JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Deep Learning for Encrypted Traffic Classification:
An Overview

Shahbaz Rezaei and Xin Liu

Abstract—Traffic classification has been studied for two
decades and applied to a wide range of applications from QoS
provisioning and billing in ISPs to security-related applications in
firewalls and intrusion detection systems. Port-based, data packet
inspection, and classical machine learning methods have been
used extensively in the past, but their accuracy have been declined
due to the dramatic changes in the Internet traffic, particularly
the increase in encrypted traffic. With the proliferation of
deep learning methods, researchers have recently investigated
these methods for traffic classification task and reported high
accuracy. In this article, we introduce a general framework for
deep-learning-based traffic classification. We present commonly
used deep learning methods and their application in traffic
classification tasks. Then, we discuss open problems, challenges,
and opportunities for traffic classification.

Index Terms—Traffic classification, deep learning, machine
learning.

I. INTRODUCTION

RAFFIC classification, the categorization of network

traffic into appropriate classes, is important to many
applications, such as quality of service (QoS) control, pricing,
resource usage planning, and malware/intrusion detection. Be-
cause of its importance, many different approaches have been
developed to accommodate the diverse and changing needs of
different application scenarios. In particular, new advances in
communications, including encryption and port obfuscation,
raised additional challenges to network classification.

Traffic classification techniques have evolved significantly
over time. The first and easiest approach uses port numbers.
However, its accuracy has declined because newer applications
either use well-known port numbers to disguise their traffic
or avoid using standard registered port numbers. Despite
its inaccuracy, the port number is still widely used either
alone or in tandem with other features in practice. The next
generation of traffic classifiers, relying on payload, called
data packet inspection (DPI), focuses on finding patterns or
keywords in data packets. These methods are only applicable
to unencrypted traffic and has high computational overhead. As
a result, a new generation of methods, based on flow-statistics,
emerged. These methods rely on statistical or time series
features, which enable them to handle both encrypted and
unencrypted traffic. These methods usually employ classical
machine learning (ML) algorithms, such as random forest (RF)
and k-nearest neighbor (KNN). However, their performance
heavily depends on human-engineered features, which limit
their generalizability.

Deep learning obviates the need to select features by a do-
main expert because it automatically selects features through

S. Rezaei and X. Liu are University of California, Davis, USA.

training. This characteristic makes deep learning a highly de-
sirable approach for traffic classification, especially when new
classes constantly emerge and patterns of old classes evolve.
Another important characteristic of deep learning is that it has
a considerably higher capacity of learning in comparison to
traditional ML methods, and thus can learn highly complicated
patterns. Combining these two characteristics, as an end-to-end
approach, deep learning is capable of learning the non-linear
relationship between the raw input and corresponding output
without the need to break the problem into small sub-problems
of feature selection and classification.

Recent work has demonstrated the efficacy of deep learn-
ing methods for (encrypted) traffic classification. To achieve
this goal, DL requires sufficient labeled data and adequate
computation power. In this article, we overview the general
framework for traffic classification task. We provide general
guidelines for classification tasks, including data collection and
cleaning, feature selection, and model selection. Moreover, we
discuss deep learning techniques and how they were applied
for traffic classification task. Finally, open problems and future
directions are discussed.

II. OVERVIEW OF CLASSIFICATION PROBLEMS ON
COMPUTER NETWORK

Figure 1 illustrates a general framework for traffic classifi-
cation, comprising seven steps. Most existing work adopts all
or part of the framework. We discuss the first four steps in this
section, and the last three in the next section, with a focus on
DL-based approaches.

A. Problem Definition

The first step to build a traffic classifier is to clearly define
the classification goal. Typical goals include QoS provisioning,
resource usage planning, billing system customization, and
intrusion/malware detection. To serve its goal, one can catego-
rize traffic classes based on 1) protocols (e.g. UDP or HTTP),
2) applications (e.g. Skype or WeChat), 3) traffic-types (e.g.
browsing or downloading), 4) websites, 5) user actions (e.g.
posting comments or sending voice messages), 6) operating
systems, 7) browsers, and so on. Hence, the goal is to label
each flow with corresponding traffic classes. A flow is usually
determined by a 5-tuple: source IP, destination IP, source port,
destination port and protocol.

