency and to improve network performance. Specif-
ically, we formulate the problem as a transferable contextual
bandit problem, and prove that by transfer learning, one could
significantly reduce the regret bound. Based on the theoretical
result, we further develop a practical algorithm that decomposes
a cell’s policy into a common homogeneous policy learned using
all cells’ data and a cell-specific policy that captures each indi-
vidual cell’s heterogeneous behavior. We evaluate our proposed
algorithm via a simulator constructed using real network data
and demonstrates faster convergence compared to baselines.
More importantly, a live field test is also conducted on a real
metropolitan cellular network consisting 1700+ cells to optimize
five parameters for two weeks. Our proposed algorithm shows a
significant performance improvement of 20%.

I. INTRODUCTION

In this paper, we study the parameter optimization problem
in cellular networks. In a cellular network, a cell has hun-
dreds of parameters to configure, including parameters for
access control, handover, radio resource management, etc.,
[1]. Furthermore, the number of such parameters increases as
more advanced features are deployed in the networks. These
parameters have a large impact on network performance and
should be configured appropriately based on the time varying
environment [2]. However, this is by no means an easy task
as the best parameter setting for a specific cell depends on
many factors including user number distribution, user location
distribution, user demand pattern, channel quality, neighboring
cell configuration, etc., which could vary significantly over
time and across cells. Furthermore, the relation between the
network performance and the parameter configuration is also
highly complex and beyond the capability of analytical models
available.

In the current practice, the parameters are generally con-
figured by field engineers based on human experience. To
configure one parameter, an engineer first observes a few
dimensions of states of a cell (e.g., the user density, signal
quality), and sets an initial value of the parameter. After that,
he/she observes the performance by collecting and analyzing
the logs of the cell and decides according to his/her experience
if the parameter value should be further tuned. This traditional
approach is time-consuming and suboptimal. Firstly, human
experts can only decide the parameter value based on a few
dimensions of state information, which might not be sufficient
to fully describe the exact status of the cell. Secondly, human
experts only manage to tune a few parameters each time
(generally one or two, otherwise it would be too complicated
for human analysis). However, there are a large number of
parameters to be configured in each cell [3], [4], and thus
it is almost impossible for human experts to adjust these
parameters within a reasonable time. Furthermore, parameters
are sometimes coupled, which means they should be adjusted
jointly. Due to these difficulties, in the current cellular net-
works, cell parameters are often set to their default values,
and are not optimized at all.

A machine learning or data-driven approach is highly desir-
able for this problem to automate the parameter optimization
process and improve the network performance. To realize that,
we need to address the following challenges: firstly, quite
often we face a cold start problem, which means that there
is no diverse historical parameter data of each cell to learn the
corresponding model/policy because most cells use the default
configuration. Therefore, we have to learn the model/policy in
a trial-and-error fashion that balances the exploration and ex-
ploitation trade-off; secondly, exploring the parameter space is
deemed costly and risky from network operators’ perspective
and thus they tightly control the budget of exploration; finally,
the network performance is a highly complex function of a
cell’s state and the configured parameters, which requires a
large amount of data to learn.

To address the above challenges, we propose a collaborative
learning based approach. The key idea is to leverage the data
of different cells to boost the learning and decision-making of
each cell. More specifically, our contributions are as follows:

(1) We formulate the parameter optimization problem as a
transferable contextual multi-armed bandit problem. We prove
the transfer efficiency of the proposed approach where we
can significantly reduce the regret bound especially when the
number of cells is large, as in our system. (2) To bridge the gap
between theory and practice, we develop a practical algorithm
to decompose a cell’s model/policy for parameter optimization
into a homogeneous and a heterogeneous model/policy, where
the homogeneous model/policy is learned using all cells’
data and the heterogeneous one is learned using each cell’s
own data. Learning the common model/policy is the key
step towards transfer learning and faster policy convergence.
Compensating the common policy with the cell’s individual
policy aims to respect dissimilarities amongst different cells.
(3) We conduct a live field test in a metropolitan cellular
network with 1700+ cells and observe a significant network
performance improvement of over 20%.

The rest of this paper is organized as follows: In Sec. II,
we present a motivating example of cellular network handover
parameter optimization. In Sec. III, we discuss related work
on data-driven approaches on cellular network optimization.
We formulate the cellular network parameter optimization
problem in Sec. IV and present the transferable contextual
bandit formulation in Sec. V. In Sec. VI, we present our
collaborative learning approach. We report experiments based
on a simulator and a live test in a metropolitan cellular network
in Sec. VII and conclude in Sec. VIIIL.

II. EXAMPLE OF PARAMETER OPTIMIZATION

In this section, we use the parameter A2-threshold-RSRP
in the Long-Term Evolution (LTE) standard [5] as an example
of network parameter configuration. A2-threshold-RSRP is a
parameter used during LTE handover process. When camping
on a cell, a User Equipment (UE) keeps monitoring the signal
quality (the Reference Signal Received Power, or RSRP value)
of the serving cell. Once the RSRP value of the serving
cell is worse than the A2-threshold-RSRP, UE starts to send
measurement reports such that the serving cell can identify a
target cell and prepare for handover.

The configuration of A2-threshold-RSRP impacts the
throughput of the edge UEs (i.e., UEs at the boundaries of
the cells). If this value is too small, measurement report and
handover process cannot be triggered even when the signal
quality of serving cell becomes poor, and the edge UE suffers
from poor signal quality or even call drop. If this value is
too large, then the UE will be triggered to send measurement
reports too frequently, which occupies valuable bandwidth
resources, and decreases the UE’s data throughput. Therefore,
to optimize the throughput of edge UEs, this A2-threshold-
RSRP parameter should be carefully tuned.

