
Non-Malleable Codes for Partial
Functions with Manipulation Detection

Aggelos Kiayias1, Feng-Hao Liu2, and Yiannis Tselekounis1(B)

1 University of Edinburgh, Edinburgh, UK
akiayias@inf.ed.ac.uk, ytselekounis@ed.ac.uk
2 Florida Atlantic University, Boca Raton, USA

fenghao.liu@fau.edu

Abstract. Non-malleable codes were introduced by Dziembowski,
Pietrzak and Wichs (ICS ’10) and its main application is the protec-
tion of cryptographic devices against tampering attacks on memory. In
this work, we initiate a comprehensive study on non-malleable codes for
the class of partial functions, that read/write on an arbitrary subset of
codeword bits with specific cardinality. Our constructions are efficient in
terms of information rate, while allowing the attacker to access asymp-
totically almost the entire codeword. In addition, they satisfy a notion
which is stronger than non-malleability, that we call non-malleability
with manipulation detection, guaranteeing that any modified codeword
decodes to either the original message or to ⊥. Finally, our primitive
implies All-Or-Nothing Transforms (AONTs) and as a result our con-
structions yield efficient AONTs under standard assumptions (only one-
way functions), which, to the best of our knowledge, was an open ques-
tion until now. In addition to this, we present a number of additional
applications of our primitive in tamper resilience.

1 Introduction

Non-malleable codes (NMC) were introduced by Dziembowski, Pietrzak and
Wichs [27] as a relaxation of error correction and error detection codes, aiming
to provide strong privacy but relaxed correctness. Informally, non-malleability
guarantees that any modified codeword decodes either to the original message or
to a completely unrelated one, with overwhelming probability. The definition of
non-malleability is simulation-based, stating that for any tampering function f ,
there exists a simulator that simulates the tampering effect by only accessing f ,
i.e., without making any assumptions on the distribution of the encoded message.

The main application of non-malleable codes that motivated the seminal work
by Dziembowski et al. [27] is the protection of cryptographic implementations

A. Kiayias—Research partly supported by the H2020 project FENTEC (# 780108).
F.-H. Liu—Research supported by the NSF Award #CNS-1657040.
Y. Tselekounis—Research partly supported by the H2020 project PANORAMIX
(# 653497).

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 577–607, 2018.
https://doi.org/10.1007/978-3-319-96878-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_20&domain=pdf

578 A. Kiayias et al.

from active physical attacks against memory, known as tampering attacks. In this
setting, the adversary modifies the memory of the cryptographic device, receives
the output of the computation, and tries to extract sensitive information related
to the private memory. Security against such types of attacks can be achieved by
encoding the private memory of the device using non-malleable codes. Besides
that, various applications of non-malleable codes have been proposed in subse-
quent works, such as CCA secure encryption schemes [20] and non-malleable
commitments [4].

Due to their important applications, constructing non-malleable codes has
received a lot of attention over recent years. As non-malleability against gen-
eral functions is impossible [27], various subclasses of tampering functions have
been considered, such as split-state functions [1–3,26,27,36,37], bit-wise tam-
pering and permutations [4,5,27], bounded-size function classes [32], bounded
depth/fan-in circuits [6], space-bounded tampering [29], and others (cf. Sect. 1.4).
One characteristic shared by those function classes is that they allow full access
to the codeword, while imposing structural or computational restrictions to the
way the function computes over the input. In this work we initiate a comprehen-
sive study on non-malleability for functions that receive partial access over the
codeword, which is an important yet overlooked class, as we elaborate below.

The class of partial functions. The class of partial functions contains all
functions that read/write on an arbitrary subset of codeword bits with specific
cardinality. Concretely, let c be a codeword with length ν. For α ∈ [0, 1), the
function class Fαν (or Fα for brevity) consists of all functions that operate over
any subset of bits of c with cardinality at most αν, while leaving the remaining
bits intact. The work of Cheraghchi and Guruswami [18] explicitly defines this
class and uses a subclass (the one containing functions that always touch the
first αν bits of the codeword) in a negative way, namely as the tool for deriv-
ing capacity lower bounds for information-theoretic non-malleable codes against
split-state functions. Partial functions were also studied implicitly by Faust
et al. [32], while aiming for non-malleability against bounded-size circuits.1

Even though capacity lower bounds for partial functions have been derived
(cf. [18]), our understanding about explicit constructions is still limited. Exis-
tential results can be derived by the probabilistic method, as shown in prior
works [18,27]2, but they do not yield explicit constructions. On the other hand,
the capacity bounds do not apply to the computational setting, which could
potentially allow more practical solutions. We believe that this is a direction
that needs to be explored, as besides the theoretical interest, partial functions is

1 Specifically, in [32], the authors consider a model where a common reference string
(CRS) is available, with length roughly logarithmic in the size of the tampering
function class; as a consequence, the tampering function is allowed to read/write the
whole codeword while having only partial information over the CRS.

2 Informally, prior works [18,27] showed existence of non-malleable codes for classes
of certain bounded cardinalities. The results cover the class of partial functions.

Non-Malleable Codes for Partial Functions with Manipulation Detection 579

a natural model that complies with existing attacks that require partial access
to the registers of the cryptographic implementation [8,10–12,44].3

Besides the importance of partial functions in the active setting, i.e., when the
function is allowed to partially read/write the codeword, the passive analogue
of the class, i.e., when the function is only given read access over the codeword,
matches the model considered by All-Or-Nothing Transforms (AONTs), which
is a notion originally introduced by Rivest [41], providing security guarantees
similar to those of leakage resilience: reading an arbitrary subset (up to some
bounded cardinality) of locations of the codeword does not reveal the underly-
ing message. As non-malleable codes provide privacy, non-malleability for par-
tial functions is the active analogue of (and in fact implies) AONTs, that find
numerous applications [13,14,40,41,43].

Plausibility. At a first glance one might think that partial functions better
comply with the framework of error-correction/detection codes (ECC/EDC),
as they do not touch the whole codeword. However, if we allow the adversary
to access asymptotically almost the entire codeword, it is conceivable it can
use this generous access rate, i.e., the fraction of the codeword that can be
accessed (see below), to create correlated encodings, thus we believe solving non-
malleability in this setting is a natural question. Additionally, non-malleability
provides simulation based security, which is not considered by ECC/EDC.

We illustrate the separation between the notions using the following example.
Consider the set of partial functions that operate either on the right or on the left
half of the codeword (the function chooses if it is going to be left or right), and the
trivial encoding scheme that on input message s outputs (s, s). The decoder, on
input (s, s′), checks if s = s′, in which case it outputs s, otherwise it outputs ⊥.
This scheme is clearly an EDC against the aforementioned function class,4 as the
output of the decoder is in {s,⊥}, with probability 1; however, it is malleable
since the tampering function can create encodings whose validity depends on
the message. On the other hand, an ECC would provide a trivial solution in
this setting, however it requires restriction of the adversarial access fraction to
1/2 (of the codeword); by accessing more than this fraction, the attacker can
possibly create invalid encodings depending on the message, as general ECCs
do not provide privacy. Thus, the ECC/EDC setting is inapt when aiming for
simulation based security in the presence of attackers that access almost the
entire codeword. Later in this section, we provide an extensive discussion on
challenges of non-malleability for partial functions.

Besides the plausibility and the lack of a comprehensive study, partial
functions can potentially allow stronger primitives, as constant functions are
excluded from the class. This is similar to the path followed by Jafargholi and
Wichs [34], aiming to achieve tamper detection (cf. Sect. 1.4) against a class of

3 The attacks by [8,11,12] require the modification of a single (random) memory bit,
while in [10] a single error per each round of the computation suffices. In [44], the
attack requires a single faulty byte.

4 It is not an ECC as the decoder does not know which side has been modified by the
tampering function.

580 A. Kiayias et al.

functions that implicitly excludes constant functions and the identity function. In
this work we prove that this intuition holds, by showing that partial functions
allow a stronger primitive that we define as non-malleability with manipula-
tion detection (MD-NMC), which in addition to simulation based security, it
also guarantees that any tampered codeword will either decode to the original
message or to ⊥. Again, and as in the case of ECC/EDC, we stress out that
manipulation/tamper-detection codes do not imply MD-NMC, as they do not
provide simulation based security (cf. Sect. 1.4).5

Given the above, we believe that partial functions is an interesting and well-
motivated model. The goal of this work is to answer the following (informally
stated) question:

Is it possible to construct efficient (high information rate) non-malleable
codes for partial functions, while allowing the attacker to access almost the
entire codeword?

We answer the above question in the affirmative. Before presenting our results
(cf. Sect. 1.1) and the high level ideas behind our techniques (cf. Sect. 1.2), we
identify the several challenges that are involved in tackling the problem.

Challenges. We first define some useful notions used throughout the paper.

– Information rate: the ratio of message to codeword length, as the message
length goes to infinity.

– Access rate: the fraction of the number of bits that the attacker is allowed to
access over the total codeword length, as the message length goes to infinity.

The access rate measures the effectiveness of a non-malleable code in the par-
tial function setting and reflects the level of adversarial access to the codeword.
In this work, we aim at constructing non-malleable codes for partial functions
with high information rate and high access rate, i.e., both rates should app-
roach 1 simultaneously. Before discussing the challenges posed by this require-
ment, we first review some known impossibility results. First, non-malleability
for partial functions with concrete access rate 1 is impossible, as the function can
fully decode the codeword and then re-encode a related message [27]. Second,
information-theoretic non-malleable codes with constant information rate (e.g.,
0.5) are not possible against partial functions with constant access rate [18]6,
and consequently, solutions in the information-theoretic settings such as ECC
and Robust Secret Sharing (RSS) do not solve our problem. Based on these
facts, in order to achieve our goal, the only path is to explore the computational
setting, aiming for access rate at most 1 − ε, for some ε > 0.

At a first glance one might think that non-malleability for partial functions
is easier to achieve, compared to other function classes, as partial functions

5 Clearly, MD-NMC imply manipulation/error-detection codes.
6 Informally, in [18] (Theorem 5.3) the authors showed that any information-theoretic

non-malleable code with a constant access rate and a constant information rate must
have a constant distinguishing probability.

Non-Malleable Codes for Partial Functions with Manipulation Detection 581

cannot touch the whole codeword. Having that in mind, it would be tempting to
conclude that existing designs/techniques with minor modifications are sufficient
to achieve our goal. However, we will show that this intuition is misleading,
by pointing out why prior approaches fail to provide security against partial
functions with high access rate.