Furthermore, traffic classification can also be categorized
into two sub-classes: online and offline. Online classification
usually refers to the cases where flows need to be classified
as fast as possible, usually within the first few packets.
For instance, for QoS provisioning and routing, classification

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[Prob]om Formulatuon] >[Data Collection]
«
A

>[Pre-processing] >[Feature Selection]
4

A

— \ 4

- S
Periodic Evaluati
> eriodic Evaluation/ | ¢ Training and Validation |« Model Selection
Update

Fig. 1. General Framework to build a network classifier.

needs to be online because the classification output is directly
used for decisions on the current flow. For other applications,
such as billing systems, classification can be offline.

While traffic classification applies to vastly different sce-
narios, most studies share two ubiquitous aspects. First, the
input data for classification is raw packet data, part of it,
or information directly derived from it. Seconds, similar ML
algorithms are used. The focus of the article is on encrypted
application/traffic-type classification. Yet, the same methodol-
ogy may be used for other classification problems with minor
modifications.

B. Data Collection

One of the most important requirements for training a deep
learning model is a large and representative dataset. Although
there are a few public datasets available for research purpose,
there is no commonly agreed-upon dataset for most traffic-
related classification problems. Possible reasons include:

o The number of possible traffic classes is enormous and
it is practically impossible for one dataset to contain all
traffic types.

o There are no commonly accepted data collection and
labeling methods.

« Different collection methods and scenarios result in dif-
ferent feature availability and distributions.

In practice, researchers often collect a dataset specific to
their classification goal. To do so, the first step is to determine
a data collection location. Data collection can happen at the
client or server side of a communication channel, at the edge
of the network, at the core of the network or any place
in between. Collection point dramatically affects available
features, reliable labeling and generalization.

1) Reliable Labeling: Correct labels are crucial to the per-
formance of traffic classification methods. However, labeling
data is not trivial. Some studies used free DPI modules, such
as nDPI and libprotoident, to label captured data. In such
cases, the accuracy of the labels, and thus any corresponding
classification algorithms, is limited by that of the DPI meth-
ods. Furthermore, such methods do not usually work for all
encrypted traffic types.

A controlled environment at the client-side of the commu-
nication would be the easiest place to label the data. This
solution is only practical when the capturing point is close
enough to the data source to make sure that there is no
other source to affect the labeling. Moreover, even in the
fully controlled environment, it is not easy to distinguish and

remove background traffic completely. It has been shown that
70 percent of the smartphones’ traffic is background traffic
and only 30 percent is directly related to user interactions [1].
Despite the limitations, capturing each class in a controlled
environment is the most commonly-adopted strategy in prac-
tice.

2) Available Features: Useful information in packets are
not always available. Packets captured at wireless links or
cellular communications are encrypted at layer 2 and conse-
quently useful upper-layer header fields are not in plain text.
Furthermore, at some capturing points, such as a router in the
center of an ISP, one may only capture one direction of a
flow due to the asymmetric nature of routing in the Internet.
Moreover, interarrival time may get distorted when traffic is
aggregated, which is more severe at the core of ISPs. This
phenomenon transforms the distribution of interarrival time
which depends on network conditions, traffic load, and time.
Packet length may also change when the traffic passes through
a tunnel or proxy. Finally, all these changes also affect the
statistical features obtained from the entire flow. Hence, a
model trained on a dataset captured at one capturing point
may not be as accurate when used at another point.

3) Representative Dataset: A representative dataset should
contain diverse and abundant samples from each class. It
has been shown that the accuracy drops by as much as 26
percent when OS/vendor is different in the training and test
set [2]. Furthermore, a model may overfit to user-specific
features rather than traffic-specific features if dataset contains
interactions of only one or few users. It is also a big limitation
on studies that captured the traffic generated by scripts [3]
which probably have more deterministic behavior. In general,
a dataset captured further away from the client-side of the
communication, for example at the core of ISPs where diverse
traffic is observable, is less exposed to this issue. The best
way to guarantee that the trained model on the dataset is
representative is to test the model on a test set that comes
from different device/user configuration than the training set.

C. Dataset Pre-processing

Data cleaning and pre-processing significantly affect the
performance of classification. In a network environment, some
relatively common events can change the packet-level feature
distribution. For instance, packet retransmissions, duplicate
acks and out of order packets may change the traffic pattern
of an application. Some studies reported improvement upon
removing such packets [4] and some reported no difference
[2]. That is because different datasets and features are used

JOURNAL OF BTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

for classification. For example, methods that use statistical
features of entire flows are probably immune to a few unrelated
packets. On the other hand, methods that use first few packets
for classification might be affected more. This pre-processing
step is often ignored due to its computational complexity.