Setting A2-threshold-RSRP to the best value requires taking
into consideration of many factors including the traffic load
of a cell, the number of (active) users, channel quality,
etc., and thus is not easy. Machine learning or data-driven
approach comes to the rescue and we propose our collaborative
learning based framework to tackle general tasks of parameter
optimization for cellular networks.

III. RELATED WORK

In wireless communications, data-driven based approach
is drawing increasing attentions recently [6], [7]. We note
that the network parameter optimization can be formulated
as a general reinforcement learning problem. Some recent
work thus employs reinforcement learning algorithms. For
example, in [8], authors design a Q-learning-based power
allocation mechanism in a MIMO-NOMA cellular system.
However, the extremely large state space and action set in
large scale network can lead to the prohibitive computational
complexity and convergence time for general RL algorithms.
Some literature addresses this issue by multi-agent solutions.
In [9], authors study into the traffic offloading in hyper-cellular
networks (HCN), and propose a distributed Q-learning solution
for network control. Yet, when the network scale is large, the
heuristic multi-agent solutions can still suffer from relatively
long convergence time and a lack of theoretical performance
guarantees. Some recent work addresses this by degenerating
the problem to bandit formulation [10], [11].

Multi-armed bandits (MABs) [12] is a sequential decision
problem, which is a special case of reinforcement learning,
where the reward of a decision is immediately observed. Well-
known algorithms include UCB [13] and Thompson Sampling
[14]. Further, with side information provided before decision
making, the classic MAB is generalized to contextual bandit
problems [15], [16].

In wireless networks, bandit algorithms have been applied
in several application scenarios. In downlink scheduling prob-
lems, the bandit algorithms, especially Whittle Index policy,
have been employed to deal with the curse of dimension of
Markov Decision Process [17], [18], [19]. In vehicular net-
works, bandits have been applied to design learning-based task
offloading [20], [21]. Further, emerging literature demonstrates
the potential of contextual bandit in network configuration
problems [10].

Transfer learning and multi-task learning are powerful meth-
ods that improve the learning efficiency by using the data
samples from multiple sources [22], [23]. They have been
successfully applied to many fields, such as text sentiment
classification [24] and image classification [25]. In [26], the
authors re-weight the instances in multi-source to address
both marginal and conditional distribution differences between
the source and target domains. In [27], the authors consider
transfer learning via dimensionality reduction. They learn a
low-dimensional latent feature space where the distributions
between the source domain data and the target domain data
are the same or close to each other. Similarly, [28] proposes a
feature transformation approach for domain adaptation called
Transfer Component Analysis (TCA) to discover common
latent features that have the same marginal distribution across
the source and target domains while maintaining the intrinsic
structure of the original domain data.

IV. PROBLEM FORMULATION

In this section, we present the problem formulation for the
cellular network parameter optimization task. We consider a

cellular network of NV cells. Consider a time-slotted system
over a period of 7' time slots. At time step ¢, where ¢t €
{1,2,...,T}, state information of all the cells are revealed.
The state of Cell ¢ is denoted by a vector si € S, where S
is the state space. The cell state may include the number of
users in the cell, the average channel quality indicator (CQI)
and the traffic load, etc., at time ¢. After observing the state, a
parameter value a € A is chosen as the configuration for
Cell 7 at time step t. The parameters could be related to
handover (as described in Sec. II), spectrum allocation, power
control, user scheduling, etc. Note that ai is a vector, because
we may need to optimize multiple parameters simultaneously.
The network performance of Cell i at time ¢, denoted by
yi € R, is observed after a} is configured. The performance
metric could be the cell data throughput, edge user throughput,
packet delay, etc. In this work, we assume y! depends on the
configured parameter value and the cell state, and is formulated
as yi = fi(si,al) + &, where & is a random noise with zero
mean. Note that the function f; is a cell-specific function for
each cell i. In this problem setting, the state space S, the
parameter space A and the performance target are the same
for all the cells.

In practice, the network operator controls the frequency
of parameter adjustment which may range from once every
few hours to once every few days, depending on the network
management infrastructures and policies of the operator.

The expected cumulative performance of the whole network
over the period 7' is defined as

T N
YTzE[ZZyz} 1)
t=1 i=1
The goal of network parameter optimization is to maximize
(or minimize, depending on the performance metric chosen)
the expected cumulative performance Y.

Without loss of generality, we consider a performance met-
ric that needs to be maximized (e.g., the cell data throughput).
The regret of Cell 7 at time ¢ is defined as

ri = {ma st} - filstoal).

That is, it is the gap between E[y!] and the optimal expected
performance for Cell ¢ at time t. The regret can also be defined
similarly for performance metric that needs to be minimized
(e.g., ratio of edge users). Therefore, the goal of network
parameter optimization is now transformed to minimizing the
cumulative regret over period 7, i.e.,

The problem is a contextual multi-armed bandit problem
where multiple agents (i.e., cells) make decisions concurrently.
In the next section, we will first introduce the background
on contextual bandit problem and then discuss a new setting
called transferable contextual bandit problem, followed by a
theoretical analysis on how transferring data among cells can
improve the bandit convergence performance.