The current state of the art in the computational setting considers tools
such as (Authenticated) Encryption [1,22,24,28,36,37], non-interactive zero-
knowledge (NIZK) proofs [22,28,30,37], and �-more extractable collision resis-
tant hashes (ECRH) [36], where others use KEM/DEM techniques [1,24]. Those
constructions share a common structure, incorporating a short secret key sk (or
a short encoding of it), as well as a long ciphertext, e, and a proof π (or a hash
value). Now, consider the partial function f that gets full access to the secret key
sk and a constant number of bits of the ciphertext e, partially decrypts e and
modifies the codeword depending on those bits. Then, it is not hard to see that
non-malleability falls apart as the security of the encryption no longer holds.
The attack requires access rate only O((|sk|)/(|sk| + |e| + |π|)), for [22,28,37]
and O(poly(k)/|s|) for [1,24,36]. A similar attack applies to [30], which is in the
continual setting.

One possible route to tackle the above challenges, is to use an encoding
scheme over the ciphertext, such that partial access over it does not reveal
the underlying message.7 The guarantees that we need from such a primitive
resemble the properties of AONTs, however this primitive does not provide
security against active, i.e., tampering, attacks. Another approach would be to
use Reconstructable Probabilistic Encodings [6], which provide error-correcting
guarantees, yet still it is unknown whether we can achieve information rate 1 for
such a primitive. In addition, the techniques and tools for protecting the secret
key can be used to achieve optimal information rate as they are independent of
the underlying message, yet at the same time, they become the weakest point
against partial functions with high access rate. Thus, the question is how to
overcome the above challenges, allowing access to almost the entire codeword.

In this paper we solve the challenges presented above based on the following
observation: in existing solutions the structure of the codeword is fixed and
known to the attacker, and independently of the primitives that we use, the only
way to resolve the above issues is by hiding the structure via randomization.
This requires a structure recovering mechanism that can either be implemented
by an “external” source, or otherwise the structure needs to be reflected in the
codeword in some way that the attacker cannot exploit. In the present work we
implement this mechanism in both ways, by first proposing a construction in the
common reference string (CRS) model, and then we show how to remove the
CRS using slightly bigger alphabets. Refer to Sect. 1.2 for a technical overview.

7 In the presence of NIZKs we can have attacks with low access rate that read sk, e,
and constant number of bits from the proof.

582 A. Kiayias et al.

1.1 Our Results

We initiate the study of non-malleable codes with manipulation-detection (MD-
NMC), and we present the first (to our knowledge) construction for this type
of codes. We focus on achieving simultaneously high information rate and high
access rate, in the partial functions setting, which by the results of [18], it can
be achieved only in the computational setting.

Our contribution is threefold. First, we construct an information rate 1
non-malleable code in the CRS model, with access rate 1 − 1/Ω(log k), where
k denotes the security parameter. Our construction combines Authenticated
Encryption together with an inner code that protects the key of the encryp-
tion scheme (cf. Sect. 1.2). The result is informally summarized in the following
theorem.

Theorem 1.1 (Informal). Assuming one-way functions, there exists an explicit
computationally secure MD-NMC in the CRS model, with information rate 1
and access rate 1 − 1/Ω(log k), where k is the security parameter.

Our scheme, in order to achieve security with error 2−Ω(k), produces code-
words of length |s| + O(k2 log k), where |s| denotes the length of the message,
and uses a CRS of length O(k2 log k log(|s|+k)). We note that our construction
does not require the CRS to be fully tamper-proof and we refer the reader to
Sect. 1.2 for a discussion on the topic.

In our second result we show how to remove the CRS by slightly increas-
ing the size of the alphabet. Our result is a computationally secure MD-NMC
in the standard model, achieving information and access rate 1 − 1/Ω(log k).
Our construction is proven secure by a reduction to the security of the scheme
presented in Theorem 1.1. Below, we informally state our result.

Theorem 1.2 (Informal). Assuming one-way functions, there exists an explicit,
computationally secure MD-NMC in the standard model, with alphabet length
O(log k), information rate 1 − 1/Ω(log k) and access rate 1 − 1/Ω(log k), where
k is the security parameter.

Our scheme produces codewords of length |s|(1 + 1/O(log k)) + O(k2 log2 k).
In Sect. 1.2, we consider security against continuous attacks. We show how

to achieve a weaker notion of continuous security, while avoiding the use of
a self-destruct mechanism, which was originally achieved by [28]. Our notion
is weaker than full continuous security [30], since the codewords need to be
updated. Nevertheless, our update operation is deterministic and avoids the
full re-encoding process [27,37]; it uses only shuffling and refreshing operations,
i.e., we avoid cryptographic computations such as group operations and NIZKs.
We call such an update mechanism a “light update.” Informally, we prove the
following result.

Theorem 1.3 (Informal). One-way functions imply continuous non-malleable
codes with deterministic light updates and without self-destruct, in the standard
model, with alphabet length O(log k), information rate 1−1/Ω(log k) and access
rate 1 − 1/Ω(log k), where k is the security parameter.

Non-Malleable Codes for Partial Functions with Manipulation Detection 583

As we have already stated, non-malleable codes against partial functions
imply AONTs [41]. The first AONT was presented by Boyko [13] in the random
oracle model, and then Canetti et al. [14] consider AONTs with public/private
parts as well as a secret-only part, which is the full notion. Canetti et al. [14]
provide efficient constructions for both settings, yet the fully secure AONT
(called “secret-only” in that paper) is based on non-standard assumptions.8

Assuming one-way functions, our results yield efficient, fully secure AONTs,
in the standard model. This resolves, the open question left in [14], where the
problem of constructing AONT under standard assumptions was posed. Our
result is presented in the following theorem.

Theorem 1.4 (Informal). Assuming one-way functions, there exists an explicit
secret-only AONT in the standard model, with information rate 1 and access
rate 1 − 1/Ω(log k), where k is the security parameter.

The above theorem is derived by the Informal Theorem1.1 yielding an
AONT whose output consists of both the CRS and the codeword produced
by the NMC scheme in the CRS model. A similar theorem can be derived with
respect to the Informal Theorem 1.2. Finally, and in connection to AONTs that
provide leakage resilience, our results imply leakage-resilient codes [37] for partial
functions.

In the full version of the paper we provide concrete instantiations of our con-
structions, using textbook instantiations [35] for the underlying authenticated
encryption scheme. For completeness, we also provide information theoretic vari-
ants of our constructions that maintain high access rate and thus necessarily
sacrifice information rate.

1.2 Technical Overview

On the manipulation detection property. In the present work we exploit
the fact that the class of partial functions does not include constant functions
and we achieve a notion that is stronger than non-malleability, which we call
non-malleability with manipulation detection. We formalize this notion as a
strengthening of non-malleability and we show that our constructions achieve
this stronger notion. Informally, manipulation detection ensures that any tam-
pered codeword will either decode to the original message or to ⊥.

A MD-NMC in the CRS model. For the exposition of our ideas, we start
with a naive scheme (which does not work), and then show how we resolve all the
challenges. Let (KGen,E,D) be a (symmetric) authenticated encryption scheme
and consider the following encoding scheme: to encode a message s, the encoder
computes (sk||e), where e ← Esk(s) is the ciphertext and sk ← KGen(1k), is
the secret key. We observe that the scheme is secure if the tampering function
can only read/write on the ciphertext, e, assuming the authenticity property

8 In [43] the authors present a deterministic AONT construction that provides weaker
security.

584 A. Kiayias et al.

(Bits)

z

e← Encryptsk(s)

← SecretShare sk||sk3)

Secret key: sk

Message: s

Locations defined by the CRS

Fig. 1. Description of the scheme in the CRS model.

of the encryption scheme, however, restricting access to sk, which is short, is
unnatural and makes the problem trivial. On the other hand, even partial access
to sk, compromises the authenticity property of the scheme, and even if there
is no explicit attack against the non-malleability property, there is no hope for
proving security based on the properties of (KGen,E,D), in black-box way.

A solution to the above problems would be to protect the secret key using
an inner encoding, yet the amount of tampering is now restricted by the capa-
bilities of the inner scheme, as the attacker knows the exact locations of the
“sensitive” codeword bits, i.e., the non-ciphertext bits. In our construction, we
manage to protect the secret key while avoiding the bottleneck on the access
rate by designing an inner encoding scheme that provides limited security guar-
antees when used standalone, still when it is used in conjunction with a shuffling
technique that permutes the inner encoding and ciphertext bit locations, it guar-
antees that any attack against the secret key will create an invalid encoding with
overwhelming probability, even when allowing access to almost the entire code-
word.

Our scheme is depicted in Fig. 1 and works as follows: on input message s, the
encoder (i) encrypts the message by computing sk ← KGen(1k) and e ← Esk(s),
(ii) computes an m-out-of-m secret sharing z of (sk||sk3) (interpreting both
sk and sk3 as elements in some finite field),9 and outputs a random shuffling
of (z||e), denoted as PΣ(z||e), according to the common reference string Σ.
Decoding proceeds as follows: on input c, the decoder (i) inverts the shuffling
operation by computing (z||e) ← P−1

Σ (c), (ii) reconstructs (sk||sk′), and (iii) if
sk3 = sk′, outputs Dsk(e), otherwise, it outputs ⊥.

In Sect. 3 we present the intuition behind our construction and a formal
security analysis. Our instantiation yields a rate 1 computationally secure MD-
NMC in the CRS model, with access rate 1 − 1/Ω(log k) and codewords of
length |s| + O(k2 log k), under mild assumptions (e.g., one way functions).

On the CRS. In our work, the tampering function, and consequently the code-
word locations that the function is given access to, are fixed before sampling the

9 In general, any polynomial of small degree, e.g., skc, would suffice, depending on the
choice of the underlying finite field. Using sk3 suffices when working over fields of
characteristic 2. We could also use sk2 over fields of characteristic 3.

Non-Malleable Codes for Partial Functions with Manipulation Detection 585

CRS and this is critical for achieving security. However, proving security in this
setting is non-trivial. In addition, the tampering function receives full access to
the CRS when tampering with the codeword. This is in contrast to the work
by Faust et al. [32] in the information-theoretic setting, where the (internal)
tampering function receives partial information over the CRS.

In addition, our results tolerate adaptive selection of the codeword locations,
with respect to the CRS, in the following way: each time the attacker requests
access to a location, he also learns if it corresponds to a bit of z or e, together
with the index of that bit in the original string. In this way, the CRS is gradually
disclosed to the adversary while picking codeword locations.

Finally, our CRS sustains a substantial amount of tampering that depends
on the codeword locations chosen by the attacker: an attacker that gets
access to a sensitive codeword bit is allowed to modify the part of the
CRS that defines the location of that bit in the codeword. The attacker is
allowed to modify all but O(k log(|s| + k)) bits of the CRS, that is of length
O(k2 log k log(|s| + k)). To our knowledge, this is the first construction that tol-
erates, even partial modification of the CRS. In contrast, existing constructions
in the CRS model are either using NIZKs [22,28,30,37], or they are based on
the knowledge of exponent assumption [36], thus tampering access to the CRS
might compromise security.