Another pre-processing step which is crucial to the perfor-
mance of DL methods is normalization. In this step, all input
features are scaled to have a value in the range [1,+1] (or
[0,1]). This allows the gradient-based methods to converge
faster and equalizes the importance of all features when
computing the distance between data points.

D. Features

State-of-the-art traffic classification methods use one or
more categories of the features:

Time Series: Time series features include packet length,
inter-arrival time, and direction of consecutive packets. In
many studies where these features were representative, the
first few packets up to first 20 packets have been shown to
be enough for reasonable accuracy even for encrypted traffic
[12]. Times series features of a set of sampled packets have
also been recently shown to achieve good accuracy [3].

Header: This includes all useful header fields in a packet,
typically layer 3 and layer 4 information, when unencrypted.
In pre-DL era, fields including port number, protocol, and
packet length, were carefully chosen by domain experts as
representative features. In some recent DL-based approaches,
entire packets are taken as input [11].

Payload Data: Even for encrypted traffic, information
above layer 4 header exists that can be exploited for classifica-
tion. For instance, some studies have achieved high accuracy
using TLS 1.2 handshake packets that contain plain text data.

Statistical Features: There are numerous statistical features
that can be obtained from the entire flow, such as average
packet length and minimum inter-arrival time. Many papers
used these features and demonstrated high accuracy. However,
to obtain statistical features, a classifier is required to observe
the entire or large portion of a flow and thus is only suitable for
offline classification. Moreover, in some cases like application
classification, statistical features can be affected by user-
specific behaviors, OS-specific patterns, or network-specific
conditions. Hence, dataset should be collected with more care.

Although time series and statistical features might be
slightly different for unencrypted and encrypted version of the
same traffic, they are available regardless of encryption. Hence,
models trained on unencrypted traffic may also work with
encrypted traffic. On the other hand, payload data and some
header information, for instance layer 4 information of traffic
encrypted by IPsec, might not exist in plain text. However, in
these cases, there are still unencrypted fields available during
handshake that can be used for classification.

IT1. DEEP LEARNING TECHNIQUES

In this section, we briefly introduce some recent papers
for each deep learning method, the summary of which is
shown in Table I. Then, we complete our 7-step framework
by explaining the model selection and evaluation in detail.

A. Multi-Layer Perceptron

For network traffic classification, pure multi-layer percep-
tron (MLP) has been rarely used due to its complexity and low
accuracy. In [6], many deep learning methods are compared
with RF algorithm to show the performance gap. They use
three mobile datasets with different number of labels. Many
deep learning methods outperform RE. However, the exper-
iment settings are not completely fair because input features
used for RF, MLP and other DL methods are different. Hence,
the results should not be considered as a comprehensive
comparison of ML methods.

B. Convolutional Neural Networks

The simplest convolutional neural network (CNN) model
proposed in [7] basically represents each flow or session
with a 1-dimensional vector to feed the CNN model. The
proposed CNN model has 2 convolutional, 2 pooling, and
2 fully connected layers. The model normalizes the bytes in
each packet and uses only the first 784 bytes. The model is
evaluated on an encrypted application dataset of 12 classes
and show a significant improvement over C4.5 approach that
uses time series and statistical features. In [8], authors also
use CNN with two convolutional, two pooling, and three
fully connected layers. The approach uses reproducing kernel
Hilbert space (RKHS) embedding and convert time series
data into 2-dimensional images. The proposed CNN model
outperforms classical ML methods and MLP in protocol and
application classification task. A semi-supervised approach
based on a simple 1-dimensional CNN is used in [3] to classify
five Google applications. The model is trained to predict the
statistical features of the entire flow from a few sampled
packets with a large unlabeled dataset. Then, the weights
are transferred to a new model and re-trained for application
classification task with only a few labeled samples. They show
the possibility of using sampled time series features instead of
a first n packets, which is more feasible for high bandwidth
operational networks [3].

C. Recurrent Neural Networks

For network classification tasks, mixed models are reported
to outperform pure LSTM or CNN models [12]. To capture
both spatial and temporal features of a flow, both CNN and
recurrent neural network (RNN) are used in [9, 12]. Aside
from minor differences, both studies take the content of the
first six to 30 packets to a CNN model followed by a RNN or
LSTM model. Although the input features, the neural network
architectures, and datasets are different, they both report high
accuracy.