V. TRANSFERABLE CONTEXTUAL BANDIT
A. Contextual Bandit

Contextual Bandit is a powerful tool to solve the optimiza-
tion of a complex system subject to a varying environmental
condition [29]. For example, which movie we should recom-
mend given a user’s gender, age, list of movies watched, etc.
Usually the contextual bandit problem can be formulated as
a sequential optimization procedure where in each step, we
receive a context s from the environment or the system and
we are required to perform an action a. Once the action is
executed, the environment feeds back a reward y, which could
be a random sample drawn from certain unknown distribution.
The loop is repeated until we reach the limit of budget
for actions. The key challenge here is to trade off between
exploration and exploitation, given that we only have a limited
budget to take actions. Exploitation is to choose the one from
all actions made so far that yields the highest reward and
exploration means getting more information of other actions
that have not been tried. Too much exploitation might lead to
sub-optima whereas too much exploration could also be risky
because we might eventually be far from the optima. There
are many works proposed to address this trade-off such as
Upper Confidence Bound (UCB) and its variants [15], [30],
Thompson Sampling [31], [32], e-greedy, etc., for the context-
free problems.

For the scenarios where the context is available, this extra
context information is possible to make faster convergence to
the optimal policy and CGP-UCB algorithm proposed in [29]
considers playing a game for a sequence of 1" steps and at each
step, the reward/payoff is formulated as y; = f(s¢,a;) + &,
where f: S x.A — R is an unknown function and &, is a ran-
dom noise with zero mean. Since f is not known, there is no
guarantee that at each step, we choose the optimal action and
thus we have the regret r = {maxarc 4 f(st,a’)} — f(s¢, ar)
and the cumulative regret Ry = Ethl r¢. The goal here is
to learn an algorithm to achieve sub-linear contextual regret,
ie, Rp/T — 0 for T — oo. A nonparametric regression
method called Gaussian Process (GP) [33] is proposed to
learn the function f. A Gaussian process fr = [f1,- -, f1]
can be regarded as a vector of random variables, each of
which is regarded as a function f(x;) for x; € X where
in the contextual bandit setting, X = S x A. This vector
is assumed to follow a multivariate Gaussian distribution
N(0,Kr) with zero mean vector 0 and a covariance matrix
K where [Kr];; = k(xi,%;) and k is a positive definite
kernel function associated with a Reproducing Kernel Hilbert
Space (RKHS) [34]. Note that usually we assume that f; is
not directly observed but its noisy version y; = f(x;¢) + & is
available. Suppose we get another x* and would like to infer
its corresponding f*. It is easy to show that the posterior
distribution of f* is also a Gaussian distribution with the
following mean and variance:

pr(x*) = kp(x*)T (Kr +02T) ' yr, 3)

03 (x") = k(x*,x*) —kp(x*)T (K7 +0°1) " kp(x), (4)

where kr(x*) = [k(x*,x1), -+, k(x*,x7)]T and o is the
standard deviation of &;.

The CGP-UCB algorithm [29] is proposed as follows to
choose an action at step ¢:

a; = arg max y—1(se, a) + B2 oe 1 (st), ®)
where f3; is an appropriate constant and p;—; and oy_p are
the posterior mean and standard deviation learned from the
samples up to step t.

It has been shown in [29] that by flexibly combining kernels
over the context and the action, CGP-UCB algorithm can be

used to address various problems and it is guaranteed that with
high probability, Ry /T — 0 if T — oo.

B. Transferable Contextual Bandit

CGP-UCB is a powerful algorithm with nice sub-linear con-
vergence. However, it solves a single agent/domain problem.
In many real cases, we are to optimize multiple complex
systems each of which has limited budget to explore different
actions, e.g., we are to optimize multiple parameters for a
cellular network and usually the operator requires convergence
within two weeks. That means even with one parameter con-
figuration per day (which is common in the current industrial
practice), we only have up to 14 rounds to explore actions
which is far from sufficient compared to the huge action space.

A simple application of CGP-UCB to each of the system or
agent is not expected to converge within the limited budget and
thus in this section, we propose a transferable and concurrent
contextual bandit algorithm that leverages all experiences
obtained in each system to speed up the convergence of each
system. Furthermore, as a theoretical contribution, we also
derive the speed up factor for the transferable CGP-UCB
algorithm.

transfer learni

Target Domain

® @@®

Source Domain

® g0

Fig. 1. Transfer Learning

As illustrated in Fig. 1, transfer learning is a powerful tool
to generalize knowledge learned from one domain (the source
domain) to another (the target domain). The advantage of
transfer learning is that it can improve the model accuracy
in the target domain, especially for those cases where in the
target domain, there is little or even no labeled data.

There are several different settings well-studied in trans-
fer learning literature, depending on whether Ps(Y|X) =
Pr(Y]X), but Ps(X) # Pr(X), or Ps(Y[X) # Pr(Y|X),
but Ps(X) = Pr(X), where S denotes the source domain
and T denotes the target domain.

In this paper, we focus on the second setting where the
tasks in the source and the target domains are different but
there exists such a transformation 7(-) that

Ps(Y|7(X)) = Pr(Y|r(X)) (6)

Once we are able to find such a transformation function 7(-),
then we can share data from the source domain to the target
domain to speed up the learning process in the target domain.

Let us get back to our bandit problem. We assume that
there exists such a transformation and is known. In the rest
of this section, x denotes the transformed feature that satisfies
Eq. 6. Suppose we concurrently optimize k£ complex systems.
Without loss of generality, let us denote the task for the
complex system ¢ as the target task 7 and all other complex
systems together as the source task S. The basic idea of the
transferable contextual bandit is to transfer the experience/data
from the source task S to the target task 7. We aim to analyze
how much speed-up we can achieve through transfer learning.