Removing the CRS. A first approach would be to store the CRS inside the
codeword together with PΣ(z||e), and give to the attacker read/write access to
it. However, the tampering function, besides getting direct (partial) access to
the encoding of sk, it also gets indirect access to it by (partially) controlling the
CRS. Then, it can modify the CRS in way such that, during decoding, ciphertext
locations of its choice will be treated as bits of the inner encoding, z, increasing
the tampering rate against z significantly. This makes the task of protecting sk
hard, if not impossible (unless we restrict the access rate significantly).

To handle this challenge, we embed the structure recovering mechanism inside
the codeword and we emulate the CRS effect by increasing the size of the alpha-
bet, giving rise to a block-wise structure.10 Notice that, non-malleable codes
with large alphabet size (i.e., poly(k) + |s| bits) might be easy to construct, as
we can embed in each codeword block the verification key of a signature scheme
together with a secret share of the message, as well as a signature over the share.
In this way, partial access over the codeword does not compromise the security
of the signature scheme while the message remains private, and the simulation is
straightforward. This approach however, comes with a large overhead, decreasing
the information rate and access rate of the scheme significantly. In general, and
similar to error correcting codes, we prefer smaller alphabet sizes – the larger
the size is, the more coarse access structure is required, i.e., in order to access
individual bits we need to access the blocks that contain them. In this work,
we aim at minimizing this restriction by using small alphabets, as we describe
below.
10 Bigger alphabets have been also considered in the context of error-correcting codes,

in which the codeword consists of symbols.

586 A. Kiayias et al.

z

e← Encryptsk(s)

← SecretShare sk||sk3)

Secret key: sk

Message: s

1||index||z[index]

Randomly chosen blocks

0||epart
(Blocks) (Contents)

Fig. 2. Description of the scheme in the standard model.

Our approach on the problem is the following. We increase the alphabet size
to O(log k) bits, and we consider two types of blocks: (i) sensitive blocks, in
which we store the inner encoding, z, of the secret key, sk, and (ii) non-sensitive
blocks, in which we store the ciphertext, e, that is fragmented into blocks of
size O(log k). The first bit of each block indicates whether it is a sensitive block,
i.e., we set it to 1 for sensitive blocks and to 0, otherwise. Our encoder works
as follows: on input message s, it computes z, e, as in the previous scheme and
then uses rejection sampling to sample the indices, ρ1, . . . , ρ|z|, for the sensitive
blocks. Then, for every i ∈ {1, . . . , |z|}, ρi is a sensitive block, with contents
(1||i||z[i]), while the remaining blocks keep ciphertext pieces of size O(log k).
Decoding proceeds as follows: on input codeword C = (C1, . . . , Cbn), for each
i ∈ [bn], if Ci is a non-sensitive block, its data will be part of e, otherwise, the
last bit of Ci will be part of z, as it is dictated by the index stored in Ci. If the
number of sensitive blocks is not the expected, the decoder outputs ⊥, otherwise,
z, e, have been fully recovered and decoding proceeds as in the previous scheme.
Our scheme is depicted in Fig. 2.

The security of our construction is based on the fact that, due to our shuf-
fling technique, the position mapping will not be completely overwritten by the
attacker, and as we prove in Sect. 4, this suffices for protecting the inner encod-
ing over sk. We prove security of the current scheme (cf. Theorem4.4) by a
reduction to the security of the scheme in the CRS model. Our instantiation
yields a rate 1 − 1/Ω(log k) MD-NMC in the standard model, with access rate
1−1/Ω(log k) and codewords of length |s|(1+1/O(log k))+O(k2 log2 k), assum-
ing one-way functions.

It is worth pointing out that the idea of permuting blocks containing sensitive
and non-sensitive data was also considered by [42] in the context of list-decodable
codes, however the similarity is only in the fact that a permutation is being used
at some point in the encoding process, and our objective, construction and proof
are different.

Continuously non-malleable codes with light updates. We observe that
the codewords of the block-wise scheme can be updated efficiently, using shuffling
and refreshing operations. Based on this observation, we prove that our code is

Non-Malleable Codes for Partial Functions with Manipulation Detection 587

secure against continuous attacks, for a notion of security that is weaker than
the original one [30], as we need to update our codeword. However, our update
mechanism is using cheap operations, avoiding the full decoding and re-encoding
of the message, which is the standard way to achieve continuous security [27,37].
In addition, our solution avoids the usage of a self-destruction mechanism that
produces ⊥ in all subsequent rounds after the first round in which the attacker
creates an invalid codeword, which was originally achieved by [28], and makes
an important step towards practicality.

The update mechanism works as follows: in each round, it randomly shuffles
the blocks and refreshes the randomness of the inner encoding of sk. The idea
here is that, due to the continual shuffling and refreshing of the inner encoding
scheme, in each round the attacker learns nothing about the secret key, and
every attempt to modify the inner encoding, results to an invalid key, with
overwhelming probability. Our update mechanism can be made deterministic if
we further encode a seed of a PRG together with the secret key, which is similar
to the technique presented in [37].

Our results are presented in Sect. 5 (cf. Theorem 5.3), and the rates for the
current scheme match those of the one-time secure, block-wise code.

1.3 Applications

Security against passive attackers - AONTs. Regarding the passive set-
ting, our model and constructions find useful application in all settings where
AONTs are useful (cf. [13,14,40,41]), e.g., for increasing the security of encryp-
tion without increasing the key-size, for improving the efficiency of block ciphers
and constructing remotely keyed encryption [13,41], and also for constructing
computationally secure secret sharing [40]. Other uses of AONTs are related to
optimal asymmetric encryption padding [13].

Security against memory tampering - (Binary alphabets, Logarith-
mic length CRS). As with every NMC, the most notable application of the
proposed model and constructions is when aiming for protecting cryptographic
devices against memory tampering. Using our CRS based construction we can
protect a large tamperable memory with a small (logarithmic in the message
length) tamperproof memory, that holds the CRS.

The construction is as follows. Consider any device performing cryptographic
operations, e.g., a smart card, whose memory is initialized when the card is being
issued. Each card is initialized with an independent CRS, which is stored in a
tamper-proof memory, while the codeword is stored in a tamperable memory.
Due to the independency of the CRS values, it is plausible to assume that the
adversary is not given access to the CRS prior to tampering with the card; the
full CRS is given to the tampering function while it tampers with the codeword
during computation. This idea is along the lines of the only computation leaks
information model [38], where data can only be leaked during computation,
i.e., the attacker learns the CRS when the devices performs computations that
depend on it. We note that in this work we allow the tampering function to read

588 A. Kiayias et al.

the full CRS, in contrast to [32], in which the tampering function receives partial
information over it (our CRS can also be tampered, cf. the above discussion). In
subsequent rounds the CRS and the codeword are being updated by the device,
which is the standard way to achieve security in multiple rounds while using a
one-time NMC [27].

Security against memory tampering - (Logarithmic length alphabets,
no CRS). In modern architectures data is stored and transmitted in chunks,
thus our block-wise encoding scheme can provide tamper-resilience in all these
settings. For instance, consider the case of arithmetic circuits, having memory
consisting of consecutive blocks storing integers. Considering adversaries that
access the memory of such circuits in a block-wise manner, is a plausible sce-
nario. In terms of modeling, this is similar to tamper-resilience for arithmetic
circuits [33], in which the attacker, instead of accessing individual circuit wires
carrying bits, it accesses wires carrying integers. The case is similar for RAM
computation where the CPU operates over 32 or 64 bit registers (securing RAM
programs using NMC was also considered by [22–24,31]). We note that the
memory segments in which the codeword blocks are stored do not have to be
physically separated, as partial functions output values that depend on the whole
input in which they receive access to. This is in contrast to the split-state set-
ting in which the tampering function tampers with each state independently,
and thus the states need to be physically separated.

Security against adversarial channels. In Wiretap Channels [9,39,45] the
goal is to communicate data privately against eavesdroppers, under the assump-
tion that the channel between the sender and the adversary is “noisier” than
the channel between the sender and the receiver. The model that we propose
and our block-wise construction can be applied in this setting to provide privacy
against a wiretap adversary under the assumption that due to the gap of noise
there is a small (of rate o(1)) fraction of symbols that are delivered intact to the
receiver and dropped from the transmission to the adversary. This enables pri-
vate, key-less communication between the parties, guaranteeing that the receiver
will either receive the original message, or ⊥. In this way, the communication
will be non-malleable in the sense that the receiver cannot be lead to output
⊥ depending on any property of the plaintext. Our model allows the noise in
the receiver side to depend on the transmission to the wiretap adversary, that
tampers with a large (of rate 1−o(1)) fraction of symbols, leading to an “active”
variant of the wiretap model.

1.4 Related Work

Manipulation detection has been considered independently of the notion of non-
malleability, in the seminal paper by Cramer et al. [21], who introduced the
notion of algebraic manipulation detection (AMD) codes, providing security
against additive attacks over the codeword. A similar notion was considered
by Jafargholi and Wichs [34], called tamper detection, aiming to detect mali-
cious modifications over the codeword, independently of how those affect the

Non-Malleable Codes for Partial Functions with Manipulation Detection 589

output of the decoder. Tamper detection ensures that the application of any
(admissible) function to the codeword leads to an invalid decoding.

Non-malleable codes for other function classes have been extensively stud-
ied, such as constant split-state functions [17,25], block-wise tampering [15,19],
while the work of [2] develops beautiful connections among various function
classes. In addition, other variants of non-malleable codes have been pro-
posed, such as continuous non-malleable codes [30], augmented non-malleable
codes [1], locally decodable/updatable non-malleable codes [16,22–24,31], and
non-malleable codes with split-state refresh [28]. In [7] the authors consider
AC0 circuits, bounded-depth decision trees and streaming, space-bounded adver-
saries. Leakage resilience was also considered as an additional feature, e.g.,
by [16,24,28,37].

2 Preliminaries

In this section we present basic definitions and notation that will be used
throughout the paper.

Definition 2.1 (Notation). Let t, i, j, be non-negative integers. Then, [t] is the
set {1, . . . , t}. For bit-strings x, y, x||y, is the concatenation of x, y, |x| denotes
the length of x, for i ∈ [|x|], x[i] is the i-th bit of x,

�t
j=1 xj := x1|| . . . ||xt, and

for i ≤ j, x[i : j] = x[i]|| . . . ||x[j]. For a set I, |I|, P(I), are the cardinality and
power set of I, respectively, and for I ⊆ [|x|], x|I is the projection of the bits
of x with respect to I. For a string variable c and value v, c ← v denotes the
assignment of v to c, and c[I] ← v, denotes an assignment such that c|I equals v.
For a distribution D over a set X , x ← D, denotes sampling an element x ∈ X ,
according to D, x ← X denotes sampling a uniform element x from X , UX
denotes the uniform distribution over X and x1, . . . , xt

rs← X denotes sampling a
uniform subset of X with t distinct elements, using rejection sampling. The sta-
tistical distance between two random variables X, Y , is denoted by Δ(X,Y), “≈”
and “≈c”, denote statistical and computational indistinguishability, respectively,
and negl(k) denotes an unspecified, negligible function, in k.

