RobinHood: Tail Latency-Aware Caching —
Dynamically Reallocating from Cache-Rich to Cache-Poor

Daniel S. Belrger1 , Benjamin Bergl, Timothy Zhu?, Mor Harchol-Balter!, and Siddhartha Sen?

ICarnegie Mellon University — 2Penn State — *Microsoft Research

Abstract

Tail latency is of great importance in user-facing web ser-
vices. However, maintaining low tail latency is challeng-
ing, because a single request to a web application server
results in multiple queries to complex, diverse backend
services (databases, recommender systems, ad systems,
etc.). A request is not complete until all of its queries have
completed. We analyze a Microsoft production system
and find that backend query latencies vary by more than
two orders of magnitude across backends and over time,
resulting in high request tail latencies.

We propose a novel solution for maintaining low re-
quest tail latency: repurpose existing caches to mitigate
the effects of backend latency variability, rather than just
caching popular data. Our solution, RobinHood, dynam-
ically reallocates cache resources from the cache-rich
(backends which don’t affect request tail latency) to the
cache-poor (backends which affect request tail latency).
We evaluate RobinHood with production traces on a 50-
server cluster with 20 different backend systems. Sur-
prisingly, we find that RobinHood can directly address
tail latency even if working sets are much larger than the
cache size. In the presence of load spikes, RobinHood
meets a 150ms P99 goal 99.7% of the time, whereas the
next best policy meets this goal only 70% of the time.

1 Introduction

Request tail latency matters. Providers of large user-
facing web services have long faced the challenge of
achieving low request latency. Specifically, companies
are interested in maintaining low fail latency, such as the
99th percentile (P99) of request latencies [26,27, 36,44,
63,83,92]. Maintaining low tail latencies in real-world
systems is especially difficult when incoming requests
are complex, consisting of multiple queries [4, 26, 36,
90], as is common in multitier architectures. Figure 1
shows an example of a multitier architecture: each user
request is received by an application server, which then
sends queries to the necessary backends, waits until all
queries have completed, and then packages the results
for delivery back to the user. Many large web services,
such as Wikipedia [71], Amazon [27], Facebook [20],
Google [26] and Microsoft, use this design pattern.

The queries generated by a single request are indepen-
dently processed in parallel, and may be spread over many

Request

¥ 3

SO\, e

QQ' % S, 30

®

(Caching Layer | S
User |8 &
Product Catalogue Recommender Entitlements|3 >
Backend Backend Backend |V &

Figure 1: In a multitier system, users submit individual
requests, which are received by application servers. To
complete a request, an application server issues a series of
queries to various backend services. The request is only
complete when all of its queries have completed.

backend services. Since each request must wait for all
of its queries to complete, the overall request latency is
defined to be the latency of the request’s slowest query.
Even if almost all backends have low tail latencies, the
tail latency of the maximum of several queries could be
high.

For example, consider a stream of requests where each
request queries a single backend 10 times in parallel.
Each request’s latency is equal to the maximum of its
ten queries, and could therefore greatly exceed the P99
query latency of the backend. The P99 request latency
in this case actually depends on a higher percentile of
backend query latency [26]. Unfortunately, as the number
of backends in the system increases and the workload
becomes more heterogeneous, P99 request latency may
depend on different (higher or lower) percentiles of query
latency for each backend, and determining what these
important percentiles are is difficult.

To illustrate this complexity, this paper focuses
on a concrete example of a large multitier architec-
ture: the OneRF page rendering framework at Mi-
crosoft. OneRF serves a wide range of content including
news (msn.com) and online retail software stores (mi-
crosoft.com, xbox.com). It relies on more than 20 back-
end systems, such as product catalogues, recommender
systems, and user entitlement systems (Figure 1).

The source of tail latency is dynamic. It is common in
multitier architectures that the particular backend causing
high request latencies changes over time. For example,

>
o
5
-l
g 20 Backend-ID
g§ W\/\q J/MWV\-‘M —1
I 10 - 5
(<] ~
b4 § w-"'-" \’W—-__‘J \\6
(@] 0 8

06 12 18 00
Hour of the Day
Figure 2: Normalized 99-th percentile (P99) latencies
over the course of a typical day for four backends in the
OneRF production system. Each backend has the highest
tail latency among all backends at some point during the
day, indicating that latencies are not only unbalanced
between backends, but the imbalance changes over time.

Figure 2 shows the P99 query latency in four typical back-
end services from OneRF over the course of a typical
day. Each of the four backends at some point experiences
high P99 query latency, and is thus responsible for some
high-latency requests. However, this point happens at a
different time for each backend. Thus any mechanism
for identifying the backends that affect tail request la-
tency should be dynamic—accounting for the fact that the
latency profile of each backend changes over time.

Existing approaches. Some existing approaches for re-
ducing tail latency rely on load balancing between servers
and aim to equalize query tail latencies between servers.
This should reduce the maximum latency across multi-
ple queries. Unfortunately, the freedom to load balance
is heavily constrained in a multitier architecture, where
a given backend typically is unable to answer a query
originally intended for another backend system (e.g., the
user entitlements backend cannot answer product cata-
logue queries). While some limited load balancing can be
done between replicas of a single backend system, load
balancing is impossible across different backends.

Alternatively, one might consider reducing tail la-
tency by dynamically auto-scaling backend systems—
temporarily allocating additional servers to the backends
currently experiencing high latency. Given the rapid
changes in latency shown in Figure 2, it is important
to be able to scale backends quickly. Unfortunately, dy-
namic auto-scaling is difficult to do quickly in multitier
systems like OneRF because backends are stateful [30].
In fact, many of the backends at Microsoft do some form
of auto-scaling, and Figure 2 shows that the systems are
still affected by latency spikes.

The RobinHood solution. In light of these challenges,
we suggest a novel idea for minimizing request tail la-
tency that is agnostic to the design and functionality of
the backend services. We propose repurposing the exist-
ing caching layer (see Figure 1) in the multitier system to
directly address request tail latency by dynamically parti-
tioning the cache. Our solution, RobinHood, dynamically

po
450 - gg
300 g%’
150 — = it vt = 0 S
; P s ‘Vw_g_
39 I
450 - 50
300 S
SESEY TR LML e N 8o
150 S=
f— 0
w
E 0 o
5,450— g,
S 300 - 335
T 450 = == = e = = = e e m e o o - - Sz
[e2} 0 ~
» L
o —
%450— =5
T 300 S§
8 150 — = N T
g 0
(0]
T 450 o
300 - E:
—Q
150 —f= === === === = - - - =5
0 _t
450 3
300 1';;‘_:
10 F===mmmm— - === e ¥ Bﬁi
0 T T T = B
0 60 120 180
Time [min]

Figure 3: Comparison of the P99 request latency of Robin-
Hood, two production caching systems, and three state-
of-the-art research caching systems, which we emulated
in our testbed. All systems are subjected to three load
spikes, as in Figure 2. We draw a dashed line at 150ms,
which is the worst latency under RobinHood.

allocates cache space to those backends responsible for
high request tail latency (cache-poor backends), while
stealing space from backends that do not affect the re-
quest tail latency (cache-rich backends). In doing so,
RobinHood makes compromises that may seem counter-
intuitive (e.g., significantly increasing the tail latencies of
certain backends) but which ultimately improve overall
request tail latency. Since many multitier systems already
incorporate a caching layer that is capable of dynamic
partitioning, RobinHood can be deployed with very little
additional overhead or complexity.

RobinHood is not a traditional caching system. While
many multitier systems employ a caching layer, these
caches are often designed only to improve average (not
tail) latency of individual queries (not requests) [3,11,17,
25,40]. In all of the production workloads we study, an
application’s working set is larger than the available cache
space, and thus the caching layer can improve average
query latency by allowing fast accesses (cache hits) to
the most popular data. By contrast, request tail latency is

SWIa1SAS UOIONPOId

SWaSAS yoleasay

caused almost entirely by cache misses. In fact, conven-
tional wisdom says that when the application’s working
set does not fit entirely in the cache, the caching layer
does not directly address tail latency [26]. Thus, despite
various efforts to optimize the caching layer in both indus-
try and academia (see Section 7), none of these systems
are designed to reduce request tail latency.

Contributions. RobinHood is the first caching system
that minimizes the request tail latency. RobinHood is
driven by a lightweight cache controller that leverages ex-
isting caching infrastructure and is agnostic to the design
and functionality of the backend systems.

We implement! and extensively evaluate the Robin-
Hood system along with several research and production
caching systems. Our 50-server testbed includes 20 back-
end systems that are modeled after the 20 most queried
backends from Microsoft’s OneRF production system.
Figure 3 shows a preview of an experiment where we
mimic the backend latency spikes in OneRF: RobinHood
meets a 150ms P99 goal 99.7% of the time, whereas the
next best policy meets this goal only 70% of the time.

Our contributions are the following:

e Section 2. We find that there are many different types
of requests, each with their own request structure that
defines which backend systems are queried. We ana-
lyze structured requests within the OneRF production
system, and conclude that request structure must be in-
corporated by any caching system seeking to minimize
request tail latency.

e Section 3. We present RobinHood, a dynamic caching
system which aims to minimize request tail latency by
considering request structure. RobinHood identifies
which backends contribute to the tail over time, using a
novel metric called request blocking count (RBC).

e Section 4. We implement RobinHood as a scalable
distributed system. We also implement the first dis-
tributed versions of state-of-the-art research systems:
LAMA [40], Clifthanger [25], and FAIR [19, 65, 85] to
use for comparison.

e Section 5. We evaluate RobinHood and prior systems
against simultaneous latency spikes across multiple
backends, and show that RobinHood is far more robust
while imposing negligible overhead.

We discuss how to generalize RobinHood to architec-
ture beyond OneRF in Section 6, survey the related work
in Section 7, and conclude in Section 8.