First of all, we define the following “collectively exciting”
property of samples in the RKHS which is a relaxed definition
of “exciting” in [35]. We use ¢(x) to denote the kernel map-
ping of x for some positive definite kernel function k(x, x’).

Defintion 1. We say that the dataset X = {¢(x;)}Y is
collectively exciting if + >, ¢(x;)p(x;)T is positive definite,
i.e., there exists an o such that

0<oal= Jbziqu(xi)g;(xi)T < BI < oo.

Based on this assumption, we can prove the transfer effi-
ciency as follows:

Theorem 1. Denote by Dr = {o7(x:)}N7 U {yr.i}7,
the dataset with Nt samples for a target domain and
Ds = {(bs(xj)};y:sl U {yg,j}j.v:sl the dataset with Ng sam-
ples from the source domain. Assume that {QST(XZ)}?Z and
{os(x;) j-vjl are both collectively exciting. Pick § € (0,1)
and set By = 2log(|Dr|m:d), where Zt>17rt_1 =1,m > 0.
Then, the regret v, with the model learned from Dt U Dg
for the task T at round t is bounded by 2Bt1 2UT+3}t,1(xt),
where

() < 1+ 0-—2 N+3 ()
o1+ —1(X o7 +—1\X
S7t ! = 1 + g 2NS()& + [2N’I 6 -1 th

Y

where o11s,—1 is the conditional standard deviation given
by a model learned from the source and target domain data
and o1 11 is the conditional standard deviation given by a
model learned from only the target domain data.

Sketch of Proof Suppose we use a degenerated kernel [36].
According to the Woodbury-Sherman-Morrison formula, it can
be easily shown that Eq. 4 can be reformulated as

o3(x0) = d(x)T (0728BT + 1) (xy),

where ® = [p(x;),--- ,¢(xr)]. Denote by 0%, ,(x;) the
estimation error of f(x;) with a model trained from only the

target task data up to time £ — 1 and a%— +S4-1 (x¢) the estima-
tion error with a model trained from both the target and source
tasks data. Denote Y7 := (0 2®7®% +1) and S7ys =
(072®7®T + 0 2®sPf +1). We have o7, (x) =
P(xt) 8T 0(x) and o7, 5, 1 (xi) = G(xt)T I 5(x1).
Using the assumption of Collectively Exciting, there exist
a and B such that 07281 < 0 2N7BI < oo and 0 <
0 2Nsal < 07 2%5. Consequently, we obtain

Sris=S7 4077 Z ¢s(x;)ps(x;)" = S + 0 ?Ngal
J
0*2N5a
l+o072N7p3
— (14 0‘2]\73&
1+ 0'_2]\77‘/8

Obviously, we have

T+

5= 1+ 0 2N7p -1
T+5 ~ 140 2Nsa+02Ns8" 7"

and thus

(x1) < 14+ 0-2N+83 x)
g —1(X g —1(X¢).
T+8,-1(Xt) <47 5N aN, g T

According to Theorem 1, we can see that by leveraging data
from other systems, we can reduce the regret bound at each
round by a discounting factor v < 1 which leads to faster
convergence. The speed-up is more significant if Ny < Ng
which is possible in some cases. For example, in the cellular
parameter optimization task, we can easily have thousands
of cells. Note that the speed-up is also determined by «. If
the dataset Dg lacks diversity, then « is small, resulting a
smaller speed-up. That means when we transfer the experience
from other systems, it is better to transfer data with sufficient
diversity.

Note that, this theoretical result is obtained with the assump-
tion that in the source and the target domain, the underlying
functions f to learn are identical, i.e., there exists a 7(-) such
that Eq. 6 is valid. In practice, 7(-) needs to be learned. In the
next section, we will discuss how to bridge the gap between
the theory and the practice.

VI. A COLLABORATIVE CONTEXTUAL MULTI-ARMED
BANDIT FRAMEWORK

In Sec. V, we have shown that transferring data between the
cells can speed up the convergence of individual cells. In this
section, we propose a Collaborative Contextual Multi-Armed
Bandit framework to concurrently optimize parameters of all
the cells, see Fig. 2.

More specifically, we propose a method to learn the function
fi for any Cell ¢ by utilizing available data from all the cells.
The main idea of our method is to divide the function f; into
a common function and a cell-specific function. The common
function captures the common behavior of all cells, thus can be
learned by leveraging different cells’ exploration experience;
the cell-specific function reflects the cell’s individual behavior,
and fine-tunes the common function to make the overall

Collaborative Learning Based Framework

Common Feature Extraction —* Common Model

T L

Individual Cell's
Model
i 1
Data Layer: Cellular Network Action Selection and
Status and Performance Data

Feature Selection

Coordination

‘ Cellular Network Mangement System ‘
2 |

l l

Fig. 2. A Collaborative Learning Based Framework

function f; customized for Cell 7. This function decomposition
has two merits: 1) the common function is learned using all
cells’ data and thus it can converge quickly; 2) the cell-specific
function acknowledges the differences among difference cells.
We present details of the decomposition method in the follow-

ing.
A. State Decomposition and Learning Latent State Space

First, we assume the state space S can be decomposed into
two sub-spaces S and S and S = Sx S. The cell state s; thus
can also be written as si = (8¢, 8¢), where §/ € S and & € S.