Below, we define coding schemes, based on the definitions of [27,37].

Definition 2.2 (Coding scheme [27]). A (κ, ν)-coding scheme, κ, ν ∈ N, is a
pair of algorithms (Enc,Dec) such that: Enc : {0, 1}κ → {0, 1}ν is an encod-
ing algorithm, Dec : {0, 1}ν → {0, 1}κ ∪ {⊥} is a decoding algorithm, and for
every s ∈ {0, 1}κ, Pr[Dec(Enc(s)) = s] = 1, where the probability runs over the
randomness used by (Enc,Dec).

We can easily generalize the above definition for larger alphabets, i.e., by
considering Enc : {0, 1}κ → Γ ν and Dec : Γ ν → {0, 1}κ ∪ {⊥}, for some alpha-
bet Γ .

Definition 2.3 (Coding scheme in the Common Reference String
(CRS) Model [37]). A (κ, ν)-coding scheme in the CRS model, κ, ν ∈ N,

590 A. Kiayias et al.

is a triple of algorithms (Init,Enc,Dec) such that: Init is a randomized algo-
rithm which receives 1k, where k denotes the security parameter, and produces a
common reference string Σ ∈ {0, 1}poly(k), and (Enc(1k, Σ, ·),Dec(1k, Σ, ·)) is a
(κ, ν)-coding scheme, κ, ν = poly(k).

For brevity, 1k will be omitted from the inputs of Enc and Dec.
Below we define non-malleable codes with manipulation detection, which is a

stronger notion than the one presented in [27], in the sense that the tampered
codeword will always decode to the original message or to ⊥. Our definition is
with respect to alphabets, as in Sect. 4 we consider alphabets of size O(log k).

Definition 2.4 (Non-Malleability with Manipulation Detection (MD-NMC)).
Let Γ be an alphabet, let (Init,Enc,Dec) be a (κ, ν)-coding scheme in the common
reference string model, and F be a family of functions f : Γ ν → Γ ν . For any
f ∈ F and s ∈ {0, 1}κ, define the tampering experiment

Tamperfs :=
{

Σ ← Init(1k), c ← Enc(Σ, s), c̃ ← fΣ(c), s̃ ← Dec(Σ, c̃)
Output : s̃.

}

which is a random variable over the randomness of Enc, Dec and Init. The coding
scheme (Init,Enc,Dec) is non-malleable with manipulation detection with respect
to the function family F , if for all, sufficiently large k and for all f ∈ F , there
exists a distribution D(Σ,f) over {0, 1}κ ∪ {⊥, same∗}, such that for all s ∈
{0, 1}κ, we have:

{
Tamperfs

}
k∈N

≈
{

s̃ ← D(Σ,f)

Output s if s̃ = same∗, and ⊥ otherwise

}
k∈N

where Σ ← Init(1k) and D(Σ,f) is efficiently samplable given access to f , Σ.
Here, “≈” may refer to statistical, or computational, indistinguishability.

In the above definition, f is parameterized by Σ to differentiate tamper-proof
input, i.e., Σ, from tamperable input, i.e., c.

Below we define the tampering function class that will be used throughout
the paper.

Definition 2.5 (The class of partial functions Fαν
Γ (or Fα)). Let Γ be an alpha-

bet, α ∈ [0, 1) and ν ∈ N. Any f ∈ Fαν
Γ , f : Γ ν → Γ ν , is indexed by a set

I ⊆ [ν], |I| ≤ αν, and a function f ′ : Γαν → Γαν , such that for any x ∈ Γ ν ,
(f(x))|I = f ′ (x|I

)
and (f(x))|Ic = x|Ic , where Ic := [ν]\I.

For simplicity, in the rest of the text we will use the notation f(x) and f(x|I)
(instead of f ′ (x|I

)
). Also, the length of the codeword, ν, according to Γ , will be

omitted from the notation and whenever Γ is omitted we assume that Γ = {0, 1}.
In Sect. 3, we consider Γ = {0, 1}, while in Sect. 4, Γ = {0, 1}O(log k), i.e., the
tampering function operates over blocks of size O(log k). When considering the
CRS model, the functions are parameterized by the common reference string.

The following lemma is useful for proving security throughout the paper.

Non-Malleable Codes for Partial Functions with Manipulation Detection 591

Lemma 2.6. Let (Enc,Dec) be a (κ, ν)-coding scheme and F be a family of
functions. For every f ∈ F and s ∈ {0, 1}κ, define the tampering experiment

Tamperfs :=
{

c ← Enc(s), c̃ ← f(c), s̃ ← Dec(c̃)
Output same∗ if s̃ = s, and s̃ otherwise.

}

which is a random variable over the randomness of Enc and Dec. (Enc,Dec) is
an MD-NMC with respect to F , if for any f ∈ F and all sufficiently large k: (i)
for any pair of messages s0, s1 ∈ {0, 1}κ,

{
Tamperfs0

}
k∈N

≈
{
Tamperfs1

}
k∈N

,

and (ii) for any s, Pr
[
Tamperfs /∈ {⊥, s}

]
≤ negl(k). Here, “≈” may refer to

statistical, or computational, indistinguishability.

The proof of the above lemma is provided in the full version of the paper.
For coding schemes in the CRS model the above lemma is similar, and Tamperfs
internally samples Σ ← Init(1k).

3 An MD-NMC for Partial Functions, in the CRS Model

In this section we consider Γ = {0, 1} and we construct a rate 1 MD-NMC for
Fα, with access rate α = 1 − 1/Ω(log k). Our construction is defined below and
depicted in Fig. 1.

Construction 3.1. Let k, m ∈ N, let (KGen,E,D) be a symmetric encryp-
tion scheme, (SSm,Recm) be an m-out-of-m secret sharing scheme, and let
l ← 2m|sk|, where sk follows KGen(1k). We define an encoding scheme
(Init,Enc,Dec), that outputs ν = l + |e| bits, e ← Esk(s), as follows:

– Init(1k): Sample r1, . . . , rl
rs← {0, 1}log(ν), and output Σ = (r1, . . . , rl).

– Enc(Σ, ·): for input message s, sample sk ← KGen(1k), e ← Esk(s).
• (Secret share) Sample z ← SSm(sk||sk3), where z =

�2|sk|
i=1 zi, z ∈

{0, 1}2m|sk|, and for i ∈ [|sk|], zi (resp. z|sk|+i) is an m-out-of-m secret
sharing of sk[i] (resp. sk3[i]).

• (Shuffle) Compute c ← PΣ(z||e) as follows:
1. (Sensitive bits): Set c ← 0ν . For i ∈ [l], c[ri] ← z[i].
2. (Ciphertext bits): Set i ← 1. For j ∈ [l + |e|], if j /∈ {rp | p ∈ [l]},

c[j] ← e[i], i++.
Output c.

– Dec(Σ, ·): on input c, compute (z||e) ← P−1
Σ (c), (sk||sk′) ← Recm(z), and if

sk3 = sk′, output Dsk(e), otherwise output ⊥.

The set of indices of zi in the codeword will be denoted by Zi.

In the above we consider all values as elements over GF(2poly(k)).
Our construction combines authenticated encryption with an inner encoding

that works as follows. It interprets sk as an element in the finite field GF(2|sk|)
and computes sk3 as a field element. Then, for each bit of (sk||sk3), it computes

592 A. Kiayias et al.

an m-out-of-m secret sharing of the bit, for some parameter m (we note that
elements in GF(2|sk|) can be interpreted as bit strings). Then, by combining the
inner encoding with the shuffling technique, we get a encoding scheme whose
security follows from the observations that we briefly present below:

– For any tampering function which does not have access to all m shares of a
single bit of (sk||sk3), the tampering effect on the secret key can be expressed
essentially as a linear shift, i.e., as ((sk + δ)||(sk3 + η)) for some (δ, η) ∈
GF(2|sk|) × GF(2|sk|), independent of sk.

– By permuting the locations of the inner encoding and the ciphertext bits,
we have that with overwhelming probability any tampering function who
reads/writes on a (1 − o(1)) fraction of codeword bits, will not learn any
single bit of (sk||sk3).

– With overwhelming probability over the randomness of sk and CRS, for
non-zero η and δ, (sk + δ)3
= sk3 + η, and this property enables us to
design a consistency check mechanism whose output is simulatable, without
accessing sk.

– The security of the final encoding scheme follows by composing the security
of the inner encoding scheme with the authenticity property of the encryption
scheme.

Below we present the formal security proof of the above intuitions.

Theorem 3.2. Let k, m ∈ N and α ∈ [0, 1). Assuming (SSm,Recm) is an
m-out-of-m secret sharing scheme and (KGen,E,D) is 1-IND-CPA11 secure,
authenticated encryption scheme, the code of Construction 3.1 is a MD-NMC
against Fα, for any α, m, such that (1 − α)m = ω(log(k)).

Proof. Let I be the set of indices chosen by the attacker and Ic = [ν]\I, where
ν = 2m|sk| + |e|. The tampered components of the codeword will be denoted
using the character “˜” on top of the original symbol, i.e., we have c̃ ← f(c), the
tampered secret key sk (resp. sk3) that we get after executing Recm(z̃) will be
denoted by s̃k (resp. s̃k

′
). Also the tampered ciphertext will be ẽ. We prove the

needed using a series of hybrid experiments that are depicted in Fig. 3. Below,
we describe the hybrids.

– ExpΣ,f,s
0 : We prove security of our code using Lemma 2.6, i.e., by showing that

(i) for any s0, s1, Tamperfs0
≈ Tamperfs1

, and (ii) for any s, Pr
[
Tamperfs /∈

{⊥, s}] ≤ negl(k), where Tamperfs is defined in Lemma 2.6. For any f , s,
Σ ← Init(1k), the first experiment, ExpΣ,f,s

0 , matches the experiment Tamperfs
in the CRS model, i.e., Σ is sampled inside Tamperfs .

11 This is an abbreviations for indistinguishability under chosen plaintext attack, for a
single pre-challenge query to the encryption oracle.