D. Auto-encoders

Auto-encoders (AE) are usually used in an unsupervised
fashion to obtain smaller representation of input data which
can be later used as a part of a classifier. For instance, in
[13], an auto-encoder is used to reconstruct the input. Then, a
softmax layer is applied to the encoded internal representation
of the auto-encoder and achieve a moderate accuracy. A private

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE I

OVERVIEW OF DL METHODS USED FOR TRAFFIC CLASSIFICATION.
Paper Category DL method Online Features Year
Wang-2018[9] Intrusion detection CNN+LSTM v Header+payload 2018
Rezaei[3] APP/OS identification CNN X Sampled time series 2018
Aceto[6] APP classification CNN/LSTM/SAE/MLP v Header+payload 2018
Vu[10] Traffic identification AC-GAN X Statistical 2017
Wang-2017[7] Traffic identification CNN v Header+payload 2017
Seq2Img|[8] APP/protocol identification RKHS+CNN v Time series 2017
Lotfollahi[11] APP/traffic identification CNN/SAE X Header+payload 2017
Lopez-Martin[12] Mixed-type classification CNN+LSTM v Header+time Series 2017
Hochst[13] Traffic identification Autoencoder X Statistical+header 2017

dataset with 7 traffic types is used. Moreover, nine statistical
features of 12 intervals and both flow directions are used
as input. In [11], authors take header and payload data to
train a l-dimensional CNN and a stacked AE model. Both
models show high accuracy, while the CNN model marginally
outperforms the stacked AE model.

E. Generative Adversarial Networks

Generative models can be used to handle dataset imbal-
ance problem in network traffic classification. The imbalance
problem refers to scenarios where the number of samples for
each class varies considerably. In such cases, ML algorithms
usually have difficulties predicting minority classes. The most
frequent and easiest approach to deal with imbalance dataset
is oversampling by duplicating samples of minor classes, or
undersampling by removing some samples from major classes.
In [10], a generative adversarial network (GAN) is used to
generate synthesized samples to handle imbalanced problem.
A public dataset with two classes, SSH and non-SSH, and
22 statistical features for the input are used. Deep models are
only used to generate synthesized data. For classification part,
classical ML algorithms, including SVM, REF, and decision tree
are trained.

FE. Model Selection

Several factors affect the choice of DL models for network
traffic classification. The most important one is input features.
Features directly affect not only the accuracy, but input struc-
ture/dimension which influences computational complexity
and number of packets for classification (memory complexity).
Next, one should choose a suitable model accordingly. Here,
we do not cover header features alone and we only cover it in
conjunction with other features because header features alone
are often not effective enough for classification.

The choice of input feature and ML method are highly
correlated. Furthermore, the size of the dataset also affects
the choice of the model. For instance, deep methods are
not suitable when the dataset is small. Assuming a large
dataset, three commonly used input features and corresponding
suitable models are described below:

Time Series+Header: Since time series features are barely
affected by encryption, they have been widely applied to
various scenarios and datasets. The first few packets, from 10
to 30 packets, are reported to be enough for classification in
many datasets [8, 12]. Sampled packets from the entire flow

are also shown to achieve promising accuracy [3]. Classical
ML algorithms and MLP models work well when the number
of packets, representing the input dimension, is small. For high
dimensional inputs, CNN and LSTM are reported to be more
accurate [12]. However, even for relatively low dimensional
inputs, CNN model is used [3, 12]. But, in general, computa-
tional complexity and training time of deep models are higher
than classical ML algorithms.

Payload+Header: In current encrypted traffics, the first
few packets that contain handshake information are typically
unencrypted and have been successfully used for classification.
Due to the high dimensionality of the input (large number of
bytes in payload), classical ML methods and MLP do not work
well. In such cases, CNN or combination of CNN and LSTM
are reported to achieve high accuracy [6, 7, 9, 11]. It is possible
to also use time series features alongside payload information
to slightly improve accuracy, but this barely changes the input
dimension or the choice of model.