2 Background and Challenges

The RobinHood caching system targets tail latency in
multitier architectures, where requests depend on queries

IRobinHood’s source code is available at https://github.
com/dasebe/robinhoodcache .

to many backends. One such system, the OneRF system,
serves several Microsoft storefront properties and relies
on a variety of backend systems. Each OneRF application
server has a local cache. Incoming requests are split into
queries which first lookup up in the cache. Cache misses
are then forwarded, in parallel, to clusters of backend
servers. Once each query has been answered, the applica-
tion server can serve the user request. Thus, each request
takes as long as its slowest query. A OneRF request can
send any number of queries (including 0) to each backend
system.

Before we describe the RobinHood algorithm in Sec-
tion 3, we discuss the goal of RobinHood in more depth,
and how prior caching systems fail to achieve this goal.

2.1 The goal of RobinHood

The key idea behind RobinHood is to identify backends
whose queries are responsible for high P99 request la-
tency, which we call “cache-poor” backends. RobinHood
then shifts cache resources from the other “cache-rich”
backends to the cache-poor backends. RobinHood is a
departure from “fair” caching approaches [65], treating
queries to cache-rich backends unfairly as they do not
affect the P99 request latency. For example, increasing
the latency of a query that occurs in parallel with an-
other, longer query, will not increase the request latency.
By sacrificing the performance of cache-rich backends,
RobinHood frees up cache space.

RobinHood allocates free cache space to cache-poor
backends (see Section 3). Additional cache space typ-
ically improves the hit ratios of these backends, as
the working sets of web workloads do not fit into
most caches [3, 20, 41, 61, 72]. As the hit ratio in-
creases, fewer queries are sent to the cache-poor backends.
Since backend query latency is highly variable in prac-
tice [4,26,29,36,45,62, 68, 83], decreasing the number
of queries to a backend will decrease the number of high-
latency queries observed. This will in turn improve the
P99 request latency.

In addition, sending fewer queries can also reduce re-
source congestion and competition in the backends, which
is often the cause of high tail latency [26,35,77]. Small
reductions in resource congestion can have an outsized
impact on backend latency [34,39] and thus significantly
improve the request P99 (as we will see in Section 5).

2.2 Challenges of caching for tail latency

We analyze OneRF traces collected over a 24 hour
period in March 2018 in a datacenter on the US east coast.
The traces contain requests, their queries, and the query
latencies for the 20 most queried backend systems, which
account for more than 99.95% of all queries.

We identify three key obstacles in using a caching sys-
tem to minimizing tail request latencies.

https://github.com/dasebe/robinhoodcache
https://github.com/dasebe/robinhoodcache

2.2.1 Time-varying latency imbalance

As shown in Figure 2, it is common for the latencies of
different backends to vary widely. Figure 5 shows that the
latency across the 20 backends varies by more than 60x.
The fundamental reason for this latency imbalance is that
several of these backend systems are complex, distributed
systems in their own right. They serve multiple customers
within the company, not just OneRF.

In addition to high latency imbalance, backend laten-

cies also change over time (see Figure 2). These changes
are frequently caused by customers other than OneRF and
thus occur independently of the request stream seen by
OneRF applications servers.
Why latency imbalance is challenging for existing sys-
tems. Most existing caching systems implicitly assume
that latency is balanced. They focus on optimizing cache-
centric metrics (e.g., hit ratio), which can be a poor repre-
sentation of overall performance if latency is imbalanced.
For example, a common approach is to partition the cache
in order to provide fairness guarantees about the hit ra-
tios of queries to different backends [19, 65, 85]. This
approach is represented by the FAIR policy in Figure 3,
which dynamically partitions the cache to equalize back-
end cache hit ratios. If latencies are imbalances between
the backends, two cache misses to different backends
should not be treated equally. FAIR fails to explicitly ac-
count for the latency of cache misses and thus may result
in high request latency.

Some production systems do use latency-aware static
cache allocations, e.g., the “arenas” in Facebook’s
TAO [20]. However, manually deriving the optimal static
allocation is an open problem [20], and even an “optimal”
static allocation will become stale as backend latencies
vary over time (see Section 5).

2.2.2 Latency is not correlated with specific queries
nor with query rate

We find that high latency is not correlated with spe-
cific queries as assumed by cost-aware replacement poli-
cies [21,52]. Query latency is also not correlated with a
query’s popularity (the rate at which the query occurs),
but rather reflects a more holistic state of the backend
system at some point in time. This is shown in Figure 4
with a scatterplot of a query’s popularity and its latency
for the four OneRF backends shown in Figure 2 (other
backends look similar).

We also find that query latency is typically not cor-
related with a backend’s query rate. For example, the
seventh most queried backend receives only about 0.06 x
as many queries as the most backend, but has 3 x the query
latency (Figure 5). This is due to the fact that backend
systems are used by customers other than OneRF. Even
if OneRF’s query rate to a backend is low, another ser-
vice’s query stream may be causing high backend latency.
Additionally, queries to some backends take inherently

o

S

} dl-pusxoeg
>

9 Al-pudxoeg

o

G al-puaoeg
Query Latency [Normalized to P50]

Query Latency [Normalized to P50]

S
8 dl—pudxoeg

i
0 max

Query Popularity

Query Popularity

Figure 4: Scatterplots of query popularity and query la-
tency for each backend from Figure 2. We find that query
latency is neither correlated with query rate nor with par-
ticular queries.

longer than others, e.g., generating a personalized prod-
uct recommendation takes 4 x longer than looking up a
catalogue entry.

Why uncorrelated latency is challenging for existing
systems. Many caching schemes (including OneRF)
share cache space among the backends and use a com-
mon eviction policy (such as LRU). Shared caching sys-
tems [17,52] inherently favor backends with higher query
rates [9]. Intuitively, this occurs because backends with
higher query rates have more opportunities for their ob-
jects to be admitted into the cache. Cost-aware replace-
ment policies also suffer from this problem, and are gen-
erally ineffective in multitier architectures such OneRF as
their assumptions (high latency is correlated with specific
queries) are not met.

Another common approach is to partition cache space
to maximize overall cache hit ratios as in Cliffhanger [25].
All these approaches allocate cache space in proportion
to query rate, which leads to suboptimal cache space
allocations when latency is uncorrelated with query rate.
As shown in Figure 3, both OneRF and Cliffthanger lead
to high P99 request latency. In order to minimize request
tail latency, a successful caching policy must directly
incorporate backend latency, not just backend query rates.
2.2.3 Latency depends on request structure, which

varies greatly

The manner in which an incoming request is split into
parallel backend queries by the application server varies
between requests. We call the mapping of a request to its
component backend queries the request structure.

To characterize the request structure, we define the
number of parallel queries to a single backend as the
backend’s batch size. We define the number of distinct
backends queried by a request as its fanout. For a given
backend, we measure the average batch size and fanout
of requests which reference this backend.

Table 1 summarizes how the query traffic of different

Normalized P99 Latency
n » (2]
o o o

o

5 10 15 20
Backend-ID

Figure 5: Normalized P99 latencies for the 20 most
queried backends in the OneRF system during a typi-
cal 10 minute period. The backends are ordered by their
query rates during this period. We see that query rate is
not correlated with backend tail latency.

backends is affected by the request structure. We list
the percentage of the overall number of queries that go
to each backend, and the percentage of requests which
reference each backend. We also list the average batch
size and fanout by backend. We can see that all of these
metrics vary across the different backends and are not
strongly correlated with each other.

Why request structure poses a challenge for existing
systems. There are few caching systems that incorporate
latency into their decisions, and they consider the average
query latency as opposed to the tail request latency [18,
40]. We find that even after changing these latency aware
systems to measure the P99 query latency, they remain
ineffective (see LAMA++ in Figure 3).

These systems fail because a backend with high query
latency does not always cause high request latency. A
simple example would be high query latency in backend
14. As backend 14 occurs in less than 0.2% of all requests,
its impact on the P99 request latency is limited—even if
backend 14 was arbitrarily slow, it could not be responsi-
ble for all of the requests above the P99 request latency. A
scheme that incorporates query rate and latency might de-
cide to allocate most of the cache space towards backend
14, which would not improve the P99 request latency.

While the specific case of backend 14 might be simple
to detect, differences in batch sizes and fanout give rise
to complicated scenarios. For example, Figure 5 shows
that backend 3’s query latency is higher than backend
4’s query latency. Table 1 shows that, while backend 3
has a large batch size, backend 4 occurs in 4.5 more
requests, which makes backend 4 more likely to affect
the P99 request latency. In addition, backend 4 occurs
in requests with a 55% smaller fanout, which makes it
more likely to be the slowest backend, whereas backend
3’s query latency is frequently hidden by slow queries to
other backends.

As a consequence, minimizing request tail latency is
difficult unless request structure is explicitly considered.

Backend-ID Query % Request % Mean Batch Size Mean Fanout

1 37.7% 14.7% 15.4 5.6
2 16.0% 4.5% 323 7.4
3 15.3% 4.5% 25.7 7.4
4 14.0% 20.0% 1.6 4.8
5 7.7% 19.0% 1.9 49
6 4.2% 4.7% 14.5 73
7 2.4% 10.8% 2.0 53
8 1.6% 15.5% 1.0 53
9 0.7% 3.4% 2.0 7.5
10 0.2% 0.7% 2.5 9.1

Table 1: Four key metrics describing the 10 most queried
OneRF backends. Backend-IDs are ordered by query rate
starting with the most queried backend, backend 1. Query
% describes the percentage of the total number of queries
directed to a given backend. Request % denotes the per-
centage of requests with at least one query to the given
backend. Batch size describes the average number of par-
allel queries made to the given backend across requests
with at least one query to that backend. Fanout describes
the average number of backends queried across requests
with at least one query to the given backend.

3 The RobinHood Caching System

In this section, we describe the basic RobinHood algo-
rithm (Section 3.1), how we accommodate real-world
constraints (Section 3.2), and the high-level architecture
of RobinHood (Section 3.3). Implementation details are
discussed in Section 4.

3.1 The basic RobinHood algorithm

To reallocate cache space, RobinHood repeatedly taxes
every backend by reclaiming 1% of its cache space, iden-
tifies which backends are cache-poor, and redistributes
wealth to these cache-poor backends.