The idea of state space decomposition is related to common
feature learning in the literature of multi-task learning [37].
The sub-space S here represents the space of common features
shared by different cells, where the common feature captures
some latent structures in the cell state. The sub-space S then
can be seen as the space of features that are heterogeneous
across cells.

More specifically, in this work, we consider the case where
éi is a linear transformation of the original state, i.e., é;ﬁ =
WTst. We wish to learn a transformation W such that the
transformed states have maximum cross covariance with the
performance, i.e.,

w* = arg‘/{/naxzz lcov(WTst, y)||%, (7
it

where || - || denotes the Frobenium norm. The interpretation
of Eq. 7 is that we want to find such a common latent feature
space for all cells that maximizes the correlation between the
projected state and the target variable. Finding W* according
to Eq. 7 is essentially the same as using the Partial Least
Squares (PLS) decomposition method [38]. Therefore, we
could use the PLS method to find the transformation W.

B. Reward Decomposition

Besides the state decomposition, we further decompose the
performance/reward into two parts. We divide the function f;
into a common function h and a cell-specific function g;, i.e.,

yi = h(si,a;) + gi(si, @) + € (8)

where €! is a random noise with zero mean and $! represents
the extracted latent states. Note that in the above represen-
tation, the performance/reward contributed by the common
function depends on the configured parameter a: and the latent
state S¢; while we assume the part contributed by the cell-
specific function depends on both the common feature s and
the cell-specific feature 8!, and the configured parameter ai,
and thus is a function of the original state si and parameter
configuration a’.

C. Learning Common and Cell-specific Models

Now we illustrate how the common and cell-specific models
could be learned. We use D@ to denote the dataset of the
available data from all the cells before time ¢, i.e., Dfﬁll =
{(s§,7a§/,y§,) it eN,I<i< Nt/ < t}.

1) Learn transformation W: at time ¢, we first use dataset

D& to learn W using the PLS method.
2) Learn common function h: we then fit a regression

model A using dataset Dﬂll, i.e.,

N t—1
Wi, = argm}jnz > i — h(W s al)[13 + ACh

i=1t'=1
©)
where C', represents the complexity of model h and A\C,
is used as a regularization term to avoid over-fitting.
3) Learn cell-specific function g;: after we estimate h*,
we can obtain the regression residual of each cell for
samples collected up to time t, i.e.,

G =y — hi_ (W}, a) (10)
We use Di , to denote the set of residual
data of Cell ¢ before time ¢, i.e., D§71 =
{(si,,al,,gi) : t' € N, t' < t}.

The cell-specific function g¢; is then estimated using
dataset Dé_l, i.e.,

t—1

g1 = arg min > g —gi (sioa) 13+AC,, (1)
=1

where A\Cy, is a regularization term. That is, we find g;

by minimizing the regression error of residual of Cell .

D. Action Selection

At each round ¢, as discussed in the previous section, we
learn the two models based on the dataset D", collected from
all cells. Assume the performance is to be maximized, the
policy to take actions once we receive the state information at
time ¢ is given as follows:

i % (i i % i i
a;” = argrrﬁxhtfl(st,a)+ gi!tfl(st,a), wp. 1 —¢,

al” ~ U(JA]) wp. e
(12)

where we denote by U(|.A|) a uniform distribution over the
action domain.

More specifically, the value of e varies over time ¢: at start,
more exploration is needed and a larger value of € is used;

as time goes by, the value of € is decreased to have more
exploitation. When ¢ = 1, € is set to 1.

It should be noted that, although the proof in Sec. V uses
the Gaussian Process Regression model, this does not limit
our choice of other regression models for A and g;. In the
next section, we will show experiment results where i and g;
are learned using different regression models.

VII. EXPERIMENT RESULTS

In this section, we present the experiment results of our
framework. We first introduce the datasets we used in our
experiments. Then we discuss the regression results, where we
compare the prediction accuracy of regression models learned
by using single cell’s data, all cells’ data directly, and by using
our collaborative modeling method. After that, we present
the convergence results of the contextual multi-armed bandit
experiments. More importantly, we present results from a field
test conducted in a real cellular network.

A. Datasets

We use the following two datasets in our experiments. Both
datasets are collected from base stations of a metropolitan cel-
lular network. Each dataset contains data from a few hundreds
cells. For each cell, a data sample is collected each hour. Each
data sample contains a number of columns, including the cell
ID, sample time, configuration of different parameters, cell
state measurements and performance measurement of the cell.
Details of each dataset is provided in the following.

1) Single-Parameter Dataset: The dataset contains data
from 297 cells over 17 days. During the collection period,
the A2-threshold-RSRP parameter is adjusted for each cell
once per day, and different cells may be configured different
parameter values on the same day. Each sample contains a
number of cell state measurements at the sample time instant,
e.g., the number of total users within the cell, the number of
active users, the average channel quality indicator (CQI) of the
cell, etc. The performance metric for each cell in this dataset is
defined as the ratio of users with experienced throughput less
than SMbps (less-than-5SM-ratio), which is a measurement of
the ratio of low-throughput users (i.e., edge users). Note that
the target here is to minimize the performance metric, since
we wish to minimize the amount of low-throughput users in
the network.

2) Multiple-Parameter Dataset: In the second dataset, data
is collected from 185 cells over 14 days. During the collection
period, two parameters are adjusted simultaneously for each
cell once per day, and the configured parameter values for
different cells might be different on the same day. The two
parameters adjusted are related to uplink power control: one
is the uplink path loss compensation coefficient and the other
is the target uplink received power at the base station. Similar
to the single-parameter dataset, cell state measurements are
collected for each cell at each hour, and the performance
metric for each cell is the ratio of users with experienced
throughput less than SMbps (less-than-5M-ratio).