Statistical Features: The number of statistical features, and
consequently the input dimension, is limited. Hence, most
papers used classical ML methods or in rare cases MLP for
statistical features. Although most studies obtained statistical
features by observing the entire flow, it has been shown that
obtaining statistical features from the first 10 to 180 packets,
depending on datasets and the choice of statistical features,
might be sufficient for classification. Even though statistical
features allow us to build a simpler classifier based on classical
ML algorithms, it may not be suitable for online and fast
classification because it needs to capture a large number of
packets to obtain dependable statistical features from a flow.

Table II summarizes features, the corresponding models,
and their properties. Note that there is no guarantee that these
approaches work for all datasets. That is the reason why one
might need to go to data collection step if data is not enough,
or to feature or model selection step if chosen features or
model are not suitable.

G. Training and Validation

Training and validation step is similar to other DL applica-
tions where a model’s hyper-parameters are tuned to obtain the
best accuracy. Typically, dataset is divided into three separate
sets: train, validation and test set. The model is trained on the
train set and the accuracy of validation set is observed to tune
model’s hyper-parameters. Finally, the unbiased accuracy is
obtained by using the test set. The detailed best practices of the

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE II
GUIDE FOR MODEL AND FEATURE SELECTION
Feature Time series+header Payload-+header Statistical
Model Classical ML/MLP/CNN/LSTM ~ CNN/CNN+LSTM Classical ML/MLP
Computational complexity Low/Medium High Low
Number of packets needed Medium Low High

last two steps are outside the scope of this article. One can read
a training and validation guideline on any other application and
apply the same best practices here.

H. Periodic Evaluation/Update

The last step, periodic evaluation/update, has not been
comprehensively studied yet. In most network-related appli-
cations, traffic characteristics of classes are always changing.
Moreover, new traffic classes, called zero-day applications, are
constantly emerging. But, only a limited number of papers
studied such challenges and they are still open problems worth
more comprehensive analysis. They are briefly discussed in
open problems and opportunities section.

IV. OPEN PROBLEMS AND OPPORTUNITIES

In traffic classification, unencrypted traffic classification has
been extensively studied and many commercial and free tools
have been developed for. Encrypted traffic classification is a
harder task due to the lack of representative features, but a few
studies have shown successful classification of TLS 1.2 and
VPN traffic in UDP mode. It is still not clear whether these
methods can handle significantly larger number of classes
common in operational networks. There are also many un-
solved problems in traffic classification that we introduce in
this section.

A. Stronger Encryption Protocols

Traffic classification for stronger encryption protocols, in
particular QUIC and TLS 1.3, has not been well investigated.
Most browsers, including Chrome and Firefox, have already
implemented TLS 1.3 draft version and, in future, most
applications and websites will adopt these stronger encryption
protocols. Previous studies on TLS 1.2 mainly used plain text
fields during the handshake. But, by the introduction of O-
RTT connectivity in TLS 1.3 and QUIC, only a few fields in
the first packet remain unencrypted which is not clear if they
suffice for classification. In [3], QUIC protocol is classified
using sampled time series features. But, the classification is
limited to five Google applications and the accuracy was high
when only training and test set is captured based on script-
generated traffic.

B. Multi-label Classification

A single flow may contain more than one class label, re-
ferred to as multiplexed stream. For instance, traffic that passes
through a tunnel may contain several applications that share
the same 5-tuple. QUIC protocol also may contain several
classes of traffic. There is no method in traffic classification
or related literature to deal with these cases. The first and
most difficult challenge is how to collect and label such traffic
appropriately.

C. Middle Flow Classification

Around 90 percent of all flows are short-lived ones. In
certain applications, such as traffic engineering, one may want
to focus on long flows. However, if the classification method
relies on the first few packets, an ISP should store the first
few packets of all flows which are huge burden. On the other
hand, if the classification method works with packets in the
middle of the flows, ISPs can wait and detect elephant flows,
and then perform classification by capturing a few packets
from the middle of the flow. This will dramatically reduce
the memory and computational overhead. A few studies have
shown that the accuracy is higher when the first few packets
are involved in classification, but no comprehensive study has
conducted to use a set of packets from an arbitrary point in the
middle of the flow. Note that some studies divide the entire
flow into several bursts and then classify each burst to detect
different user actions [5]. This means that the beginning of the
burst should also be detected and the capturing process must be
started at this specific point. Moreover, it is not clear whether
this method also works for other classification problem rather
than user actions. In [3], authors used fixed number of sampled
packet from different part of a flow for classification and
achieved a moderate accuracy. However, high accuracy from
middle of a flow is still an open problem.