RobinHood operates over time windows of A seconds,
where A = 5 seconds in our implementation.> Within
a time window, RobinHood tracks the latency of each
request. Since the goal is to minimize the P99 request
latency, RobinHood focuses on the set of requests, S,
whose request latency is between the P98.5 and P99.5 (we
explain this choice of range below). For each request in .S,
RobinHood tracks the ID of the backend corresponding
to the slowest query in the request. RobinHood then
counts the number of times each backend produced the
slowest query in a request. We call each backend’s total
count its request blocking count (RBC). Backends with a
high RBC are frequently the bottleneck in slow requests.
RobinHood thus considers a backend’s RBC as a measure
of how cache-poor it is, and distributes the pooled tax to
each backend in proportion to its RBC.

Choosing the RBC metric. The RBC metric captures
key aspects of request structure. Recall that, when min-
imizing request tail latency, it is not sufficient to know

2This parameter choice is determined by the time it takes to reallocate
1% of the cache space in off-the-shelf caching systems; see Section 4.

only that a backend produces high query latencies. This
backend must also be queried in such a way that it is
frequently the slowest backend queried by the slowest
requests in the system. Metrics such as batch size and
fanout width will determine whether or not a particular
backend’s latencies are hidden or amplified by the request
structure. For example, if a slow backend is queried in
parallel with many queries to other backends (high fanout
width), the probability of the slow backend producing the
slowest query may be relatively small. We would expect
this to result in a lower RBC for the slow backend than its
query latency might suggest. A backend with a high RBC
indicates not only that the backend produced high-latency
queries, but that reducing the latency of queries to this
backend would have actually reduced the latency of the
requests affecting the P99 request latency.

Choosing the set S. The set S is chosen to contain re-
quests whose latency is close to the P99 latency, specif-
ically between the P98.5 and P99.5 latencies. Alterna-
tively, one might consider choosing S to be the set requests
with latencies greater than or equal to the P99. However,
this set is known to include extreme outliers [27] whose la-
tency, even if reduced significantly, would still be greater
than the P99 latency. Improving the latency of such out-
liers would thus be unlikely to change the P99 request
latency. Our experiments indicate that choosing a small
interval around the P99 filters out most of these outliers
and produces more robust results.

3.2 Refining the RobinHood algorithm

The basic RobinHood algorithm, described above, is
designed to directly address the key challenges outlined
in Section 2. However, real systems introduce additional
complexity that must be addressed. We now describe
two additional issues that must be considered to make the
RobinHood algorithm effective in practice.

Backends appreciate the loot differently. The basic
RobinHood algorithm assumes that redistributed cache
space is filled immediately by each backend’s queries.
In reality, some backends are slow to make use of the
additional cache space because their hit ratios are already
high. RobinHood detects this phenomenon by monitoring
the gap between the allocated and the used cache capacity
for each backend. If this gap is more than 30% of the used
cache space, RobinHood temporarily ignores the RBC of
this backend to avoid wasting cache space. Note that such
a backend may continue to affect the request tail latency.
RobinHood instead chooses to focus on backends which
can make use of additional cache space.

Local decision making and distributed controllers.
The basic RobinHood algorithm assumes an abstraction
of a single cache with one partition per backend. In real-
ity (e.g., at OneRF), incoming requests are load balanced
across a cluster of application servers, each of which has

Client Request
—P|

Applicati Controller J4
pplication
Servers /\ v SRBC I_H
7\ Cache N erver |I|:|
C3
eIl Gl \\25
I bl EE

Figure 6: RobinHood adds a distributed controller to each
application server and a latency statistics (RBC) server.

its own local cache (see Section 2). Due to random load
balancing, two otherwise identical partitions on differ-
ent application servers may result in different hit ratios>.
Therefore, additional cache space will be consumed at dif-
ferent rates not only per backend, but also per application
server. To account for this, RobinHood’s allocation deci-
sions (such as imposing the 30% limit described above)
are made locally on each application server. This leads to
a distributed controller design, described in Section 3.3.

One might worry that the choice of distributed con-
trollers could lead to diverging allocations and cache
space fragmentation across application servers over time.
However, as long as two controllers exchange RBC data
(see Section 3.3), their cache allocations will quickly
converge to the same allocation regardless of initial differ-
ences between their allocations. Specifically, given A =5
seconds, any RobinHood cache (e.g., a newly started one)
will converge to the average allocation within 30 minutes
assuming all servers see sufficient traffic to fill the caches.
In other words, the RobinHood cache allocations are not
in danger of “falling off a cliff”’ due to diverging alloca-
tions — RobinHood’s distributed controllers will always
push the caches back to the intended allocation within a
short time span.

3.3 RobinHood architecture

Figure 6 shows the RobinHood architecture. It consists
of application servers and their caches, backend services,
and an RBC server.

RobinHood requires a caching system that can be dy-
namically resized. We use off-the-shelf memcached in-
stances to form the caching layer on each application
server in our testbed (see Section 4). Implementing Robin-
Hood requires two additional components not currently
used by production systems such as OneRF. First, we
add a lightweight cache controller to each application
server. The controller implements the RobinHood algo-
rithm (Sections 3.1 and 3.2) and issues resize commands
to the local cache’s partitions. The input for each con-
troller is the RBC, described in Section 3.1. To prevent

3While most caches will contain roughly the same data, it is likely
that at least one cache will look notably different from the others.

an all-to-all communication pattern between controllers,
we add a centralized RBC server. The RBC server aggre-
gates request latencies from all application servers and
computes the RBC for each backend. In our implementa-
tion, we modify the application server caching library to
send (in batches, every second) each request’s latency and
the backend ID from the request’s longest query. In the
OneRF production system, the real-time logging frame-
work already includes all the metrics required to calculate
the RBC, so RobinHood does not need to change appli-
cation libraries. This information already exists in other
production systems as well, such as at Facebook [77]. The
controllers poll the RBC server for the most recent RBCs
each time they run the RobinHood algorithm.

Fault tolerance and scalability. The RobinHood sys-
tem is robust, lightweight, and scalable. RobinHood con-
trollers are distributed and do not share any state, and
RBC servers store only soft state (aggregated RBC from
the last one million requests, in a ring buffer). Both com-
ponents can thus quickly recover after a restart or crash.
Just as RobinHood can recover from divergence between
cache instances due to randomness (see Section 3.2),
RobinHood will recover from any measurement errors
that might result in bad reallocation messages being sent
to the controllers. The additional components required to
run RobinHood (controller and statistics server) are not
on the critical path of requests and queries, and thus do
not impose any latency overhead. RobinHood imposes
negligible overhead and can thus scale to several hundred
application servers (Section 5.6).

4 System Implementation and Challenges

To demonstrate the effectiveness and deployability of
RobinHood, we implement the RobinHood architecture
using an off-the-shelf caching system. In addition, we
implement five state-of-the-art caching systems (further
described in Section 5.1) on top of this architecture.

4.1 Implementation and testbed

The RobinHood controller is a lightweight Python pro-
cess that receives RBC information from the global RBC
server, computes the desired cache partition sizes, and
then issues resize commands to the caching layer. The
RBC server and application servers are highly concurrent
and implemented in Go. The caching layer is composed of
off-the-shelf memcached instances, capable of dynamic
resizing via the memcached API. Each application server
has a local cache with 32 GB cache capacity.

To test these components, we further implement dif-
ferent types of backend systems and a concurrent traffic
generator that sends requests to the application servers.
On average, a request to the application server spawns
50 queries. A query is first looked up in the local mem-
cached instance; cache misses are then forwarded to the

corresponding backend system. During our experiments
the average query rate of the system is 200,000 queries
per second (over 500,000 peak). To accommodate this
load we had to build highly scalable backend systems.
Specifically, we use three different types of backends. A
distributed key-value store that performs simple lookup
queries (similar to OneRF’s product rating and query ser-
vice). A fast MySQL cluster performs an indexed-join and
retrieves data from several columns (similar to OneRF’s
product catalogue systems). And, a custom-made matrix-
multiplier system that imitates a recommendation predic-
tion (similar to various OneRF recommender backends).

Our experimental testbed consists of 16 application
servers and 34 backend servers divided among 20 back-
end services. These components are deployed across 50
Microsoft Azure D16 v3 VMs®.

4.2 Implementation challenges

The central challenge in implementing our testbed was
scaling our system to handle 200,000-500,000 queries per
second across 20 different backend systems.

For example, our initial system configuration used a
sharded distributed caching layer. We moved away from
this design because the large batch size within some re-
quests (up to 300 queries) meant that every cache had
to be accessed [20,77]. Our current testbed matches the
design used in the OneRF production system in that each
application server only queries its local cache.

Another challenge we compensate for is the delay of
reallocating cache space in off-the-shelf memcached in-
stances. Memcached’s reallocation API works at the gran-
ularity of 1MB pages. To reallocate 1% of the cache space
(Section 3), up to 327 memcached pages need to be real-
located. To reallocate a page, memcached must acquire
several locks, in order to safely evict page contents. High
load in our experiments leads to memcached-internal lock
contention, which delays reallocation steps. Typically
(95% of the time), reallocations take no longer than 5 sec-
onds, which is why A = 5 seconds (in Section 3). To toler-
ate atypical reallocations that take longer than 5 seconds,
the RobinHood controller can defer cache allocations to
future iterations of the RobinHood algorithm.

Finally, we carefully designed our testbed for repro-
ducible performance results. For example, to deal with
complex state throughout the deployment (e.g., in various
backends), we wipe all state between repeated experi-
ments, at the cost of a longer warmup period.

4.3 Generating experimental data

Microsoft shared with us detailed statistics of produc-
tion traffic in the OneRF system for several days in 2017
and 2018 (see Section 2). We base our evaluation on the

4The servers are provisioned with 2.4 GHz Intel E5-2673v3 with
eight cores, 64GB memory, 400GB SSDs with up to 24000 IOPS, and
8Gbit/s network bandwidth.

Load spike at Backend 5

—300

[7)

é Load spike at

3 Backend 6 Load spikes at

g 200 Backends 1 and 8

®

—

§ 100 A BackendID
1

> \A//

% 8

E . r___’—-ﬁ\,_—— 5
6

0 50 100 150

Time [minutes]
Figure 7: P99 latency of backend queries in our experi-
ment. The four latency spikes emulate the latency spikes
in the OneRF production systems (see Figure 2).