B. Prediction Accuracy of Regression Models

We first present the prediction accuracy of different regres-
sion models. For each dataset, data is divided into training and
test sets. Regression models are learned using the training data
and tested on the test set. The prediction accuracy is measured
by the coefficient of determination, i.e., the R? score, on
the test set. More specifically, for Cell ¢, assume the true
performance of the test samples are y; = [Yi1,¥i.2, - - - » Yinil»
and the predicted performance are §; = [§:.1,8i,2,-- - Uin,)
where n; is the number of test samples for Cell i. The R?
score for Cell ¢ is computed as

R} =1- Z(ym - ﬂi,j>2/Z<yw —)’ (13)
j

J

where 7; = % > Vi

Intuitively, Rf reflects how much variance in the test data
could be correctly predicted by the trained model. If R? = 1,
the model can predict Cell ’s real performance perfectly; if
R? = 0, it means the model is just a naive predictor which
always predicts the mean performance; if the score is negative,
the model is even worse than the naive predictor. We use the
cell average R? score as a measure of the prediction accuracy
of the regression models, i.e., R? = & 3, R? where N is the
number of cells in the dataset.
Single-Parameter Dataset Results We present results on the
single-parameter dataset in the following. The train/test data
split is conducted for each cell, and the split ratio is 1:1, which
means 50% of the data in each cell is used as the training
data, and the rest is used as test data. Cell state data are
first pre-processed. The top 25 state features that are most
related to the cell performance are selected. The 25-dim state
vectors are normalized and regarded as the cell state vector s.
Prediction scores with the 25-dim features are shown in Table
I. We present two cases: the No Shuffle and Shuffle case. For
No Shuffle, each cell’s data is sorted according to the sample
time, and data collected earlier are used to train the model to
make predictions for the future; for Shuffle, each cell’s data is
randomly shuffled and then splitted into the training and test
data.

~ TABLE I
R? SCORE FOR DIFFERENT MODELS
No Shuffle Shuffle

Model Train Test Train Test
Single Cell SVR 0.580 -0.147 0.548 0.437
Single Cell MLP-Bagging 0.174 -0.627 0.105 0.013
Common SVR 0.304 0.117 0456 0.350
Common MLP-Bagging 0.595 0.087 0.611 0.509
SVR + SVR 0.691 0.144 0.690 0.554
MLP-Bagging + SVR 0.758 0.189 0.747 0.627
SVR + MLP-Bagging 0915 0.090 0.907 0.647
MLP-Bagging + MLP-Bagging | 0923 0.069 0917 0.638

We find the Support Vector Regression (SVR) and Multi-
layer Perceptron (MLP) models perform well on the dataset.
In addition, bagging method is used to train the MLP model
to reduce the model variance.

For the rows of Table I, “Single Cell XX means models
trained with single cell’s data; “Common XX means a com-
mon model is trained for all the cells with all the training data;
for the rest rows, the model names are given as ‘“common
+ cell-specific” model, e.g., “MLP-Bagging + SVR” means
MLP-Bagging model is used to train the common model, and
SVR is used to train the cell-specific model.

For the common and cell-specific modeling results in Table
I, the transformation matrix W is set to I, i.e., the latent state
has the same number of dimensions as the original state. We
also tried different number of dimensions for the latent state.
For example, for “SVR+SVR” model, in the No Shuffle case,
the test scores are 0.144, 0.177 and 0.174 with 25, 23 and 21
latent dimensions, respectively, which shows that extracting
the commons features improves the prediction accuracy. From
the results, it is obvious that using the common and cell-
specific models together performs best among all the methods.
Results of the Shuffle case are generally better than the No
Shuffle case, since the data distributions of the cells may
change over time during the data collection period. Note that
in practice, we can only use past data to learn models and
make predictions, hence results for the No Shuffle case have
more practical implications.

C. Multi-armed Bandit Experiments On Simulator

In this part, we present the convergence results of the multi-
armed bandit experiment tested on simulator. We first describe
the simulator construction, and then present the results.

1) Simulator Construction: To verify our bandit algorithm,
we need a simulator that could return the network performance
for any queried state and parameter value. However, the cur-
rent datasets only contain the measured performance under a
limited number of cell states and parameter values. Therefore,
we need to estimate the network performance for a given state
and parameter value based on the historical data. The method
we use to do this estimation is to learn a regression model
using the datasets. More specifically, we use the “common and
cell-specific” modeling approach discussed earlier to learn the
regression models.

2) Simulation Procedures: The detailed simulation proce-
dures are illustrated in Algorithm 1.

In the simulation, we follow the real parameter adjustment
practice of network operators, where parameter values could
be changed only once each day for each cell. Therefore,
one iteration corresponds to one day. For Cell i, the real
measurements of cell states at Day ¢ in the dataset are used as
Cell 7’s states in Iteration ¢. Note that since we have one data
sample each hour, in this simulation setting, we can obtain
multiple data samples for each cell after each iteration. We
use §; to denote the average performance of Cell i in Iteration
t, and y;'° to denote the optimal average performance of Cell
7 in Iteration ¢. This optimum could be found by enumerating
all the parameter configurations in .A and choosing the one for
which simulator returns the best performance. The regret of
Cell i in Iteration ¢ is then r{ = i —¢,"° (since the performance
metric less-than-5M-ratio should be minimized). We compute
the mean regret of all the cells in each iteration.