D. Zero-day Applications

Zero-day applications refer to traffic classes that are new
and their samples do not exist in the training set. It has been
shown that in some cases zero-day applications can make up
to 60 percent of flows and 30 percent of bytes of network
traffic [14]. Despite the importance, it is in a nascent stage
and only a few recent studies [14] proposed solutions which
often rely on detecting unlabeled clusters and then labeling
them. In the ML community, active learning, where a model
selects which data points should be labeled, has been studied
for many years. In a recent study on classifying images of
characters [15], a combination of reinforcement learning and
LSTM is used to perform one of the two possible actions:
predicting the class or asking for a new label. There are many
useful ideas in the ML community that can be adopted to solve
the zero-day application problem.

E. Transfer Learning and Domain Adaptation

It is not always possible to collect a large enough represen-
tative dataset. It is often easier to obtain large datasets captured
for other tasks, which may help the model to extract common
features. Moreover, training a deep model usually takes from a
few hours to a few days or weeks, depending on the model size
and dataset. Since retraining a model often converges faster, it

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

is preferable to retrain a model that has already been trained
for similar task. Transfer learning and domain adaptation are
the two widely used approaches to achieve such a goal.

Transfer learning allows a model trained on a source task
to be used on a different target task. The assumption is that
the input distribution of the source and destination tasks are
similar. This process only works when the features learned by
the model are not specific to the source task. Since the model
is already trained to capture useful features, the retraining
process needs significantly less labeled data and training time.
In the case of network traffic classification, a publicly available
dataset can be used to pre-train a model which can be further
tuned for another traffic classification task with fewer labeled
samples.

A recent paper [3] uses this approach by transferring the
weights of a pre-trained CNN model to a new model that
is later trained to classify Google applications. The model is
first trained to predict statistical features of the entire flow
from sampled packets, which does not need human effort for
labeling. Then, it is transferred and re-trained with a small
labeled dataset containing only 20 labeled samples for each
class. The paper also shows that the model pre-trained on a
public unrelated dataset can still be used for transfer learning.
But, the accuracy is limited to below 85 percent.

Unlike transfer learning where source and target tasks (i.e.
their class labels) are different, domain adaptation deals with
cases where the task is the same, but the input distribution of
the source and target is different. Although it is different from
transfer learning, similar techniques have been used to solve
both problems. An example in the context of network traffic
classification would be to train a traffic classifier model with
a dataset captured at the client side of the communication
and then adopt the model to classify traffic at the core of
the network where the data distribution is different. Another
example is the case where a models is re-trained periodically
based on domain adaptation techniques to capture new patterns
for classes whose features are constantly changing, which
are common in current Internet. Despite their usefulness,
these strategies have not been extensively adopted for network
classification task yet.

F. Multi-task Learning

This approach refers to scenarios where more than one loss
function is optimized. One typical approach is to share the
hidden layers among all tasks, while each task has its own
output layer. It has been shown that it reduces the risk of
overfitting and helps the model find relevant features faster.
This works when the input data of different tasks is generated
from a similar distribution or can be generated using a set
of transformations from one another. As a result, it may be
possible to use additional datasets and define new (auxiliary)
tasks which helps train the whole model. This dramatically
augments the dataset and improves generalization.

There are potentially many ways to define auxiliary tasks
for traffic classification without the need for additional label-
ing. For instance, detecting TCP/UDP classes, predicting the
average packet length of flows, and detecting mice/elephant

flow, do not need manual human labeling. Many variations of
multi-task learning were used successfully for natural language
processing and computer vision. However, it has not been
studied for network traffic classification task.

V. ACKNOWLEDGMENT

The work was partially supported by NSF through grants
CNS-1547461, CNS-1718901, and IIS-1838207.

REFERENCES

[1] T. Stober et al., ”Who do you sync you are?: smartphone
fingerprinting via application behaviour,” Proc. sixth ACM
conf. on Security and privacy in wireless and mobile
networks, Apr. 2013, pp. 7-12.

[2] G. Aceto et al., “Traffic Classification of Mobile Apps
through Multi-classification,” Proc. IEEE GLOBECOM,
Dec. 2017, pp. 1-6.