2018 dataset. The dataset describes queries to more than
40 distinct backend systems.

In our testbed, we replicate the 20 most queried back-
end systems, which make up more than 99.95% of all
queries. Our backends contain objects sampled from the
OneRF object size distribution. Across all backends, ob-
ject sizes range between a few bytes to a few hundred KB,
with a mean of 23 KB. In addition, our backends approx-
imately match the design of the corresponding OneRF
backend.

Our request traffic replicates key features of produc-
tion traffic, such as an abundance of several hundreds of
different request types, each with their own request struc-
tures (e.g., batch size, fanout, etc). We sample from the
production request type distribution and create four-hour-
long traces with over 50 million requests and 2.5 billion
queries. We verified that our traces preserve statistical
correlations and locality characteristics from the produc-
tion request stream. We also verified that we accurately
reproduce the highly varying cacheability of different
backend types. For example, the hit ratios of the four
backends with latency spikes (Figure 2) range between
81-92% (backend 1), 51-63% (backend 5), 37-44% (back-
end 6), and 96-98% (backend 8) in our experiments. The
lowest hit ratio across all backends is 10% and the highest
is 98%, which means that the P99 tail latency is always
composed of cache misses (this matches our observations
from the production system). None of the working sets
fit into the application server’s cache, preventing trivial
scenarios as mentioned in the literature [26].

5 Evaluation

Our empirical evaluation of RobinHood focuses on five
key questions. Throughout this section, our goal is to meet
a P99 request latency Service Level Objective (SLO) of
150ms, which is a typical goal for user-facing web ap-
plications [26, 27, 34,50, 56, 59,90,91]. Every Ss, we
measure the P99 over the previous 60s. We define the
SLO violation percentage to be the fraction of observa-
tions where the P99 does not meet the SLO. We compare

Name Optimization goal Dy- Latency- Request
namic aware structure
RobinHood Minimize request P99 yes yes yes
OneRFpolicy Minimize miss ratio no no no
TAO, ;. [20] Minimize request P99 no no no
Cliffhgr, ;. [25] Minimize miss ratio yes no no

FAIR, . [19,65] Equalize miss ratios yes no no
LAMA [18,40] Equalize query P99 yes yes no

Table 2: The six caching systems evaluated in our experi-
ments. RobinHood is the only dynamic caching system
that seeks to minimize the tail request latency and the first
caching system that utilizes request structure rather than
just queries.

RobinHood to five state-of-the-art caching systems, de-
fined in Section 5.1, and answer the following questions:

Section 5.2: How much does RobinHood improve SLO
violations for OneRF’s workload? Quick answer: Robin-
Hood brings SLO violations down to 0.3%, compared to
30% SLO violations under the next best policy.

Section 5.3: How much variability can RobinHood
handle? Quick answer: for quickly increasing backend
load imbalances, RobinHood maintains SLO violations
below 1.5%, compared to 38% SLO violations under the
next best policy.

Section 5.4: How robust is RobinHood to simultaneous
latency spikes? Quick answer: RobinHood maintains
less than 5% SLO violations, while other policies do
significantly worse.

Section 5.5: How much space does RobinHood save?
Quick answer: The best clairvoyant static allocation re-
quires 73% more cache space in order to provide each
backend with its maximum allocation under RobinHood.

Section 5.6: What is the overhead of running Robin-
Hood? Quick answer: RobinHood introduces negligible
overhead on network, CPU, and memory usage.

5.1 Competing caching systems

We compare RobinHood to two production systems
and three research caching systems listed in Table 2.

The two production systems do not currently dynam-
ically adjust the caches. OneRFpolicy uses a single
shared cache, which matches the configuration used in
the OneRF production system. TAO,; uses static allo-
cations. As manually deriving the optimal allocation is
an open problem [20], we actually use RobinHood to
find a good allocation for the first 20% of the experiment
in Section 5.2. TAO, 4 then keeps this allocation fixed
throughout the experiment. This is an optimistic version
of TAO (thus the name TAO,) as finding its allocation
would have been infeasible without RobinHood.>.

We evaluate three research systems, Clifthanger [25],
FAIR [19,65,85], and LAMA [40] (which is conceptually

5For example , we have also experimented with brute-force searches,
but the combinatorial search space for 20 partitions is too large. We did
not find a better allocation over the course of 48 hours.

— Clifthgr++ — 3004
2 900 | FAIR o+ g
5 we | g
--- ++
— =¥ OneRFpolic —1 2004
o 600 A — RobinH%od 2
D o
» »
o o
g 300 g
2 190 pe==me==ooco o 2
& 04 ; ; ; g 04 .
0 10 20 30 0 10

SLO violations [%)]
(a) P99 SLOs

SLO violations [%)]
(b) P90 SLOs

Cliffhgr++ Ty Clifthgr++
FAIR++ I FAIR++
LAMA++ — 301 LAMA++
- TAO++ O -~ TAO++
= OneREpolicy —I =¥ OneRFpolicy
— RobinHood @D 50 — RobinHood
B
o
@ 104, |
3 =
[
T T 9} O = T T T
o
20 30 0 10 20 30
SLO violations [%)]
(c) P50 SLOs

Figure 8: Request SLO as a function of SLO violations for (a) P99 SLOs, (b) P90 SLOs, (c) P50 SLOs. For a given
violation percentage the plot shows what SLO would have been violated with that frequency. A lower value indicates a
system is able to meet lower latency SLOs with fewer SLO violations. RobinHood is the only system that is robust
against latency spikes on backends and violates a 150ms P99 SLO only 0.3% of the time (dashed horizontal line in (a)).
FAIR, ; and Cliffhgr, ; are not shown as their SLO violations are too high to be visible.

similar to [18]). All three systems dynamically adjust
the cache, but required major revisions before we could
compare against them. All three research systems are only
designed to work on a single cache. Two of the systems,
Cliffhanger and FAIR, are not aware of multiple backends,
which is typical for application-layer caching systems.
They do not incorporate request latency or even query
latency, as their goal is to maximize the overall cache hit
ratio and the fairness between users, respectively. We
adapt Cliffhanger and FAIR to work across distributed
application servers by building a centralized statistics
server that aggregates and distributes their measurements.
We call their improved versions Clifthgr, ; and FAIR ;.
LAMA’s goal is to minimize mean query latency, not tail
query latency (and it does not consider request latency).
To make LAMA competitive, we change the algorithm to
use P99 query latency and a centralized statistics server.
We call this improved version LAMA ;.

Our evaluation does not include cost-aware replace-
ment policies for shared caches, such as Greedy-Dual [21]
or GD-Wheel [52]. Due to their high complexity, it is
challenging to implement them in concurrent caching sys-
tems [11]; we are not aware of any production system
that implements these policies. Moreover, the OneRF
workload does not meet the basic premise of cost-aware
caching (Section 2.2.2).

5.2 How much does RobinHood improve SLO viola-
tions for OneRF’s workload?

To compare RobinHood to the five caching systems
above, we examine a scenario that replicates the magni-
tude and rate with which query latency varies over time
in the OneRF production system, as shown in Figure 2.
In production systems, this variability is often caused by
temporary spikes in the traffic streams of other services
which share these backends (Section 2).

Experimental setup. To make experiments reproducible,
we emulate latency imbalances by imposing a variable

Cliff-
hgr++

Robin OneRF-
Hood policy

Pt
|

TAO++ LAMA++ FAIR++

all.

e
o o

o o o
1

Request-Blocking Count [%]
o 3
? E I ?

ulwQog
awn 1y

= £
=
— =

100 N
gk
%07 W H 5%
0 e Nmm E
LI TTTT
1568 1568 1568 1568 1568 1568
Backend-ID

Figure 9: Comparison of how well different caching sys-
tems balance the RBC at three times in the experiment
from Figure 7. RobinHood is the only system whose
RBCs do not significantly exceed 50%.

resource limit on several backends in our testbed. De-
pending on the backend type (see Section 4), a backend
is either I0-bound or CPU-bound. We use Linux control
groups to limit the available number of IOPS or the CPU
quota on the respective backends. For example, to emu-
late the latency spike on Backend 6 at 4AM (Figure 2), we
limit the number of IOPS that this backend is allowed to
perform, which mimics the effect of other traffic streams
consuming these IOPS.

We emulate latency variability across the same four
backends as shown in Figure 2: backends 1, 5, 6, and 8.
Our experiments span four hours each, and we use the first
25% of the experiment time to warm the backends and
caches. Figure 7 shows the P99 latency of queries in our
experiments under the OneRFpolicy (ignoring an initial
warmup period). We verified that the latency spikes are
similar in magnitude to those we observe in the OneRF
production system (Figure 2).

Experimental results. We compare RobinHood to the

(a) P99 as Load Increases Slowly on Backend 7

(b) P99 as Load Increases Quickly on Backend 7

—600 h
_@ 8
C|>.) 5300 i g — RobinHood
D > = | = OneRFpolicy
T2 0 il el S [~ TAO++
0 o B > LAMA++
© 5 600 DB |oFaR+
8; 300 % § Cliffhgr++
[alte) Nt ___ R O A L ALA_ L. .33

o 0 A On =

0 10 20 30 40 50 0 10 20 30 40 50
Time [min]

Figure 10: Results from sensitivity experiments where latency is uncorrelated with query rate. The load on Backend 7
increases either slowly (left column) or quickly (right column). Even when load increases quickly, RobinHood violates
a 150ms P99 SLO less than 1.5% of the time. In contrast, the second best system (LAMA_ ;) has 38% SLO violations.

competing systems along several dimensions: the P99
request latency, the rate of SLO violations, and how well
they balance the RBC between backends.

Figure 3 shows the P99 request latency for each system
over the course of the experiment. Throughout the experi-
ment, RobinHood maintains a P99 below our SLO target
of 150ms. Both the production and research systems ex-
perience high P99 latencies during various latency spikes,
and Clifthgr, ; and FAIR, ; even experience prolonged
periods of instability. RobinHood improves the P99 over
every competitor by at least 3x during some latency spike.