Non-Malleable Codes for Partial Functions with Manipulation Detection 593

ExpΣ,f,s
0 :

c ← Enc(Σ, s), c̃ ← 0ν

c̃[I] ← fΣ(c|I), c̃[I
c] ← c|Ic

s̃ ← Dec(c̃)

Output same∗ if s̃ = s and s̃ otherwise.

ExpΣ,f,s
1 :

c ← Enc(Σ, s), c̃ ← 0ν

c̃[I] ← fΣ(c|I), c̃[I
c] ← c|Ic

If ∃i : |(I ∩ Zi)| = m:

s̃ ← ⊥
Else:

s̃ ← Dec(c̃)

Output same∗ if s̃ = s and s̃ otherwise.

ExpΣ,f,s
2 :

sk ← KGen(1k), e ← Esk(s)

z∗ ← S̄Sf
m(Σ, sk), c ← PΣ(z∗||e)

c̃ ← 0ν , c̃[I] ← fΣ(c|I), c̃[I
c] ← c|Ic

If ∃i : |(I ∩ Zi)| = m:
s̃ ← ⊥

Else:
If ∃i :

⊕
j∈(I∩Zi)

c[j] �= ⊕
j∈(I∩Zi)

c̃[j]:

s̃ ← ⊥
Else:

s̃ ← Dsk(ẽ)

Output same∗ if s̃ = s and s̃ otherwise.

ExpΣ,f,s
3 :

sk ← KGen(1k), e ← Esk(s)
z∗ ← S̄Sf

m(Σ, sk), c ← PΣ(z∗||e)

c̃ ← 0ν , c̃[I] ← fΣ(c|I)

If ∃i : |(I ∩ Zi)| = m:
s̃ ← ⊥

Else:

If ∃i :
⊕

j∈(I∩Zi)
c[j] �= ⊕

i∈(I∩Zi)
c̃[j]:

s̃ ← ⊥
Else: s̃ ← ⊥

If ẽ = e:
s̃ ← same∗

Output s̃.

Fig. 3. The hybrid experiments for the proof of Theorem 3.2.

– ExpΣ,f,s
1 : In the second experiment we define Zi, i ∈ [2|sk|], to be the set of

codeword indices in which the secret sharing zi is stored, |Zi| = m. The main
difference from the previous experiment is that the current one outputs ⊥, if
there exists a bit of sk or sk3 for which the tampering function reads all the
shares of it, while accessing at most αν bits of the codeword. Intuitively, and
as we prove in Claim 3.3, by permuting the location indices of z||e, this event
happens with probability negligible in k, and the attacker does not learn any
bit of sk and sk3, even if he is given access to (1−o(1))ν bits of the codeword.

– ExpΣ,f,s
2 : By the previous hybrid we have that for all i ∈ [2|sk|], the tampering

function will not access all bits of zi, with overwhelming probability. In the
third experiment we unfold the encoding procedure, and in addition, we sub-
stitute the secret sharing procedure SSm with S̄S

f
m that computes shares z∗

i

that reveal no information about sk||sk3; for each i, S̄Sf
m simply “drops” the

bit of zi with the largest index that is not being accessed by f . We formally
define S̄S

f
m below.

594 A. Kiayias et al.

S̄S
f
m(Σ, sk):

1. Sample
(
z1, . . . , z2|sk|

) ← SSm

(
sk||sk3

)
and set z∗

i ← zi, i ∈ [2|sk|].
2. For i ∈ [2|sk|], let li := maxd {d ∈ [m] ∧ Ind (zi[d]) /∈ I)}, where Ind

returns the index of zi[d] in c, i.e., li is the largest index in [m] such
that zi[li] is not accessed by f .

3. (Output): For all i set z∗
i [li] = ∗, and output z∗ :=‖2|sk|

i=1 z∗
i .

In ExpΣ,f,s
1 , z =

�2|sk|
i=1 zi, and each zi is an m-out-of-m secret sharing for a

bit of sk or sk3. From Claim 3.3, we have that for all i, |I ∩ Zi| < m with
overwhelming probability, and we can observe that the current experiment is
identical to the previous one up to the point of computing f(c|I), as c|I and
f(c|I) depend only on z∗, that carries no information about sk and sk3.

Another difference between the two experiments is in the external “Else”
branch: ExpΣ,f,s

1 makes a call on the decoder while ExpΣ,f,s
2 , before calling

Dsk(ẽ), checks if the tampering function has modified the shares in a way such
that the reconstruction procedure ((s̃k, s̃k

′
) ← Recm(z̃)) will give s̃k
= sk

or s̃k
′
= sk′. This check is done by the statement “If ∃i :

⊕
j∈(I∩Zi)

c[j]
=⊕
j∈(I∩Zi)

c̃[j]”, without touching sk or sk3.12 In case modification is detected
the current experiments outputs ⊥. The intuition is that an attacker that
partially modifies the shares of sk and sk3, creates shares of s̃k and s̃k

′
,

such that s̃k
3

= s̃k
′
, with negligible probability in k. We prove this by a

reduction to the 1-IND-CPA security of the encryption scheme: any valid
modification over the inner encoding of the secret key gives us method to
compute the original secret key sk, with non-negligible probability. The ideas
are presented formally in Claim 3.4.

– ExpΣ,f,s
3 : The difference between the current experiment and the previous one

is that instead of calling the decryption Dsk(ẽ), we first check if the attacker
has modified the ciphertext, in which case the current experiment outputs
⊥, otherwise it outputs same∗. By the previous hybrid, we reach this newly
introduced “Else” branch of ExpΣ,f,s

3 , only if the tampering function didn’t
modify the secret key. Thus, the indistinguishability between the two experi-
ments follows from the authenticity property of the encryption scheme in the
presence of z∗: given that s̃k = sk and s̃k

′
= sk′, we have that if the attacker

modifies the ciphertext, then with overwhelming probability Dsk(ẽ) = ⊥, oth-
erwise, Dsk(ẽ) = s, and the current experiment correctly outputs same∗ or ⊥
(cf. Claim 3.5).

– Finally, we prove that for any f ∈ Fα, and message s, ExpΣ,f,s
3 is indistin-

guishable from ExpΣ,f,0
3 , where 0 denotes the zero-message. This follows by

the semantic security of the encryption scheme, and gives us the indistin-
guishability property of Lemma2.6. The manipulation detection property is
derived by the indistinguishability between the hybrids and the fact that the
output of ExpΣ,f,s

3 is in the set {same∗,⊥}.

12 Recall that our operations are over GF(2poly(k)).

Non-Malleable Codes for Partial Functions with Manipulation Detection 595

In what follows, we prove indistinguishability between the hybrids using a series
of claims.

Claim 3.3. For k, m ∈ N, assume (1−α)m = ω(log(k)). Then, for any f ∈ Fα

and any message s, we have ExpΣ,f,s
0 ≈ ExpΣ,f,s

1 , where the probability runs over
the randomness used by Init, Enc.

Proof. The difference between the two experiments is that ExpΣ,f,s
1 outputs

⊥ when the attacker learns all shares of some bit of sk or sk3, otherwise it
produces output as ExpΣ,f,s

0 does. Let E the event “∃i : |(I ∩ Zi)| = m”.
Clearly, ExpΣ,f,s

0 = ExpΣ,f,s
1 conditioned on ¬E, thus the statistical distance

between the two experiments is bounded by Pr[E]. In the following we show
that Pr[E] ≤ negl(k). We define by Ei the event in which f learns the entire
zi. Assuming the attacker reads n bits of the codeword, we have that for all
i ∈ [2|sk|],

Pr
Σ

[Ei] = Pr
Σ

[|I ∩ Zi| = m] =
m−1∏
j=0

n − j

ν − j
≤

(n

ν

)m

.

We have n = αν and assuming α = 1 − ε for ε ∈ (0, 1], we have Pr[Ei] ≤
(1 − ε)m ≤ 1/emε and Pr[E] = PrΣ

[⋃2|sk|
i=1 Ei

]
≤ 2|sk|

emε , which is negligible when
(1 − α)m = ω(log(k)), and the proof of the claim is complete. �

Claim 3.4. Assuming (KGen,E,D) is 1-IND-CPA secure, for any f ∈ Fα and
any message s, ExpΣ,f,s

1 ≈ ExpΣ,f,s
2 , where the probability runs over the random-

ness used by Init, Enc.

Proof. In ExpΣ,f,s
2 we unfold the encoding procedure, however instead of calling

SSm, we make a call to S̄S
f
m. As we have already stated above, this modification

does not induce any difference between the output of ExpΣ,f,s
2 and ExpΣ,f,s

1 ,
with overwhelming probability, as z∗ is indistinguishable from z in the eyes
of f . Another difference between the two experiments is in the external “Else”
branch: ExpΣ,f,s

1 makes a call on the decoder while ExpΣ,f,s
2 , before calling Dsk(ẽ),

checks if the tampering function has modified the shares in a way such that the
reconstruction procedure will give s̃k
= sk or s̃k

′
= sk′. This check is done by
the statement “If ∃i :

⊕
j∈(I∩Zi)

c[j]
= ⊕
j∈(I∩Zi)

c̃[j]”, without touching sk or
sk3 (cf. Claim 3.3).13 We define the events E, E′ as follows

E : Dec(c̃)
= ⊥, E′ : ∃i :
⊕

j∈(I∩Zi)
c[j]
=

⊕
j∈(I∩Zi)

c̃[j].

Clearly, conditioned on ¬E′ the two experiments are identical, since we have
s̃k = sk and s̃k

′
= sk′, and the decoding process will output Dsk(ẽ) in both

experiments. Thus, the statistical distance is bounded by Pr[E′]. Now, con-
ditioned on E′ ∧ ¬E, both experiments output ⊥. Thus, we need to bound
13 Recall that our operations are over GF(2poly(k)).

596 A. Kiayias et al.

Pr[E ∧ E′]. Assuming Pr[E ∧ E′] > p, for p = 1/poly(k), we define an attacker
A that simulates ExpΣ,f,s

2 , and uses f , s to break the 1-IND-CPA security
of (KGen,E,D) in the presence of z∗, with probability at least 1/2 + p′′/2, for
p′′ = 1/poly(k).