Algorithm 1 Simulation Procedures

1: Initialize: dataset D! = {}

2: fort=1 to T do

3 if t =1 then

4 For all i, generate a random a for Cell i
5: else
6
7
8

Use dataset D to learn h and g; for all i

Observe cell states for Day ¢

Decide a! of Day t for each Cell i based on cell
states of Day ¢ and the models h and g;

9: end if

10: Get performance of all cells for Day ¢ from simulator

11: Add simulation data of Day ¢ to D!

122 t+t+1

13: end for

Cell Mean Regret Over Time Cell Mean Regret Over Time

—e— single
%~ Combine

07 ¢ —e— single
\ %~ Combine

Fig. 3. Cell Mean Regret For Single- Fig. 4. Cell Mean Regret For
Parameter Experiment Multiple-Parameter Experiment

3) Single-Parameter Experiment: The following are results
on the single-parameter dataset. The dataset has data over
17 days, so the total number of iterations 7 is set to 17.
The search range of the A2-threshold-RSRP parameter is
[-112,—-80] dBm. The results are shown in Fig. 3. The
line “Single” gives the results where each cell only uses its
own exploration data to make decisions in each iteration; the
line “Combine” represents the results where the collaborative
learning framework is used, and exploration data of all the
cells are used in each iteration to learn the common and cell-
specific models and make decisions for all cells. It could be
seen from the results that the mean regret drops much more
quickly by using the collaborative learning method.

4) Multiple-Parameter Experiment: Results for the
multiple-parameter experiment is shown in Fig. 4. The dataset
has data over 14 days, so the total number of iterations 7' is
set to 14. The first parameter is a coefficient and has range
from 3 to 7; the second one ranges from —85 dBm to —46
dBm with stepsize of 5 dBm. We also compared distributions
of the recommended parameter values with the optimum of
the simulator in the last iteration. The results are given in
Fig. 5 which shows that distributions of the recommended
parameter values by the learned models are close to the
ground truth.

D. Live Field Test Results

Next, we present the testing results of our algorithm on a
real metropolitan network. The networks contains 1755 cells

, 1 m

u I o | I LJ
(a) (b)
Fig. 5. (a) Distribution of optimal parameter values from simulator; (b)

Distribution of recommended parameter values by our method.

TABLE I
PARAMETERS OPTIMIZED IN REAL NETWORK TEST

Parameter | Meaning

A An upper bound on the uplink reception power; used for
uplink power control
Target initial downlink BLER; used for deciding down-
link modulation and coding scheme (MCS)
Controls how MCS is adjusted to utilize unoccupied
resource blocks (RBs)
Controls the initial MCS of users
Controls the MCS adjustment speed

o

mo O

in total. Five parameters related to power control and user
scheduling are adjusted simultaneously. Since these parameters
are related to proprietary products, we omit the parameter
names and only list their physical meanings in Table II. Each
parameter can take around 10 possible values.

The test lasts for 14 days, starting from April 24 to May 7,
2018. Before testing, the configurations of the cells are set
to default configurations. During testing, for each cell, the
parameter configuration is adjusted in the morning of each
day, and data of all the cells are collected at the end of the
day. The performance target to be optimized is the less-than-
S5SMbps-ratio mentioned previously.

Note that in the real testing, we have to decide the parameter
configuration for each cell at the beginning of each day before
we observe the cell states. Therefore, we use the cell states of
the previous week as an approximation to decide the parameter
configuration.

Fig. 6 shows the cell average less-than-5Mbps-ratio of the
test region over the testing period. It could be seen that the
target less-than-SMbps-ratio drops for around 20% over the
optimization period, which shows a significant performance
improvement.

VIII. CONCLUSION

In this paper, we propose a collaborative-learning-based
approach to optimize parameter configurations in cellular
networks. The proposed approach leverages the contextual
bandit algorithm and facilitates it with transfer learning to
improve the policy learning and decision making efficiency.
Experimental results based on simulations and real network
tests show that our framework is effective. Our practice also
demonstrates that machine learning or data-driven approaches
have good potential towards self-evolving wireless networks.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

Less than 5Mbps ratio
11 Start End
10 testing testing
—_~ 1
=
<9 :
(=}
g8 !
7 ' !
| 1
6 | 1
0 . O A aX Ao D O X b
PO AN S S U SNSRI
NSNS NN i
\Qa Q\"o Q\"o Q\QD Q\QD Q\% Q\% Q\% Q\"o Q\% Q\%
DA A AT AT A A AR AN A

Fig. 6. Results of Real Network Testing

REFERENCES

E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for
Mobile Broadband. Academic Press, 2013.

P. Bhat, S. Nagata, L. Campoy, I. Berberana, T. Derham, G. Liu, X. Shen,
P. Zong, and J. Yang, “LTE-Advanced: an operator perspective,” IEEE
Communications Magazine, vol. 50, no. 2, 2012.

Z. Guohua, P. Legg, and G. Hui, “A network controlled handover
mechanism and its optimization in LTE heterogeneous networks,” in
IEEE Wireless Communications and Networking Conference. 1EEE,
2013, pp. 1915-1919.

A. S. Priyadharshini and P. Bhuvaneswari, “A study on handover param-
eter optimization in LTE-A networks,” in International Conference on
Microelectronics, Computing and Communications (MicroCom). 1EEE,
2016, pp. 1-5.