Figure 8 summarizes the frequency of SLO violations
under different SLOs for each caching system in terms
of the P99, P90 and P50 request latency. If the goal is
to satisfy the P99 SLO 90% of the time, then the graph
indicates the strictest latency SLO supported by each
system (imagine a vertical line at 10% SLO violations).
If the goal is to meet a particular P99 SLO such as 150ms,
then the graph indicates the fraction of SLO violations
(imagine a horizontal line at 150ms). The figure does not
show FAIR, ; and Clifthgr, ; as the percentage of SLO
violations is too high to be seen. We find that RobinHood
can meet much lower latency SLOs than competitors
with almost no SLO violations. For example, RobinHood
violates a P99 SLO of 150ms (Figure 8a) less than 0.3% of
the time. By contrast, the next best policy, OneRFpolicy,
violates this same SLO 30% of the time.

Throughout these experiments, RobinHood targets the
P99 request latency (Section 3). We discuss in Section 6
how to generalize RobinHood’s optimization goal. How-
ever, even though RobinHood focuses on the P99, it still
performs well on the P90 and P50. For example, for a
P90 SLO of 50ms (Figure 8b), RobinHood leads to less
than 1% SLO violations, whereas OneRFpolicy leads to
about 20% SLO violations.

Figure 9 shows the RBC (defined in Section 3) for
the four backends affected by latency spikes under each
caching system at 50 min, 100 min, and 150 min into the
experiment, respectively. This figure allows us to quantify
how well each system uses the cache to balance RBCs

10

across backend systems. We refer to the dominant back-
end as the backend which accounts for the highest per-
centage of RBCs. RobinHood achieves the goal of main-
taining a fairly even RBC balance between backends—in
the worst case, RobinHood allows the dominant backend
to account for 54% of the RBC. No other competitor is
able to keep the dominating backend below 85% in all
cases and even the average RBC of the dominant backend
exceeds 70%.

5.3 How much variability can RobinHood handle?

To understand the sensitivity of each caching policy to
changes in backend load, we perform a more controlled
sensitivity analysis.

Experimental setup. To emulate the scenario that some
background work is utilizing the resources of a backend,
we limit the resources available to a backend system. In
these experiments, we continuously decrease the resource
limit on a single backend over a duration of 50 minutes.
We separately examine two backends (backend 1 and
backend 7) and test two different rates for the resource
decrease—the “quick” decrease matches the speed of the
fastest latency spikes in the OneRF production system,
and the “slow” decrease is about one third of that speed.

Experimental results. Figure 10 shows the P99 request
latency under increasing load on backend 7. This experi-
ment benchmarks the typical case where high latency is
uncorrelated with query rate (Section 2). Figure 10(a)
shows that, when load increases slowly, RobinHood never
violates a 150ms SLO. In contrast, OneRFpolicy and
TAO. ; are consistently above 150ms after 40min, when
the latency imbalance becomes more severe than in Sec-
tion 5.2. Of the research systems, FAIR ; and Cliffhgr,
are above 150ms after 10min. LAMA , the only system
that is latency aware, violates the SLO 3.3% of the time.

Figure 10(b) shows that, when load increases quickly,
RobinHood maintains less than 1.5% SLO violations. All
other systems become much worse, e.g., OneRFpolicy
and TAO, ; are above 150ms already after 20min. The
second best system, LAMA |, violates the SLO more

(a) P99 as Load Increases Slowly on Backend 1

(b) P99 as Load Increases Quickly on Backend 1

— 600 - LY
_'2 g8
o E & S | — RobinHood
D > 3 | OneRFpoiicy
dl, 8 ® 3 TAO++
e > LAMA++
ST D B S FaR
o @ & | Cliffhgr++
[ONe)) [)
[ialte)) N 33

[a 0- o » =

0 10 20 30 40 50 0 10 20 30 40 50
Time [min]

Figure 11: Results from sensitivity experiments where latency is correlated with query rate. The load on Backend 1
increases either slowly (left column) or quickly (right column). Even when load increases quickly, RobinHood never
violates a 150ms P99 SLO. In contrast, the second best system (OneRFpolicy) has 33% SLO violations.

than 38% of the time, which is 25x more frequent than
RobinHood.

Figure 11 shows the P99 request latency under increas-
ing load on backend 1, where high latency is correlated
with query rate, which is not typical in production sys-
tems. Figure 11(a) shows that, when load increases slowly,
RobinHood never violates a 150ms SLO. OneRFpolicy
and TAO, 4 lead to lower P99s than when latency is un-
correlated, but still violate the 150ms SLO more than 28%
of the time. Of the research systems, Cliffhgr, . is the
best with about 8.2% SLO violations.

Figure 11(b) shows that, when load increases quickly,
RobinHood never violates the SLO. The second best sys-
tem, OneRFpolicy, violates the SLO more than 33% of
the time.

5.4 How robust is RobinHood to simultaneous la-
tency spikes?

To test the robustness of RobinHood, we allow the
backend resource limits to vary randomly and measure
RobinHood’s ability to handle a wide range of latency
imbalance patterns.

Experimental setup. We adjust resource limits over time
for the same backends and over the same ranges as those
used in the experiments from Section 5.2. However, rather
than inducing latency spikes similar to those in the OneRF
production system, we now allow resource limits to vary
randomly. Hence, each backend will have multiple peri-
ods of high and low latency over the course of the exper-
iment. Additionally, multiple backends may experience
high latency at the same time. To generate this effect, we
randomly increase or decrease each backend’s resource
limit with 50% probability every 20 seconds.

Experimental results. Figure 12 shows the results of our
robustness experiments. Figure 12(a) shows the backend
resource limits (normalized to the limits in Section 5.2)
over time for each of the backends that were resource
limited during the experiment. Note that at several times
during the experiment, multiple backends were highly lim-

Normalized

11

1 .—1 000 Clifthgr++
A" NN = T FAIR++
=0 £ LAMA++
E T im0 Q7 X Onokik
o | -~ = OneRFpolicy
© 1 L o — RobinHood
o l M/\ o8 o 500 -
39 2 2
8 WS LA®E T 250
¢ SR N,
© o
0 20 40 60 0 10 20 30

Time [min]

SLO violations [%]

(a) Randomized Resource Limits. (b) SLO violations.

Figure 12: Results from robustness experiments in which
backend resource limits vary randomly, see (a). In this
challenging scenario, RobinHood still meets 150ms P99
SLO 95% of the time, see (b).

ited at the same time, making it more difficult to maintain
low request tail latency.

Figure 12(b) shows the rate of SLO violations for each
caching system during the robustness experiments. In this
challenging scenario, RobinHood violates a 150ms SLO
only 5% of the time. The next best policy, TAO, 4, vio-
lates the SLO more than 24% of the time. RobinHood also
helps during parts of the experiment where all backends
are severely resource constrained. Overall, RobinHood’s
maximum P99 latency does not exceed 306ms whereas
the next best policy, TAO_ ;, exceeds 610m:s.

We observe that the there is no single “second
best” caching system: the order of the competitors
OneRFpolicy, TAO, 4, and LAMA, ; is flipped between
Figures 12 and 8. In Figure 12(b), TAO. 1 performs well
by coincidence and not due to an inherent advantage of
static allocations. TAO, s static allocation is optimized
for the first part of the experiment shown in Figure 7,
where a latency spike occurs on backend 6. Coinciden-
tally, throughout our randomized experiment, backend
6 is also severely resource limited, which significantly
boosts TAO. ;s performance.

5.5 How much space does RobinHood save?

Figure 13 shows RobinHood’s allocation per backend
in the experiments from Sections 5.2 and 5.4. To get an

o
<
(=}

m oL0 N
% A Backend 1 %
‘;400 W 'E'
el 2
S Backend 5 s
o o
< <
[})
< <
5} [5)
o <
(6] O

100 150

50
Time [min]
(b)
Figure 13: RobinHood’s overall cache allocation during
the experiments from Sections 5.2 and 5.4.

120 180

60
Time [min]

(a)

estimate of how much space RobinHood saves over other
caching systems, we consider what static allocation would
be required by TAO_ ; in order to provide each backend
with its maximum allocation under RobinHood. This sig-
nificantly underestimates RobinHood’s advantage, since
it assumes the existence of an oracle that knows Robin-
Hood’s allocations ahead of time. Even given advance
knowledge of these allocations, TAO.,; would need 73%
more cache space than RobinHood.

5.6
We consider three potential sources of overhead.

Network overhead. In our implementation of Robin-
Hood, application servers send request statistics to an
RBC server (Section 3) once every second. These updates
include the request latency (32-bit integer) and the ID of
the request’s blocking backend (32-bit integer). Given a
request rate of 1000 requests per second per application
server, this amounts to less than 8 KB/s.

CPU and memory overhead. RobinHood adds a
lightweight controller to each application server (Sec-
tion 3). Throughout all experiments, the controller’s CPU
utilization overhead was too small to be measured. The
memory overhead including RobinHood’s controller is
less than 25 KB. However, we measured bursts of memory
overhead up to several MBs. This is due to memcached
not freeing pages immediately after completing dealloca-
tion requests. Future implementations could address these
bursts by refining the memcached resizing mechanism.
Query hit latency overhead. In multi-threaded caching
systems, such as memcached, downsizing a partition will
cause some concurrent cache operations to block (Sec-
tion 4). We quantify this overhead by measuring the P99
cache hit latency for queries in RobinHood and OneRF
for the five backends with the largest change in partition
sizes (backends 1, 5, 6, 8, and 9). These measurements
are shown in Figure 14. RobinHood increases the P99
cache hit latency for queries by 13% to 28% for the five
backends, but does not significantly affect the other back-
ends. Importantly, recall that request latency is different
from query latency. The cause of high request tail latency
is almost solely due to cache misses. Consequently, these
hit latencies do not increase the request latency of Robin-

What is the overhead of running RobinHood?

12

= r— 60

TE s

2 40 :

@ 3 30 B RobinHood
8 S 20 |_|OneRFpolicy
o ® 10

e e

o 1 5 6 8 9

Backend-ID
Figure 14: The cache hit latencies under RobinHood
and the OneRFpolicy. The small overhead introduced by
RobinHood does not affect request tail latency.