First we prove that any 1-IND-CPA secure encryption scheme, remains
secure even if the attacker receives z∗ ← S̄S

f
m(Σ, sk), as z∗ consists of

m − 1 shares of each bit of sk and sk3, i.e., for the entropy of sk we have
H(sk|z∗) = H(sk). Towards contradiction, assume there exists A that breaks the
1-IND-CPA security of (KGen,E,D) in the presence of z∗, i.e., there
exist s, s0, s1 such that A distinguishes between (z∗,Esk(s),Esk(s0)) and
(z∗,Esk(s),Esk(s1)), with non-negligible probability p. We define an attacker
A′ that breaks the 1-IND-CPA security of (KGen,E,D) as follows: A′, given
(Esk(s),Esk(sb)), for some b ∈ {0, 1}, samples ŝk ← KGen(1k), ẑ∗ ← S̄S

f
m(Σ, ŝk)

and outputs b′ ← A(z∗,Esk(s),Esk(sb)). Since (z∗,Esk(s),Esk(sb)) ≈ (ẑ∗,Esk(s),
Esk(sb)) the advantage of A′ in breaking the 1-IND-CPA security of the scheme
is the advantage of A in breaking the 1-IND-CPA security of the scheme in the
presence of z∗, which by assumption is non-negligible, and this completes the
current proof. We note that the proof idea presented in the current paragraph
also applies for proving that other properties that will be used in the rest of the
proof, such as semantic security and authenticity, of the encryption scheme, are
retained in the presence of z∗.

Now we prove our claim. Assuming Pr[E ∧ E′] > p, for p = 1/poly(k), we
define an attacker A that breaks the 1-IND-CPA security of (KGen,E,D) in the
presence of z∗, with non-negligible probability. A receives the encryption of s,
which corresponds to the oracle query right before receiving the challenge cipher-
text, the challenge ciphertext e ← Esk(sb), for uniform b ∈ {0, 1} and uniform
messages s0, s1, as well as z∗. A is defined below.

A
(
z∗ ← S̄S

f
m(Σ, sk), e′ ← Esk(s), e ← Esk(sb)

)
:

1. (Define the shares that will be accessed by f): For i ∈ [2|sk|],
define wi := (z∗

i)|[m]\{li} and for i ∈ [m − 1] define Ci =
�|sk|
j=1 wj [i],

Di =
�2|sk|
j=|sk|+1 wj [i].

2. (Apply f) Set c ← PΣ(z∗||e), compute c̃[I] ← fΣ(c|I) and let C̃i, D̃i, i ∈ [m],
be the tampered shares resulting after the application of f to c|I .

3. (Guessing the secret key) Let U =
∑m−1

i=1 Ci, V =
∑m−1

i=1 Di, i.e., U , V
denote the sum of the shares that are being accessed by the attacker (maybe
partially), and Ũ =

∑m−1
i=1 C̃i, Ṽ =

∑m−1
i=1 D̃i, are the corresponding tam-

pered values after applying f on U , V . Define

p(X) := (U − Ũ)X2 + (U2 − Ũ2)X + (U3 − Ũ3 − V + Ṽ),

and compute the set of roots of p(X), denoted as X , which are at most two.
Then set

ŜK := {x + U |x ∈ X} . (1)

Non-Malleable Codes for Partial Functions with Manipulation Detection 597

4. (Output) Execute the following steps,
(a) For ŝk ∈ ŜK, compute s′ ← Dŝk(e′), and if s′ = s, compute s′′ ← Dŝk(e).

Output b′ such that sb′ = s′′.
(b) Otherwise, output b′ ← {0, 1}.

In the first step A removes the dummy symbol “∗” and computes the shares
that will be partially accessed by f , denoted as Ci for sk and as Di for sk3. In
the second step, it defines the tampered shares, C̃i, D̃i. Conditioned on E′, it is
not hard to see that A simulates perfectly ExpΣ,f,s

2 . In particular, it simulates
perfectly the input to f as it receives e ← Esk(s) and all but 2|sk| of the actual
bit-shares of sk, sk3. Part of those shares will be accessed by f . Since for all i,
|I ∩Zi| < m, the attacker is not accessing any single bit of sk, sk3. Let Cm, Dm,
be the shares (not provided by the encryption oracle) that completely define sk
and sk3, respectively. By the definition of the encoding scheme and the fact that
sk, sk3 ∈ GF(2poly(k)), we have

∑m
i=1 Ci = sk,

∑m
i=1 Di = sk3, and

(U + Cm)3 = V + Dm. (2)

In order for the decoder to output a non-bottom value, the shares created by
the attacker must decode to s̃k, s̃k

′
, such that s̃k

3
= s̃k

′
, or in other words, if

(
Ũ + Cm

)3

= Ṽ + Dm. (3)

From2 and 3 we receive

(U − Ũ)C2
m + (U2 − Ũ2)Cm + (U3 − Ũ3) = V − Ṽ . (4)

Clearly, Pr[E ∧ E′ ∧ (U = Ũ)] = 0. Thus, assuming Pr[E ∧ E′] > p, for
p > 1/poly(k), we receive

p < Pr
[
E ∧ E′ ∧ (U
= Ũ)

]
≤ Pr

[
Dec(c̃)
= ⊥ ∧ E′ ∧ U
= Ũ

]

≤ Pr
[
s̃k

3
= s̃k

′ ∧ E′ ∧ (U
= Ũ)
]

(4,1)
= Pr [Cm ∈ X]

(1)

≤ Pr
[
sk ∈ ŜK

]
, (5)

and A manages to recover Cm, and thus sk, with non-negligible probability
p′ ≥ p. Let W be the event of breaking 1-IND-CPA security. Then,

Pr[W] = Pr[W |sk ∈ ŜK] · Pr[sk ∈ ŜK]
+ Pr[W |sk /∈ ŜK] · Pr[sk /∈ ŜK]
(5)
= p′ +

1
2
(1 − p′) =

1
2

+
p′

2
, (6)

and the attacker breaks the IND-CPA security of (KGen,E,D). Thus, we have
Pr[E ∧ E′] ≤ negl(k), and both experiments output ⊥ with overwhelming prob-
ability. �

598 A. Kiayias et al.

Claim 3.5. Assuming the authenticity property of (KGen,E,D), for any f ∈ Fα

and any message s, ExpΣ,f,s
2 ≈ ExpΣ,f,s

3 , where the probability runs over the
randomness used by Init, KGen and E.

Proof. Before proving the claim, recall that the authenticity property of the
encryption scheme is preserved under the presence of z∗ (cf. Claim 3.4). Let E

be the event s̃k = sk ∧ s̃k
′
= sk3 and E′ be the event ẽ
= e. Conditioned on ¬E,

the two experiments are identical, as they both output ⊥. Also, conditioned on
E ∧¬E′, both experiments output same∗. Thus, the statistical distance between
the two experiments is bounded by Pr[E ∧ E′]. Let B be the event Dsk(ẽ)
= ⊥.
Conditioned on E∧E′∧¬B both experiments output ⊥. Thus, we need to bound
Pr[E ∧ E′ ∧ B].

Assuming there exist s, f , for which Pr[E∧E′∧B] > p, where p = 1/poly(k),
we define an attacker A = (A1,A2) that simulates ExpΣ,f,s

3 and breaks the
authenticity property of the encryption scheme in the presence of z∗, with non-
negligible probability. A is defined as follows: sample (s, st) ← A1(1k), and then,
on input (z∗, e, st), where e ← Esk(s), A2, samples Σ ← Init(1k), sets c̃ ← 0ν ,
c ← PΣ(z∗||e), computes c̃[I] ← f(c|I), c̃[Ic] ← c|Ic , (z̃∗||ẽ) ← P−1

Σ (c̃), and
outputs ẽ. Assuming Pr[E ∧ E′ ∧ B] > p, we have that Dsk(ẽ)
= ⊥ and ẽ
= e,
with non-negligible probability and the authenticity property of (KGen,E,D)
breaks. �
Claim 3.6. Assuming (KGen,E,D) is semantically secure, for any f ∈ Fα and
any message s, ExpΣ,f,s

3 ≈ ExpΣ,f,0
3 , where the probability runs over the ran-

domness used by Init, KGen, E. “≈” may refer to statistical or computational
indistinguishability, and 0 is the zero-message.

Proof. Recall that (KGen,E,D) is semantically secure even in the presence of
z∗ ← S̄S

f
m(Σ, sk) (cf. Claim 3.4), and towards contradiction, assume there exist

f ∈ Fα, message s, and PPT distinguisher D such that∣∣∣Pr
[
D

(
Σ,ExpΣ,f,s

3

)
= 1

]
− Pr

[
D

(
Σ,ExpΣ,f,0

3

)]
= 1

∣∣∣ > p,

for p = 1/poly(k). We are going to define an attacker A that breaks the semantic
security of (KGen,E,D) in the presence of z∗, using s0 := s, s1 := 0. A, given
z∗, e, executes Program.

Program(z∗, e) :
c ← PΣ(z∗||e), c̃ ← 0ν , c̃[I] ← f(c|I)
If ∃i : |(I ∩ Zi)| = m: s̃ ← ⊥
Else:

If ∃i :
⊕

j∈(I∩Zi)
c[j] �= ⊕

j∈(I∩Zi)
c̃[j]: s̃ ← ⊥

Else: s̃ ← ⊥and If ẽ = e: s̃ ← same∗

Output s̃.

It is not hard to see that A simulates ExpΣ,f,sb

3 , thus the advantage of A against
the semantic security of (KGen,E,D) is the same with the advantage of D in dis-
tinguishing between ExpΣ,f,s0

3 , ExpΣ,f,s1
3 , which by assumption is non-negligible.

We have reached a contradiction and the proof of the claim is complete. �

Non-Malleable Codes for Partial Functions with Manipulation Detection 599

From the above claims we have that for any f ∈ Fα and any s, ExpΣ,f,s
0 ≈

ExpΣ,f,0
3 , thus for any f ∈ Fα and any s0, s1, ExpΣ,f,s0

0 ≈ ExpΣ,f,s1
0 . Also,

by the indistinguishability between ExpΣ,f,s
0 and ExpΣ,f,0

3 , the second prop-
erty of Lemma 2.6 has been proven as the output of ExpΣ,f,0

3 is in {s,⊥},
with overwhelming probability, and non-malleability with manipulation detec-
tion of our code follows by Lemma2.6, since ExpΣ,f,s

0 is identical to Tamperfs of
Lemma 2.6. �

4 Removing the CRS

In this section we increase the alphabet size to O(log(k)) and we provide a
computationally secure, rate 1 encoding scheme in the standard model, tolerating
modification of (1 − o(1))ν blocks, where ν is the total number of blocks in the
codeword. Our construction is defined below and the intuition behind it has
already been presented in the Introduction (cf. Sect. 1, Fig. 2). In the following,
the projection operation will be also used with respect to bigger alphabets,
enabling the projection of blocks.

Construction 4.1. Let k, m ∈ N, let (KGen,E,D) be a symmetric encryption
scheme and (SSm,Recm) be an m-out-of-m secret sharing scheme. We define an
encoding scheme (Enc∗,Dec∗), as follows:

– Enc∗(1k, ·): for input message s, sample sk ← KGen
(
1k

)
, e ← Esk(s).

• (Secret share) Sample z ← SSm(sk||sk3), where z =
�2|sk|
i=1 zi, z ∈

{0, 1}2m|sk|, and for i ∈ [|sk|], zi (resp. z|sk|+i) is an m-out-of-m secret
sharing of sk[i] (resp. sk3[i]).