3GPP TS36.331, Evolved Universal Terrestrial Radio Access (E-UTRA);
Radio Resource Control (RRC); Protocol specification, 2016.

X. Cheng, L. Fang, X. Hong, and L. Yang, “Exploiting mobile big data:
sources, features, and applications,” IEEE Network, vol. 31, no. 1, pp.
72-79, January 2017.

S. Bi, R. Zhang, Z. Ding, and S. Cui, “Big data aware wireless
communication: challenges and opportunities,” Big Data over Networks,
pp. 180-216, 2016.

L. Xiao, Y. Li, C. Dai, H. Dai, and H. V. Poor, “Reinforcement learning-
based NOMA power allocation in the presence of smart jamming,” [EEE
Transactions on Vehicular Technology, vol. 67, no. 4, pp. 3377-3389,
April 2018.

X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chen, “Energy-efficiency
oriented traffic offloading in wireless networks: a brief survey and a
learning approach for heterogeneous cellular networks,” IEEE Journal
on Selected Areas in Communications, vol. 33, no. 4, pp. 627-640, April
2015.

X. Guo, G. Trimponias, X. Wang, Z. Chen, Y. Geng, and X. Liu, “Cel-
lular network configuration via online learning and joint optimization,”
in IEEE International Conference on Big Data, December 2017, pp.
1295-1300.

——, “Learning-based joint configuration for cellular networks,” IEEE
Internet of Things Journal, 2018.

S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” Machine Learning, vol. 5,
no. 1, pp. 1-122, 2012.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235-256, 2002.

O. Chapelle and L. Li, “An empirical evaluation of Thompson Sam-
pling,” in Advances in Neural Information Processing Systems, 2011,
pp. 2249-2257.

W. Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual bandits with
linear payoff functions,” in AISTATS, 2011, pp. 208-214.

L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-
bandit approach to personalized news article recommendation,” in ACM
International Conference on World Wide Web, 2010, pp. 661-670.

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]
[34]

[35]

[36]

[37]

[38]

W. Ouyang, A. Eryilmaz, and N. B. Shroff, “Asymptotically optimal
downlink scheduling over Markovian fading channels,” in Proceedings
of IEEE INFOCOM, March 2012, pp. 1224-1232.

X. Guo, R. Singh, P. R. Kumar, and Z. Niu, “Optimal energy-efficient
regular delivery of packets in cyber-physical systems,” in IEEE ICC,
2015.

R. Singh, X. Guo, and P. R. Kumar, “Index policies for optimal mean-
variance trade-off of inter-delivery times in real-time sensor networks,”
in Proceedings of IEEE INFOCOM, 2015.

Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-based
task offloading for vehicular cloud computing systems,” in IEEE ICC,
2018.

Y. Sun, J. Song, S. Zhou, X. Guo, and Z. Niu, “Task replication for
vehicular edge computing: a combinatorial multi-armed bandit based
approach,” in IEEE GLOBECOM, 2018.

S. J. Pan, Q. Yang et al., “A survey on transfer learning,” [EEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp.
1345-1359, 2010.

K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big Data, vol. 3, no. 1, p. 9, 2016.

C. Wang and S. Mahadevan, “Heterogeneous domain adaptation using
manifold alignment,” in International Joint Conference on Artificial
Intelligence, vol. 22, no. 1, 2011, p. 1541.

L. Duan, D. Xu, and I. Tsang, “Learning with augmented features
for heterogeneous domain adaptation,” arXiv preprint arXiv:1206.4660,
2012.

R. Chattopadhyay, Q. Sun, W. Fan, 1. Davidson, S. Panchanathan,
and J. Ye, “Multisource domain adaptation and its application to early
detection of fatigue,” ACM Transactions on Knowledge Discovery from
Data, vol. 6, no. 4, p. 18, 2012.

S.J. Pan, J. T. Kwok, and Q. Yang, “Transfer learning via dimensionality
reduction,” in AAAI, vol. 8, 2008, pp. 677-682.

S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Transactions on Neural Networks,
vol. 22, no. 2, pp. 199-210, 2011.

N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: no regret and experimental design,”
arXiv preprint arXiv:0912.3995, 2009.

M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini,
“Finite-time analysis of kernelised contextual bandits,” arXiv preprint
arXiv:1309.6869, 2013.

S. Agrawal and N. Goyal, “Analysis of Thompson Sampling for the
multi-armed bandit problem,” in Conference on Learning Theory, 2012,
pp. 39-1.

H. Wu and X. Liu, “Double Thompson Sampling for dueling bandits,”
in Advances in Neural Information Processing Systems, 2016, pp. 649—
657.

C. E. Rasmussen, “Gaussian processes in machine learning,” in Ad-
vanced Lectures on Machine Learning. Springer, 2004, pp. 63-71.

B. Scholkopf, A. J. Smola et al., Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT Press, 2002.
R. M. Johnstone, C. R. Johnson, R. R. Bitmead, and B. D. Anderson,
“Exponential convergence of recursive least squares with exponential
forgetting factor,” in 21st IEEE Conference on Decision and Control.
IEEE, 1982, pp. 994-997.

L. Le Gratiet and J. Garnier, “Asymptotic analysis of the learning curve
for Gaussian process regression,” Machine Learning, vol. 98, no. 3, pp.
407-433, 2015.

A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-task feature learning,”
in Advances in Neural Information Processing Systems, 2007, pp. 41-48.
J. A. Wegelin et al., “A survey of Partial Least Squares (PLS) methods,
with emphasis on the two-block case,” 2000.