Hood even for low percentiles (cf. the P50 request latency
in Figure 8c).

Query miss latency overhead. RobinHood can increase
the load on cache-rich backends. Across all experiments,
the worse-case increase of an individual backend (back-
end 20, the least queried backend), is 2.55x over OneRF.
Among the top 5 backends, RobinHood never increases
query latencies by more than 61%. On the other hand,
RobinHood improves the P99 query latency by more than
4x for the overloaded backend during the first latency
spike in Figure 7. By sacrificing the performance of
cache-rich backends, RobinHood frees up cache space to
allocate towards cache-poor backends that are contribut-
ing to slow request latency. This trade-off significantly
improves the request latency both at the P99 as well as at
other percentiles (Section 5.2).

6 Discussion

We have seen that RobinHood is capable of meeting a
150ms SLO for the OneRF workload even under challeng-
ing conditions where backends simultaneously become
overloaded. Many other systems, e.g., at Facebook [20],
Google [26], Amazon [27], and Wikipedia [14], use a
similar multitier architecture where a request depends on
many queries. However, these other systems may have
different optimization goals, more complex workloads,
or slight variations in system architecture compared to
OneRF. In this section, we discuss some of the challenges
that may arise when incorporating RobinHood into these
other systems.

Non-convex miss curves. Prior work has observed non-
convex miss ratio curves (a.k.a. performance cliffs) for
some workloads [12,25,73,80]. This topic was also fre-
quently raised in our discussions with other companies.
While miss ratio curves in our experiments are largely con-
vex, RobinHood does not fundamentally rely on convexity.
Specifically, RobinHood never gets stuck, because it ig-
nores the miss ratio slope. Nevertheless, non-convexities
can lead to inefficiency in RobinHood’s allocation. If miss
ratio curves are highly irregular (step functions), we sug-
gest convexifying miss ratios using existing techniques
such as Talus [12] and Cliffhanger [25].

Scaling RobinHood to more backend systems and
higher request rates. The RobinHood algorithm scales

linearly in the number of backend systems and thus can
support hundreds of backends (e.g. services in a microser-
vice architecture). Even at high request rates, Robin-
Hood’s overhead is only a few MB/s for up to a million
requests per second (independent of the query rate). At a
sufficiently high request rate, RobinHood’s central RBC
server may become the bottleneck. However, at this scale,
we expect that it will no longer be necessary to account for
every request when calculating the RBC. Sampling some
subset of the traffic will still produce a P99 estimate with
enough observations to accurately depict the system state.
It is also worth noting that typical production systems
already have latency measurement systems in place [77]
and thus would not require a dedicated RBC server.
Interdependent backends. RobinHood assumes that
query latencies are independent across different backends.
In some architectures, however, multiple backends share
the same underlying storage system [3]. If this shared stor-
age system were the bottleneck, allocating cache space to
just one of the backends may be ineffective. RobinHood
needs to be aware of such interdependent backends. A
future version of RobinHood could fix this problem by
grouping interdependent backends into a single unit for
cache allocations.

Multiple webservices with shared backends. Optimiz-
ing tail latencies across multiple webservices which make
use of the same, shared backend systems is challenging.
RobinHood can introduce additional challenges. For ex-
ample, one webservice running RobinHood may increase
the load significantly on a shared backend which can neg-
atively affect request latencies in a second webservice.
This could arise if the two services see differently struc-
tured requests—the shared backend could seem unimpor-
tant to one webservice but be critical to another. If both
webservices run RobinHood, a shared backend’s load
might oscillate between low and high as the two Robin-
Hood instances amplify the effect of each other’s alloca-
tion decisions. A solution to this problem could be to give
RobinHood controllers access to the RBC servers of both
webservices (effectively running a global RobinHood in-
stance). If this is impossible, additional constraints on
RobinHood’s allocation decisions could be necessary. For
example, we can constrain RobinHood to assign at least
as much capacity to the shared backend as it would get in
a system without RobinHood.

Distributed caching. Many large webservices rely on a
distributed caching layer. While these layers have access
to large amounts of cache capacity, working sets typically
still do not fit into the cache and the problem of tuning par-
tition sizes remains [20]. RobinHood can accommodate
this scenario with solely a configuration change, associat-
ing a RobinHood controller with each cache rather than
each application server. We have tested RobinHood in this
configuration and verified the feasibility of our proposal.

13

However, distributed caching leads to the known problem
of cache hotspots under the OneRF workload, regardless
of whether or not RobinHood is running (see Section 4.2
and [20,77]). Addressing this issue is outside the scope
of this work, and hence we focus on the cache topology
used by OneRF rather than a distributed caching layer.
Scenarios where cache repartitioning is not effective.
If the caching layer is severely underprovisioned, or if
the workload is highly uncacheable, repartitioning the
cache might not be sufficient to reduce P99 request la-
tency. However, we note that RobinHood’s key idea—
allocating resources to backends which affect P99 request
latency—can still be exploited. For instance, if caching is
ineffective but backends can be scaled quickly, the RBC
metric could be used to drive these scaling decisions in or-
der to reduce request tail latency. Even if backends are not
scalable, RBC measurements collected over the course of
a day could inform long-term provisioning decisions.
Performance goals beyond the P99. Depending on the
nature of the application, system designers may be con-
cerned that a using single optimization metric (e.g., P99)
could lead to worse performance with respect to other met-
rics (e.g., the average request latency). However, Robin-
Hood explicitly optimizes whatever optimization metric
is used to calculate the RBC. Hence, it is possible to use
other percentiles or even multiple percentiles to calculate
the RBC by choosing the set S accordingly (see Section 3
for a definition of). Conceptually, RobinHood is modu-
lar with regard to both the resources it allocates and with
regard to the metric that is used to drive these allocations.

7 Related Work

A widely held opinion is that “caching layers ... do not
directly address tail latency, aside from configurations
where it is guaranteed that the entire working set of an
application can reside in a cache” [26]. RobinHood is
the first work that shows that caches can directly address
tail latency even if working sets are much larger than the
cache size. Thus, RobinHood stands at the intersection of
two bodies of work: caching and tail latency reduction.

Caching related work. Caching is a heavily studied area
of research ranging from theory to practice [10]. For the
most part, the caching literature has primarily focused
on improving hit ratios (e.g., [2,8,13,15-17,21,22,42,
57,87]). Prior work has also investigated strategies for
dynamically partitioning a cache to maximize overall hit
ratio (e.g., [1,24,25,40,60,75]) or to provide a weighted
or fair hit ratio to multiple workloads (e.g., [19,46,65,85]).
Importantly, while hit ratio is a good proxy for average
latency, it does not capture the effect of tail latency, which
is dominated by the backend system performance.
Another group of caching policies incorporates “miss
cost” (such as retrieval latency) into eviction decisions [18,
21,33,52,64,70,81,86]. As discussed in Section 2.2.2,

the OneRF workload does not meet the premise of cost-
aware caching. Specifically, all these systems assume
that the retrieval latency is correlated (fixed) per object.
At OneRF, latency is highly variable over time and not
correlated with specific objects.

The most relevant systems are LAMA [40] and Hy-
perbolic [18]. LAMA partitions the cache by backend
and seeks to balance the average latency across backends.
Hyperbolic does not support partitions, but allows esti-
mating a metric across a group of related queries such
as all queries going to the same backend. This enables
Hyperbolic to work similarly to LAMA. Both LAMA and
Hyperbolic are represented optimistically by LAMA | |
in our evaluation. Unfortunately, LAMA | leads to high
P99 request latency because the latency of individual
queries is typically not a good indicator for the overall
request tail latency (see Section 2). Unlike LAMA or
Hyperbolic, RobinHood directly incorporates the request
structure in its caching decisions.

Another branch of works seeks to improve the caching
system itself, e.g., the throughput [31, 66], the latency of
cache hits [67], cache-internal load balancing [32, 43],
and cache architecture [31,55,72]. However, these works
are primarily concerned with the performance of cache
hits rather than cache misses, which dictate the overall
request tail latency.

Tail latency related work. Reducing tail latency and mit-
igating stragglers is an important research area that has
received much attention in the past decade. Existing tech-
niques can be subdivided into the following categories:
redundant requests, scheduling techniques, auto-scaling
and capacity provisioning techniques, and approximate
computing. Our work serves to introduce a fifth category:
using the cache to reduce tail latency.

A common approach to mitigating straggler effects is
to send redundant requests and use the first completed re-
quest [5-7,45,69,78,79,82,84,88]. When requests cannot
be replicated, prior work has proposed several schedul-
ing techniques, e.g., prioritization strategies [36, 89,92],
load balancing techniques [48,53,83], and systems that
manage queueing effects [4,28,29,54,62,68,74]. These
are useful techniques for cutting long tail latencies, but
fundamentally, they still have to send requests to backend
systems, whereas our new caching approach eliminates a
fraction of traffic to backend systems entirely.

While these first two approaches consider systems with
static resource constraints, other works have considered
adjusting the overall compute capacity to improve tail
latency. These techniques include managing the compute
capacity through auto-scaling and capacity provisioning
for clusters [34,45,47,58,90,91], and adjusting the power
and/or compute (e.g., number of cores) allocated to per-
forming the computation [37,38,49,76]. Alternatively,
there is a branch of tail latency reduction work known

14

as approximate computing, which considers reducing the
computational requirements by utilizing lower quality
results [6,23,45,51]. Importantly, these are all orthogo-
nal approaches for reducing tail latency, and our work is
proposing a new type of technique that can be layered on
top of these existing techniques.

Why RobinHood is different. RobinHood is unique in
several ways. First, it is the only system to utilize the
cache for reducing overall request tail latency. Second,
RobinHood is the only caching system that takes request
structure into account. Third, by operating at the caching
layer, RobinHood is uniquely situated to influence many
diverse backend systems without requiring any modifica-
tions to the backend systems.