• (Construct blocks & permute) Set l ← 2m|sk|, bs ← log l + 2,
d ← |e|/bs, bn ← l + d, sample ρ := (ρ1, . . . , ρl)

rs← {0, 1}log(bn) and
compute C ← Πρ(z||e) as follows:
1. Set t ← 1, Ci ← 0bs, i ∈ [bn].
2. (Sensitive blocks) For i ∈ [l], set Cri

← (1||i||z[i]).
3. (Ciphertext blocks) For i ∈ [bn], if i
= rj, j ∈ [l], Ci ← (0||e[t :

t + (bs − 1)]), t ← t + (bs − 1).14

Output C := (C1|| . . . ||Cbn).
– Dec∗(1k, ·): on input C, parse it as (C1|| . . . ||Cbn), set t ← 1, l ← 2m|sk|,

z ← 0l, e ← 0, L = ∅ and compute (z||e) ← Π−1(C) as follows:
• For i ∈ [bn],

∗ (Sensitive block) If Ci[1] = 1, set j ← Ci[2 : bs− 1], z [j] ← Ci[bs],
L ← L ∪ {j}.

∗ (Ciphertext block) Otherwise, set e[t : t + bs − 1] = Ci[2 : bs],
t ← t + bs − 1.

• If |L|
= l, output ⊥, otherwise output (z||e).

14 Here we assume that bs − 1, divides the length of the ciphertext e. We can always
achieve this property by padding the message s with zeros, if necessary.

600 A. Kiayias et al.

If Π−1(C) = ⊥, output ⊥, otherwise, compute (sk||sk′) ← Recm(z), and if
sk3 = sk′, output Dsk(e), otherwise output ⊥.

The set of indices of the blocks in which zi is stored will be denoted by Zi.

We prove security for the above construction by a reduction to the security of
Construction 3.1. We note that that our reduction is non-black box with respect
to the coding scheme in which security is reduced to; a generic reduction, i.e.,
non-malleable reduction [2], from the standard model to the CRS model is an
interesting open problem and thus out of the scope of this work.

In the following, we consider Γ = {0, 1}O(log(k)). The straightforward way
to prove that (Enc∗,Dec∗) is secure against Fα

Γ by a reduction to the security
of the bit-wise code of Sect. 3, would be as follows: for any α ∈ {0, 1}, f ∈ Fα

Γ

and any message s, we have to define α′, g ∈ Fα′
, such that the output of

the tampered execution with respect to (Enc∗,Dec∗), f , s, is indistinguishable
from the tampered execution with respect to (Init,Enc,Dec), g, s, and g is an
admissible function for (Init,Enc,Dec). However, this approach might be tricky
as it requires the establishment of a relation between α and α′ such that the
sensitive blocks that f will receive access to, will be simulated using the sensitive
bits accessed by g. Our approach is cleaner: for the needs of the current proof
we leverage the power of Construction 3.1, by allowing the attacker to choose
adaptively the codeword locations, as long as it does not request to read all
shares of the secret key. Then, for every block that is accessed by the block-wise
attacker f , the bit-wise attacker g requests access to the locations of the bit-
wise code that enable him to fully simulate the input to g. We formally present
our ideas in the following sections. In Sect. 4.1 we introduce the function class
Fad that considers adaptive adversaries with respect to the CRS and we prove
security of Construction 3.1 in Corollary 4.3 against a subclass of Fad, and then,
we reduce the security of the block-wise code (Enc∗,Dec∗) against Fα

Γ to the
security of Construction 3.1 against Fad (cf. Sect. 4.2).

4.1 Security Against Adaptive Adversaries

In the current section we prove that Construction 3.1 is secure against the class
of functions that request access to the codeword adaptively, i.e., depending on
the CRS, as long as they access a bounded number of sensitive bits. Below, we
formally define the function class Fad, in which the tampering function picks up
the codeword locations depending on the CRS, and we consider Γ = {0, 1}.

Definition 4.2 (The function class Fν
ad). Let (Init,Enc,Dec) be an (κ, ν)-coding

scheme and let ˚ be the range of Init(1k). For any g = (g1, g2) ∈ Fν
ad, we have

g1 : ˚ → P ([ν]), gΣ
2 : {0, 1}|range(g1)| → {0, 1}|range(g1)| ∪ {⊥}, and for any

c ∈ {0, 1}ν , gΣ (c) = g2

(
c|g1(Σ)

)
. For brevity, the function class will be denoted

as Fad.

Construction 3.1 remains secure against functions that receive full access to the
ciphertext, as well as they request to read all but one shares for each bit of

Non-Malleable Codes for Partial Functions with Manipulation Detection 601

sk and sk3. The result is formally presented in the following corollary and its
proof, which is along the lines of the proof of Theorem3.2, is given in the full
version of the paper.

Corollary 4.3. Let k, m ∈ N. Assuming (SSm,Recm) is an m-out-of-m secret
sharing scheme and (KGen,E,D) is 1-IND-CPA secure authenticated encryption
scheme, the code of Construction 4.1 is a MD-NMC against any g = (g1, g2) ∈
Fad, assuming that for all i ∈ [2|sk|], (Zi ∩ g1(Σ)) < m, where sk ← KGen(1k)
and Σ ← Init(1k).

4.2 MD-NM Security of the Block-Wise Code

In the current section we prove security of Construction 4.1 against Fα
Γ , for

Γ = {0, 1}O(log(k)).

Theorem 4.4. Let k, m ∈ N, Γ = {0, 1}O(log(k)) and α ∈ [0, 1). Assum-
ing (SSm,Recm) is an m-out-of-m secret sharing scheme and (KGen,E,D) is a
1-IND-CPA secure authenticated encryption scheme, the code of Construc-
tion 4.1 is a MD-NMC against Fα

Γ , for any α, m, such that (1 − α)m =
ω(log(k)).

g1(Σ = (r1, . . . , rl)) :
• (Simulate block shuffling):

Sample ρ := (ρ1, . . . , ρl)
rs← {0, 1}log(bn)

• (Construct I): Set I = ∅,
∗ (Add ciphertext locations to I):

For j ∈ [|e| + l], if j /∈ {ri|i ∈ [l]}, I ← (I ∪ j).
∗ (Add sensitive bit locations to I according to Ib):

For j ∈ [bn], if j ∈ Ib and ∃i ∈ [l] such that j = ρi, I ← (I ∪ ri).
• Output: Output I.

Fig. 4. The function g1 that appears in the hybrid experiments of Fig. 7.

gΣ
2 (c|I):

t ← 1, C∗
i ← 0bs, i ∈ [bn].

• (Reconstruct I): Compute I ← g1(Σ).
• (Simulate ciphertext blocks):

For i ∈ [bn], if i �= ρj , j ∈ [l], C∗
i ← (0||e[t : t + (bs − 1)]), t ← t + (bs − 1).

• (Simulate sensitive blocks):

∗ For i ∈ [|I|], if ∃j ∈ [l], such that Ind(c|I [i]) = rj , set C∗
ρj

←
(
1||j||c|I [i]

)
.

∗ Set C∗ := (C∗
1 || . . . ||C∗

bn) and C̃∗ := C∗.
• (Apply f): compute C̃∗[Ib] ← f(C∗

|Ib
).

• (Output): Output C̃∗
|Ib

.

Fig. 5. The function g2 that appears in the hybrid experiments of Fig. 7.

602 A. Kiayias et al.

Proof. Following Lemma 2.6, we prove that for any f ∈ Fα
Γ , and any pair of

messages s0, s1, Tamperfs0
≈ Tamperfs1

, and for any s, Pr
[
Tamperfs /∈ {⊥, s}

]
≤

negl(k), where Tamper denotes the experiment defined in Lemma 2.6 with respect
to the encoding scheme of Construction 4.1, (Enc∗,Dec∗). Our proof is given by
a series of hybrids depicted in Fig. 7. We reduce the security (Enc∗,Dec∗), to
the security of Construction 3.1, (Init,Enc,Dec), against Fad (cf. Corollary 4.3).
The idea is to move from the tampered execution with respect to (Enc∗,Dec∗),
f , to a tampered execution with respect to (Init,Enc,Dec), g, such that the two
executions are indistinguishable and (Init,Enc,Dec) is secure against g.

Let Ib be the set of indices of the blocks that f chooses to tamper with,
where |Ib| ≤ αν, and let l ← 2m|sk|, bs ← log l + 2, bn ← l + |e|/bs. Below we
describe the hybrids of Fig. 7.

– Expf,s
0 : The current experiment is the experiment Tamperfs , of Lemma 2.6,

with respect to (Enc∗,Dec∗), f , s.
– Exp

(g1,g2),s
1 : The main difference between Expf,s

0 and Exp
(g1,g2),s
1 , is that in

the latter one, we introduce the tampering function (g1, g2), that operates
over codewords of (Init,Enc,Dec) and we modify the encoding steps so that
the experiment creates codewords of the bit-wise code (Init,Enc,Dec). (g1, g2)
simulates partially the block-wise codeword C, while given partial access to
the bit-wise codeword c ← Enc(s). As we prove in the full version, it simulates
perfectly the tampering effect of f against C ← Enc∗(s).
g1 operates as follows (cf. Fig. 4): it simulates perfectly the randomness for
the permutation of the block-wise code, denoted as ρ, and constructs a set
of indices I, such that g2 will receive access to, and tamper with, c|I . The
set I is constructed with respect to the set of blocks Ib, that f chooses to
read, as well as Σ, that reveals the original bit positions, i.e., the ones before
permuting (z||e). g2 receives c|I , reconstructs I, simulates partially the blocks
of the block-wise codeword, C, and applies f on the simulated codeword. The
code of g2 is given in Fig. 5. In the full version we show that g2, given c|I ,
simulates perfectly C|Ib , which implies that gΣ

2 (c|I) = f(C|Ib), and the two
executions are identical.

– Exp
(g1,g3),s
2 : In the current experiment, we substitute the function g2 with

g3, and Dec∗ with Dec, respectively. By inspecting the code of g2 and g3
(cf. Figs. 5 and 6, respectively), we observe that latter function executes the
code of the former, plus the “Check labels and simulate c̃[I]” step. Thus
the two experiments are identical up to the point of computing f(C|Ib). The
main idea here is that we want the current execution to be with respect to
(Init,Enc,Dec) against (g1, g3). Thus, we substitute Dec∗ with Dec, and we
expand the function g2 with some extra instructions/checks that are missing
from Dec. We name the resulting function as g3 and we prove that the two
executions are identical.