[3] S. Rezaei, X. Liu, "How to Achieve High Classifi-
cation Accuracy with Just a Few Labels: A Semi-
supervised Approach Using Sampled Packets,” 2018,
arxiv.org/abs/1812.09761, accessed Apr. 2019.

[4] R. Dubin et al., I Know What You Saw Last MinuteEn-
crypted HTTP Adaptive Video Streaming Title Classifica-
tion,” IEEE Trans. on Information Forensics and Security,
Vol. 12, Dec. 2017, pp .3039-3049.

[5] V. E Taylor et al., "Robust smartphone app identification
via encrypted network traffic analysis,” IEEE Trans. on
Information Forensics and Security, vol. 13, no. 1, Jan.
2018, pp. 63-78.

[6] G. Aceto et al., "Mobile encrypted traffic classification
using deep learning,” Proc. Network Traffic Measurement
and Analysis Conf., Jun. 2018, pp. 1-8.

[7] W. Wang et al., "End-to-end encrypted traffic classification
with one-dimensional convolution neural networks,” Proc.
IEEE Int’l Conf. on Intelligence and Security Informatics,
Jul. 2017, pp. 43-48.

[8] Z. Chen et al., ”Seq2Img: A sequence-to-image based ap-
proach towards IP traffic classification using convolutional
neural networks,” Proc. IEEE Int’1 Conf. on Big Data, Dec.
2017, pp. 1271-1276.

[9] W. Wang, et al., "HAST-IDS: learning hierarchical spatial-
temporal features using deep neural networks to improve
intrusion detection,” IEEE Access, vol. 6, 2018, pp. 1792-
1806.

[10] L. Vu, C.T. Bui, and Q.U. Nguyen, ”A Deep Learning
Based Method for Handling Imbalanced Problem in Net-
work Traffic Classification,” Proc. Eighth Int’l Symp. on
Information and Commun. Tech., Dec. 2017, pp. 333-339.

[11] M. Lotfollahi et al., "Deep Packet: A Novel Approach
For Encrypted Traffic Classification Using Deep Learn-
ing,” 2017, arxiv.org/abs/1709.02656, accessed Apr. 2019.

[12] M. Lopez-Martin et al., ”"Network traffic classifier with
convolutional and recurrent neural networks for Internet
of Things,” IEEE Access, vol. 5, 2017, pp. 18042-18050.

[13] J. Hochst et al., "Unsupervised Traffic Flow Classifica-
tion Using a Neural Autoencoder,” Proc. IEEE 42nd Conf.
on Local Computer Networks, Oct. 2017, pp. 523-526.

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[14] J. Zhang et al., "Robust network traffic classification,”
IEEE/ACM Trans. Networking, vol. 23, no. 4, 2015, pp.
1257-1270.

[15] M. Woodward, and C. Finn. ”Active one-shot learning.”
Proc. NIPS (2016) Deep Reinforcement Learning Work-
shop, 2018.

Shahbaz Rezaei [S’17] (srezaei@udavis.edu) re-
ceived his M.S. degree in information technology
from the Sharif University of Technology, Tehran,
Iran, in 2013. His research interests include com-
puter networks, performance modeling, machine
learning and deep reinforcement learning. He is
currently a Ph.D. student at UC Davis.

Xin Liu [SM] (liu@cs.ucdavis.edu) received her
Ph.D. degree from Purdue University in 2002. She
is currently a professor in the Computer Science
Department, University of California, Davis. Her
current research focuses on data-driven approach
in networking (i.e., using and developing machine
learning and optimization techniques for network
control and management). She is an IEEE Fellow.

	Introduction
	Overview of Classification Problems on Computer Network
	Problem Definition
	Data Collection
	Reliable Labeling
	Available Features
	Representative Dataset

	Dataset Pre-processing
	Features

	Deep Learning Techniques
	Multi-Layer Perceptron
	Convolutional Neural Networks
	Recurrent Neural Networks
	Auto-encoders
	Generative Adversarial Networks
	Model Selection
	Training and Validation
	Periodic Evaluation/Update

	Open Problems and Opportunities
	Stronger Encryption Protocols
	Multi-label Classification
	Middle Flow Classification
	Zero-day Applications
	Transfer Learning and Domain Adaptation
	Multi-task Learning

	Acknowledgment
	Biographies
	Shahbaz Rezaei [S'17] (srezaei@udavis.edu)
	Xin Liu [SM] (liu@cs.ucdavis.edu)