8 Conclusion

This paper addresses two problems facing web service
providers who seek to maintain low request tail latency.
The first problem is to determine the best allocation of
resources in multitier systems which serve structured re-
quests. To deal with structured requests, RobinHood in-
troduces the concept of the request blocking count (RBC)
for each backend, identifying which backends require
additional resources. The second problem is to address
latency imbalance across stateful backend systems which
cannot be scaled directly to make use of the additional re-
sources. RobinHood leverages the existing caching layer
present in multitiered systems, differentially allocating
cache space to the various backends in lieu of being able
to scale them directly.

Our evaluation shows that RobinHood can reduce SLO
violations from 30% to 0.3% for highly variable work-
loads such as OneRF. RobinHood is also lightweight,
scalable, and can be deployed on top of an off-the-shelf
software stack. The RobinHood caching system demon-
strates how to effectively identify the root cause of P99
request latency in the presence of structured requests. Fur-
thermore, RobinHood shows that, contrary to popular
belief, a properly designed caching layer can be used to
reduce higher percentiles of request latency.

Acknowledgments

We thank Jen Guriel, Bhavesh Thaker, Omprakash Maity,
and everyone on the OneRF team at Microsoft. We also
thank the anonymous reviewers, and our shepherd, Frans
Kaashoek, for their feedback. This paper was supported
by NSF-CSR-180341, NSF-XPS-1629444, NSF-CMMI-
1538204, and a Faculty Award from Microsoft.

References

[1] C. L. Abad, A. G. Abad, and L. E. Lucio. Dynamic
memory partitioning for cloud caches with heteroge-

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

neous backends. In ACM ICPE, pages 87-90, New
York, NY, USA, 2017. ACM.

M. Abrams, C. R. Standridge, G. Abdulla, E. A.
Fox, and S. Williams. Removal policies in network
caches for World-Wide Web documents. In ACM
SIGCOMM, pages 293-305, 1996.

C. Albrecht, A. Merchant, M. Stokely, M. Waliji,
F. Labelle, N. Coehlo, X. Shi, and E. Schrock. Janus:
Optimal flash provisioning for cloud storage work-
loads. In USENIX ATC, pages 91-102, 2013.

M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is more: trading
a little bandwidth for ultra-low latency in the data
center. In USENIX NSDI, pages 19-19, 2012.

G. Ananthanarayanan, A. Ghodsi, S. Shenker, and
I. Stoica. Effective straggler mitigation: Attack
of the clones. In USENIX NSDI, pages 185198,
Berkeley, CA, USA, 2013. USENIX Association.

G. Ananthanarayanan, M. C.-C. Hung, X. Ren,
I. Stoica, A. Wierman, and M. Yu. GRASS: Trim-
ming stragglers in approximation analytics. In
USENIX NSDI, pages 289-302, Seattle, WA, 2014.
USENIX Association.

G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the outliers in map-reduce clusters using mantri. In
USENIX OSDI, pages 265-278, Berkeley, CA, USA,
2010. USENIX Association.

M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and
T. Jin. Evaluating content management techniques
for web proxy caches. Performance Evaluation Re-
view, 27(4):3—-11, 2000.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In ACM SIGMETRICS, pages 53-64,
2012.

A. Balamash and M. Krunz. An overview of web
caching replacement algorithms. IEEE Communica-
tions Surveys & Tutorials, 6(2):44-56, 2004.

N. Beckmann, H. Chen, and A. Cidon. LHD: Im-
proving cache hit rate by maximizing hit density. In
USENIX NSDI, pages 389—403, 2018.

N. Beckmann and D. Sanchez. Talus: A simple
way to remove cliffs in cache performance. In IEEE
HPCA, pages 64-75, 2015.

15

[13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

D. S. Berger, N. Beckmann, and M. Harchol-Balter.
Practical bounds on optimal caching with variable
object sizes. POMACS, 2(2):32, 2018.

D. S. Berger, B. Berg, T. Zhu, and M. Harchol-Balter.
The case of dynamic cache partitioning for tail la-
tency, March 2017. Poster presented at USENIX
NSDIL

D. S. Berger, P. Gland, S. Singla, and F. Ciucu. Exact
analysis of TTL cache networks. Perform. Eval.,
79:2 — 23, 2014. Special Issue: Performance 2014.

D. S. Berger, S. Henningsen, F. Ciucu, and J. B.
Schmitt. Maximizing cache hit ratios by variance
reduction. ACM SIGMETRICS Perform. Eval. Rev.,
43(2):57-59, Sept. 2015.

D. S. Berger, R. K. Sitaraman, and M. Harchol-
Balter. AdaptSize: Orchestrating the hot object
memory cache in a content delivery network. In
USENIX NSDI, pages 483—-498, Berkeley, CA, USA,
2017. USENIX Association.

A. Blankstein, S. Sen, and M. J. Freedman. Hyper-
bolic caching: Flexible caching for web applications.
In USENIX ATC, pages 499-511, 2017.

J. Brock, C. Ye, C. Ding, Y. Li, X. Wang, and Y. Luo.
Optimal cache partition-sharing. In /IEEE ICPP,
pages 749-758, 2015.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo, S. Kulka-
rni, H. C. Li, et al. Tao: Facebook’s distributed data
store for the social graph. In USENIX ATC, pages
49-60, 2013.

P. Cao and S. Irani. Cost-aware WWW proxy
caching algorithms. In USENIX Symposium on In-
ternet Technologies and Systems, 1997.

L. Cherkasova and G. Ciardo. Role of aging, fre-
quency, and size in web cache replacement policies.
In High-Performance Computing and Networking,
pages 114-123, 2001.

M. Chow, K. Veeraraghavan, M. Cafarella, and
J. Flinn. Dgbarge: Improving data-quality tradeoffs
in large-scale internet services. In USENIX OSDI,
pages 771-786, Savannah, GA, 2016. USENIX As-
sociation.

A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti.
Dynacache: dynamic cloud caching. In USENIX
HotCloud, 2015.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti.
Cliffhanger: Scaling performance cliffs in web mem-
ory caches. In USENIX NSDI, 2016.

J. Dean and L. A. Barroso. The tail at scale. CACM,
56(2):74-80, 2013.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: amazon’s
highly available key-value store. In ACM SOSP,
volume 41, pages 205-220, 2007.

P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel.
Job-aware scheduling in eagle: Divide and stick to
your probes. In ACM SoCC, pages 497-509, New
York, NY, USA, 2016. ACM.

P. Delgado, F. Dinu, A.-M. Kermarrec, and
W. Zwaenepoel. Hawk: Hybrid datacenter schedul-
ing. In USENIX ATC, pages 499-510, Berkeley, CA,
USA, 2015. USENIX Association.

C. Delimitrou and C. Kozyrakis. Quasar: Resource-
efficient and qos-aware cluster management. In
ACM ASPLOS, pages 127-144, 2014.

B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and concurrent memcache with dumber
caching and smarter hashing. In USENIX NSDI,
pages 371-384, 2013.

B. Fan, H. Lim, D. G. Andersen, and M. Kamin-
sky. Small cache, big effect: Provable load bal-
ancing for randomly partitioned cluster services. In
ACM SoCC, pages 23:1-23:12, New York, NY, USA,
2011. ACM.

B. C. Forney, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Storage-aware caching: Revis-
iting caching for heterogeneous storage systems.
In USENIX FAST, pages 5-5, Berkeley, CA, USA,
2002. USENIX Association.

A. Gandhi, M. Harchol-Balter, R. Raghunathan, and
M. A. Kozuch. Autoscale: Dynamic, robust capacity
management for multi-tier data centers. ACM TOCS,
30(4):14, 2012.

P. Garraghan, X. Ouyang, R. Yang, D. McKee, and
J. Xu. Straggler root-cause and impact analysis for
massive-scale virtualized cloud datacenters. /EEE
Transactions on Services Computing, 2016.

M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N.
Watson, A. W. Moore, S. Hand, and J. Crowcroft.
Queues don’t matter when you can jump them! In
USENIX NSDI, pages 9-21, 2015.

16

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

M. E. Haque, Y. h. Eom, Y. He, S. Elnikety, R. Bian-
chini, and K. S. McKinley. Few-to-many: Incremen-
tal parallelism for reducing tail latency in interactive
services. In ASPLOS, pages 161-175, New York,
NY, USA, 2015. ACM.

M. E. Haque, Y. He, S. Elnikety, T. D. Nguyen,
R. Bianchini, and K. S. McKinley. Exploiting het-
erogeneity for tail latency and energy efficiency. In
IEEE/ACM MICRO, pages 625-638, New York, NY,
USA, 2017. ACM.

M. Harchol-Balter. Performance Modeling and De-
sign of Computer Systems: Queueing Theory in Ac-
tion. Cambridge University Press, 2013.

X. Hu, X. Wang, Y. Li, L. Zhou, Y. Luo, C. Ding,
S. Jiang, and Z. Wang. LAMA: Optimized locality-
aware memory allocation for key-value cache. In
USENIX ATC, pages 57-69, 2015.

Q. Huang, K. Birman, R. van Renesse, W. Lloyd,
S. Kumar, and H. C. Li. An analysis of Facebook
photo caching. In SOSP, 2013.

Q. Huang, K. Birman, R. van Renesse, W. Lloyd,
S. Kumar, and H. C. Li. An analysis of Facebook
photo caching. In ACM SOSP, pages 167-181, 2013.

J. Hwang and T. Wood. Adaptive performance-
aware distributed memory caching. In Proceedings
of the International Conference on Autonomic Com-
puting, pages 33-43, San Jose, CA, 2013. USENIX.

V. Jalaparti, P. Bodik, S. Kandula, I. Menache,
M. Rybalkin, and C. Yan. Speeding up distributed
request-response workflows. In ACM SIGCOMM,
pages 219-230, 2013.

V. Jalaparti, P. Bodik, S. Kandula, I. Menache,
M. Rybalkin, and C. Yan. Speeding up distributed
request-response workflows. In ACM SIGCOMM,
pages 219-230, New York, NY, USA, 2013. ACM.

A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot,
S. Steely Jr, and J. Emer. Adaptive insertion policies
for managing shared caches. In ACM PACT, pages
208-219, 2008.