– Finally, we prove that for any f and any s, Exp
(g1,g3),s
2 ≈ Exp

(g1,g3),0
2 and

Pr
[
Exp

(g1,g3),s
2 /∈ {⊥, s}

]
≤ negl(k). We do so by proving that (g1, g3) is

Non-Malleable Codes for Partial Functions with Manipulation Detection 603

admissible for (Init,Enc,Dec,), i.e., (g1, g3) ∈ Fad, and g3 will not request
to access more that m − 1 shares for each bit of sk, sk3 (cf. Corollary 4.3).
This implies security according to Lemma 2.6.

gΣ
3 (c|I):

t ← 1, C∗
i ← 0bs, i ∈ [bn].

• (Reconstruct I): Compute I ← g1(Σ).
• (Simulate ciphertext blocks):

For i ∈ [bn], if i �= ρj , j ∈ [l], C∗
i ← (0||e[t : t + (bs − 1)]), t ← t + (bs − 1).

• (Simulate sensitive blocks):

∗ For i ∈ [|I|], if ∃j ∈ [l], such that Ind(c|I [i]) = rj , set C∗
ρj

←
(
1||j||c|I [i]

)
.

∗ Set C∗ := (C∗
1 || . . . ||C∗

bn) and C̃∗ := C∗.
• (Apply f): compute C̃∗[Ib] ← f(C∗

|Ib
).

• (Check labels and simulate c̃[I]): If Π−1(C̃∗) = ⊥, set d ← 1, otherwise set (z̃∗||ẽ) ←
Π−1(C̃∗), c̃∗ ← PΣ(z̃∗||ẽ).

• (Output): If d = 1 output ⊥, otherwise output c̃∗
|I .

Fig. 6. The function g3 that appears in the hybrid experiments of Fig. 7.

Expf,s
0 :

sk ← KGen 1k
)
, e ← Esk(s)

z ← SSm(sk||sk3)

ρ := (ρ1, . . . , ρl)
rs← {0, 1}log(bn)

C ← Πρ(z||e), C̃ ← C

C̃[Ib] ← f(C|Ib)

s̃ ← Dec∗(C̃)

Output same∗ if s̃ = s and s̃ otherwise.

Exp(g1,g2),s
1 :

sk ← KGen 1k
)
, e ← Esk(s)

z ← SSm(sk||sk3)

Σ ← Init∗(1k), c ← PΣ(z||e)
I ← g1(Σ)

C ← Πρ(z||e), C̃ ← C

C̃[Ib] ← gΣ
2 (c|I)

s̃ ← Dec∗(C̃)

Output same∗ if s̃ = s and s̃ otherwise.

Exp(g1,g3),s
2 :

Σ ← Init∗(1k)
sk ← KGen 1k

)
, e ← Esk(s)

z ← SSm(sk||sk3)

c ← PΣ(z||e), c̃ ← c
I ← g1(Σ)

c̃[I] ← gΣ
3 (c|I)

s̃ ← Dec(Σ, c̃)

Output same∗ if s̃ = s and s̃ otherwise.

Fig. 7. The hybrid experiments for the proof of Theorem 4.4.

The indistinguishability between the hybrids is given in the full version of the
paper. �

5 Continuous MD-NMC with Light Updates

In this section we enhance the block-wise scheme of Sect. 4 with an update
mechanism, that uses only shuffling and refreshing operations. The resulting
code is secure against continuous attacks, for a notion of security that is weaker
than the original one [30], as we need to update our codeword. Below we define
the update mechanism, which is denoted as Update∗.

Construction 5.1. Let k, m ∈ N, (KGen,E,D), (SSm,Recm) be as in Construc-
tion 4.1. We define the update procedure, Update∗, for the encoding scheme of
Construction 4.1, as follows:

604 A. Kiayias et al.

– Update∗(1k, ·): on input C, parse it as (C1|| . . . ||Cbn), set l ← 2m|sk|, L̂ = ∅,
and set Ĉ := (Ĉ1|| . . . ||Ĉbn) to 0.

• (Secret share 02|sk|): Sample z ← SSm

(
02|sk|), where z =

�2|sk|
i=1 zi,

z ∈ {0, 1}2m|sk|, and for i ∈ [2|sk|], zi is an m-out-of-m secret sharing of
the 0 bit.

• (Shuffle & Refresh): Sample ρ := (ρ1, . . . , ρl)
rs← {0, 1}log(bn). For

i ∈ [bn],
∗ (Sensitive block) If Ci[1] = 1,

· (Shuffle): Set j ← Ci[2 : bs − 1], Ĉρj
← Ci.

· (Refresh): Set Ĉρj
[bs] ← Ĉρj

[bs] ⊕ z[j].
∗ (Ciphertext block)

If Ci[1] = 0, set j ← minn

{
n ∈ [bn]

∣∣n /∈ L̂, n
= ρi, i ∈ [l]
}
, and

Ĉj ← Ci, L̂ ← L̂ ∪ {j}.
Output Ĉ.

The following definition of security is along the lines of the one given in [30],
adapted to the notion of non-malleability with manipulation detection. Also,
after each invocation the codewords are updated, where in our case the update
mechanism is only using shuffling and refreshing operations. In addition, there
is no need for self-destruct after detecting an invalid codeword [28].

Definition 5.2 (Continuously MD-NMC with light updates). Let CS =
(Enc,Dec) be an encoding scheme, F be a functions class and k, q ∈ N. Then, CS
is a q-continuously non-malleable (q-CNM) code, if for every, sufficiently large
k ∈ N, any pair of messages s0, s1 ∈ {0, 1}poly(k), and any PPT algorithm A,{
TamperAs0

(k)
}

k∈N
≈

{
TamperAs1

(k)
}

k∈N
, where,

TamperAs (k) :
C ← Enc(s), s̃ ← 0
For τ ∈ [q] :

f ← A(s̃), C̃ ← f(C), s̃ ← Dec(C̃)
If s̃ = s : s̃ ← same∗

C ← Update∗(1k, C)
out ← A(s̃)
Return : out

and for each round the output of the decoder is not in {s,⊥} with negligible
probability in k, over the randomness of TamperAs .

In the full version of the paper we prove the following statement.

Theorem 5.3. Let q, k, m, ∈ N, Γ = {0, 1}O(log(k)) and α ∈ [0, 1). Assum-
ing (SSm,Recm) is an m-out-of-m secret sharing scheme and (KGen,E,D) is a
1-IND-CPA, authenticated encryption scheme, the scheme of Construction 5.1
is a continuously MD-NMC with light updates, against Fα

Γ , for any α, m, such
that (1 − α)m = ω(log(k)).

Non-Malleable Codes for Partial Functions with Manipulation Detection 605

In the above theorem, q can be polynomial (resp. exponential) in k, assum-
ing the underlying encryption scheme is computationally (resp. unconditionally)
secure.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0 15

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: STOC, pp. 459–468 (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC, pp. 774–783 (2014)

4. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-47989-6 26

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
375–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 16

6. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 31

7. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC0, decision trees, and streaming space-bounded tamper-
ing. Cryptology ePrint Archive, Report 2017/1061 (2017)

8. Bao, F., Deng, R.H., Han, Y., Jeng, A., Narasimhalu, A.D., Ngair, T.: Breaking
public key cryptosystems on tamper resistant devices in the presence of transient
faults. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Proto-
cols 1997. LNCS, vol. 1361, pp. 115–124. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0028164

9. Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 294–311.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 18

10. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052259

11. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

12. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)

13. Boyko, V.: On the security properties of OAEP as an all-or-nothing transform.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 32

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-662-47989-6_26
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/BFb0028164
https://doi.org/10.1007/BFb0028164
https://doi.org/10.1007/978-3-642-32009-5_18
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-48405-1_32

606 A. Kiayias et al.

14. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 33

15. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. IACR Cryptology ePrint Archive, p. 129 (2015)

16. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016-A. LNCS, vol. 9563, pp. 367–392. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49099-0 14

17. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: FOCS, pp. 306–315 (2014)

18. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: ITCS 2014
(2014)

19. Choi, S.G., Kiayias, A., Malkin, T.: BiTR: built-in tamper resilience. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 40

20. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 22

21. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 27

22. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Locally decodable and updatable
non-malleable codes in the bounded retrieval model. Cryptology ePrint Archive,
Report 2017/303 (2017). http://eprint.iacr.org/2017/303

23. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for
leakage-resilient, locally decodable and updatable non-malleable codes. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 310–332. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 13

24. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 18

25. Döttling, N., Nielsen, J.B., Obremski, M.: Information theoretic continuously non-
malleable codes in the constant split-state model. Cryptology ePrint Archive,
Report 2017/357 (2017). http://eprint.iacr.org/2017/357

26. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

27. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS (2010)
28. Faonio, A., Nielsen, J.B.: Non-malleable codes with split-state refresh. In: Fehr,

S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 279–309. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 12

29. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for
space-bounded tampering. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 95–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63715-0 4

https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-642-25385-0_40
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-540-78967-3_27
http://eprint.iacr.org/2017/303
https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-662-46494-6_18
http://eprint.iacr.org/2017/357
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-662-54365-8_12
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-319-63715-0_4

Non-Malleable Codes for Partial Functions with Manipulation Detection 607

30. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

31. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 579–
603. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 26

32. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 7

33. Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits resilient
to additive attacks with applications to secure computation. In: STOC 2014, pp.
495–504 (2014)

34. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 19

35. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (2007)
36. Kiayias, A., Liu, F.-H., Tselekounis, Y.: Practical non-malleable codes from l-more

extractable hash functions. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2016, pp. 1317–1328. ACM, New
York (2016)

37. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

38. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 16

39. Ozarow, L.H., Wyner, A.D.: Wire-tap channel II. AT&T Bell Lab. Tech. J. 63(10),
2135–2157 (1984)

40. Resch, J.K., Plank, J.S.: AONT-RS: blending security and performance in dis-
persed storage systems. In: FAST 2011 (2011)

41. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052348

42. Shaltiel, R., Silbak, J.: Explicit list-decodable codes with optimal rate for compu-
tationally bounded channels. In: APPROX/RANDOM 2016 (2016)

43. Stinson, D.R.: Something about all or nothing (transforms). Des. Codes Crypt.
22(2), 133–138 (2001)

44. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21040-2 15

45. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-46447-2_26
https://doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/BFb0052348
https://doi.org/10.1007/978-3-642-21040-2_15
https://doi.org/10.1007/978-3-642-21040-2_15

	Non-Malleable Codes for Partial Functions with Manipulation Detection
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Applications
	1.4 Related Work

	2 Preliminaries
	3 An MD-NMC for Partial Functions, in the CRS Model
	4 Removing the CRS
	4.1 Security Against Adaptive Adversaries
	4.2 MD-NM Security of the Block-Wise Code

	5 Continuous MD-NMC with Light Updates
	References