K. Jang, J. Sherry, H. Ballani, and T. Moncaster.
Silo: Predictable message latency in the cloud. In
Proceedings of the 2015 ACM Conference on Spe-
cial Interest Group on Data Communication, SIG-
COMM 15, pages 435-448, New York, NY, USA,
2015. ACM.

S. A. Javadi and A. Gandhi. DIAL: reducing
tail latencies for cloud applications via dynamic

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

interference-aware load balancing. In International

Conference on Autonomic Computing, pages 135—
144, 2017.

H. Kasture, D. B. Bartolini, N. Beckmann, and
D. Sanchez. Rubik: Fast analytical power man-
agement for latency-critical systems. In JEEE/ACM
MICRO, pages 598-610, Dec 2015.

A. Krioukov, P. Mohan, S. Alspaugh, L. Keys,
D. Culler, and R. Katz. Napsac: Design and im-
plementation of a power-proportional web cluster.
ACM SIGCOMM, 41(1):102-108, 2011.

G. Kumar, G. Ananthanarayanan, S. Ratnasamy,
and 1. Stoica. Hold ’em or fold ’em?: Aggrega-
tion queries under performance variations. In ACM
EUROSYS, pages 7:1-7:14, 2016.

C. Li and A. L. Cox. GD-Wheel: A cost-aware
replacement policy for key-value stores. In ACM
EUROSYS, pages 5:1-5:15, 2015.

J. Li, K. Agrawal, S. Elnikety, Y. He, L.-T. A. Lee,
C. Lu, and K. S. McKinley. Work stealing for in-
teractive services to meet target latency. In ACM
PPoPP, pages 14:1-14:13, New York, NY, USA,
2016.

J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Grib-
ble. Tales of the tail: Hardware, os, and application-
level sources of tail latency. In ACM SoCC, pages
9:1-9:14, New York, NY, USA, 2014. ACM.

H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A holistic approach to fast in-memory key-
value storage. In USENIX NSDI, pages 429444,
2014.

D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso,
and C. Kozyrakis. Towards energy proportionality
for large-scale latency-critical workloads. In ACM
ISCA, volume 42, pages 301-312, 2014.

B. M. Maggs and R. K. Sitaraman. Algorithmic
nuggets in content delivery. ACM SIGCOMM CCR,
45:52-66, 2015.

A. H. Mahmud, Y. He, and S. Ren. Bats: Budget-
constrained autoscaling for cloud performance opti-
mization. In International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecom-
munication Systems, pages 232-241, Oct 2015.

D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. We-
ber, and T. F. Wenisch. Power management of online
data-intensive services. In ACM ISCA, volume 39,
pages 319-330, 2011.

17

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, et al. Scaling memcache at Facebook. In
USENIX NSDI, pages 385-398, 2013.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling memcache at facebook. In NSDI, 2013.

K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.
Sparrow: Distributed, low latency scheduling. In
ACM SOSP, pages 69-84, New York, NY, USA,
2013. ACM.

J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,
and H. Fugal. Fastpass: A centralized zero-queue
datacenter network. In ACM SIGCOMM, pages 307-
318, 2014.

R. Prabhakar, S. Srikantaiah, C. Patrick, and M. Kan-
demir. Dynamic storage cache allocation in multi-
server architectures. In Conference on High Perfor-
mance Computing Networking, Storage and Anal-
ysis, pages 8:1-8:12, New York, NY, USA, 2009.
ACM.

Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Sto-
ica. Fairride: Near-optimal, fair cache sharing. In
USENIX NSDI, pages 393—406, 2016.

M. K. Qureshi and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In
IEEE/ACM MICRO, pages 423432, 2006.

K. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and
K. Ramchandran. Ec-cache: Load-balanced, low-
latency cluster caching with online erasure coding.
In USENIX OSDI, pages 401-417, 2016.

W. Reda, M. Canini, L. Suresh, D. Kosti¢, and
S. Braithwaite. Rein: Taming tail latency in key-
value stores via multiget scheduling. In EuroSys,
pages 95-110, New York, NY, USA, 2017. ACM.

X. Ren, G. Ananthanarayanan, A. Wierman, and
M. Yu. Hopper: Decentralized speculation-aware
cluster scheduling at scale. In ACM SIGCOMM,
pages 379-392, New York, NY, USA, 2015. ACM.

L. Rizzo and L. Vicisano. Replacement policies for
a proxy cache. IEEE/ACM TON, 8:158-170, 2000.

E. Rocca. Running Wikipedia.org, June 2016.
available https://www.mediawiki.org/
wiki/File:WMF_Traffic_Varnishcon_
2016 .pdf accessed 09/12/16.

https://www.mediawiki.org/wiki/File:WMF_Traffic_Varnishcon_2016.pdf
https://www.mediawiki.org/wiki/File:WMF_Traffic_Varnishcon_2016.pdf
https://www.mediawiki.org/wiki/File:WMF_Traffic_Varnishcon_2016.pdf

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder,
H. Ballani, T. Karagiannis, A. Rowstron, and
T. Talpey. Software-defined caching: Managing
caches in multi-tenant data centers. In ACM SoCC,
pages 174-181, New York, NY, USA, 2015. ACM.

G. E. Suh, L. Rudolph, and S. Devadas. Dynamic
partitioning of shared cache memory. The Journal
of Supercomputing, 28(1):7-26, 2004.

L. Suresh, M. Canini, S. Schmid, and A. Feldmann.
C3: Cutting tail latency in cloud data stores via
adaptive replica selection. In USENIX NSDI, pages
513-527, Oakland, CA, 2015. USENIX Associa-
tion.

J. Tan, G. Quan, K. Ji, and N. Shroff. On re-
source pooling and separation for Iru caching. Proc.
ACM Meas. Anal. Comput. Syst., 2(1):5:1-5:31, Apr.
2018.

B. Vamanan, H. B. Sohail, J. Hasan, and T. N.
Vijaykumar. Timetrader: Exploiting latency tail
to save datacenter energy for online search. In
ACM/IEEE MICRO, pages 585-597, New York, NY,
USA, 2015. ACM.

K. Veeraraghavan, J. Meza, D. Chou, W. Kim,
S. Margulis, S. Michelson, R. Nishtala, D. Oben-
shain, D. Perelman, and Y. J. Song. Kraken: leverag-
ing live traffic tests to identify and resolve resource
utilization bottlenecks in large scale web services.
In USENIX OSDI, pages 635-650, 2016.

A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry,
S. Ratnasamy, and S. Shenker. Low latency via re-
dundancy. In ACM CoNEXT, pages 283294, New
York, NY, USA, 2013. ACM.

A. Vulimiri, O. Michel, P. B. Godfrey, and
S. Shenker. More is less: Reducing latency via
redundancy. In ACM HotNets, pages 13—18, New
York, NY, USA, 2012. ACM.

C. Waldspurger, T. Saemundsson, I. Ahmad, and
N. Park. Cache modeling and optimization using
miniature simulations. In USENIX ATC, pages 487—
498, 2017.

R. P. Wooster and M. Abrams. Proxy caching that
estimates page load delays. Computer Networks and
ISDN Systems, 29(8):977-986, 1997.

Z. Wu, C. Yu, and H. V. Madhyastha. Costlo: Cost-
effective redundancy for lower latency variance on
cloud storage services. In USENIX NSDI, pages 543—
557, Oakland, CA, 2015. USENIX Association.

18

[83]

[84]

[85]

[86]

(87]

[88]

[89]

[90]

[91]

[92]

Y. Xu, Z. Musgrave, B. Noble, and M. Bailey.
Bobtail: Avoiding long tails in the cloud. In
USENIX NSDI, pages 329-341, Lombard, IL, 2013.
USENIX.

N.J. Yadwadkar, G. Ananthanarayanan, and R. Katz.
Wrangler: Predictable and faster jobs using fewer
resources. In ACM SoCC, pages 26:1-26:14, New
York, NY, USA, 2014. ACM.

C. Ye, J. Brock, C. Ding, and H. Jin. Rochester
elastic cache utility (recu): Unequal cache sharing is
good economics. International Journal of Parallel
Programming, 45(1):30—44, 2017.

N. E. Young. On-line file caching. In ACM SODA,
pages 82-86, Philadelphia, PA, USA, 1998. Society
for Industrial and Applied Mathematics.

Y. Yu, W. Wang, J. Zhang, and K. B. Letaief. LRC:
dependency-aware cache management for data ana-
lytics clusters. CoRR, abs/1703.08280, 2017.

M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,
and I. Stoica. Improving mapreduce performance
in heterogeneous environments. In USENIX OSDI,
pages 2942, Berkeley, CA, USA, 2008. USENIX
Association.

H. Zhu and M. Erez. Dirigent: Enforcing qos for
latency-critical tasks on shared multicore systems.
SIGPLAN Not., 51(4):33-47, Mar. 2016.

T. Zhu, D. S. Berger, and M. Harchol-Balter. SNC-
Meister: Admitting more tenants with tail latency
SLOs. In ACM SoCC, pages 374-387, 2016.

T. Zhu, M. A. Kozuch, and M. Harchol-Balter.
Workloadcompactor: Reducing datacenter cost
while providing tail latency slo guarantees. In ACM
SoCC, pages 598-610, New York, NY, USA, 2017.
ACM.

T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-
Balter, and G. R. Ganger. Prioritymeister: Tail la-
tency qos for shared networked storage. In ACM
SoCC, pages 29:1-29:14, New York, NY, USA,
2014. ACM.

	Introduction
	Background and Challenges
	The goal of RobinHood
	Challenges of caching for tail latency
	Time-varying latency imbalance
	Latency is not correlated with specific queries nor with query rate
	Latency depends on request structure, which varies greatly

	The RobinHood Caching System
	The basic RobinHood algorithm
	Refining the RobinHood algorithm
	RobinHood architecture

	System Implementation and Challenges
	Implementation and testbed
	Implementation challenges
	Generating experimental data

	Evaluation
	Competing caching systems
	How much does RobinHood improve SLO violations for OneRF's workload?
	How much variability can RobinHood handle?
	How robust is RobinHood to simultaneous latency spikes?
	How much space does RobinHood save?
	What is the overhead of running RobinHood?

	Discussion
	Related Work
	Conclusion

