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Abstract

We study adversarial attacks that manipulate the reward signals to control the ac-
tions chosen by a stochastic multi-armed bandit algorithm. We propose the first
attack against two popular bandit algorithms: ε-greedy and UCB, without knowl-
edge of the mean rewards. The attacker is able to spend only logarithmic effort,
multiplied by a problem-specific parameter that becomes smaller as the bandit
problem gets easier to attack. The result means the attacker can easily hijack the
behavior of the bandit algorithm to promote or obstruct certain actions, say, a par-
ticular medical treatment. As bandits are seeing increasingly wide use in practice,
our study exposes a significant security threat.

1 Introduction

Designing trustworthy machine learning systems requires understanding how they may be attacked.
There has been a surge of interest on adversarial attacks against supervised learning [12, 15]. In
contrast, little is known on adversarial attacks against stochastic multi-armed bandits (MABs), a
form of online learning with limited feedback. This is potentially hazardous since stochastic MABs
are widely used in the industry to recommend news articles [18], display advertisements [9], improve
search results [17], allocate medical treatment [16], and promote users’ well-being [13], among
many others. Indeed, as we show, an adversarial attacker can modify the reward signal to manipulate
the MAB for nefarious goals.

Our main contribution is an analysis on reward-manipulation attacks. We distinguish three agents
in this setting: “the world,” “Bob” the bandit algorithm, and “Alice” the attacker. As in standard
stochastic bandit problems, the world consists of K arms with sub-Gaussian rewards centered at
µ1, . . . , µK . Note that we do not assume {µi} are sorted. Neither Bob nor Alice knows {µi}. Bob
pulls selected arms in rounds and attempts to minimize his regret. When Bob pulls arm It ∈ [K]
in round t, the world generates a random reward r0

t drawn from a sub-Gaussian distribution with
expectation µIt . However, Alice sits in-between the world and Bob and manipulates the reward
into rt = r0

t − αt. We call αt ∈ R the attack. If Alice decides not to attack in this round, she
simply lets αt = 0. Bob then receives rt, without knowing the presence of Alice. Without loss of
generality, assume arm K is a suboptimal “attack target” arm: µK < maxi=1...K µi. Alice’s goal is
to manipulate Bob into pulling arm K very often while making small attacks. Specifically, we show
Alice can force Bob to pull the target arm T − o(T ) number of times with a cumulative attack cost
of
∑T
t=1 |αt| = O(log(T )).

The assumption that Alice does not know {µi} is significant because otherwise Alice can perform
the attack trivially. To see this, with the knowledge of {µi} Alice would be able to compute the
truncated reward gap ∆ε

i = max{µi−µK + ε, 0} ≥ 0 for all non-target arms i 6= K for some small
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parameter ε > 0. Alice can perform the following oracle attack: in any round where a non-target
arm It 6= K is pulled, attack with αt = ∆ε

It
. This oracle attack transforms the original bandit

problem into one where all non-target arms have expected reward less than µK . It is well-known
that if Bob runs a sublinear-regret algorithm (e.g., UCB [6, 8]), almost all arm pulls will concentrate
on the now-best target arm K in the transformed bandit problem. Furthermore, Alice’s cumulative
attack cost will be sublinear in time, because the total number of non-target arm pulls is sublinear
in the transformed problem. In practice, however, it is almost never the case that Alice knows
µ1, . . . , µK and hence the ∆ε

i ’s. Thus the oracle attack is impractical. Our focus in this paper is to
design an attack that nearly matches the oracle attack, but for Alice who does not know {µi}. We
do so for two popular bandit algorithms, ε-greedy [7] and UCB [8].

What damage can Alice do in practice? She can largely control the arms pulled by Bob. She can
also control which arm appears to Bob as the best arm at the end. As an example, consider the
news-delivering contextual bandit problem [18]. The arms are available news articles, and Bob
selects which arm to pull (i.e., which article to show to a user at the news site). In normal operation,
Bob shows news articles to users to maximize the click-through rate. However, Alice can attack
Bob to change his behavior. For instance, Alice can manipulate the rewards so that users from a
particular political base are always shown particular news articles that can reinforce or convert their
opinion. Conversely, Alice can coerce the bandit to not show an important article to certain users. As
another example, Alice may interfere with clinical trials [16] to funnel most patients toward certain
treatment, or make researchers draw wrong conclusions on whether treatment is better than control.
Therefore, adversarial attacks on MAB deserve our attention. Insights gained from our study can be
used to build defense in the future.

Finally, we note that our setting is motivated by modern industry-scale applications of contextual
bandits, where arm selection, reward signal collection, and policy updates are done in a distributed
way [3, 18]. Attacks can happen when the reward signal is joined with the selected arm, or when
the arm-reward data is sent to another module for Bob to update his policy. In either case, Alice has
access to both It and r0

t for the present and previous rounds.

The rest of the paper is organized as follows. In Section 2, we introduce notations and straight-
forward attack algorithms that serve as baseline. We then propose our two attack algorithms for
ε-greedy and UCB in Section 3 and 4 respectively, along with their theoretical attack guarantees.
In Section 5, we empirically confirm our findings with toy experiments. Finally, we conclude our
paper with related work (Section 6) and a discussion of future work (Section 7) that will enrich our
understanding of security vulnerability and defense mechanisms for secure MAB deployment.

2 Preliminaries

Before presenting our main attack algorithms, in this section we first discuss a simple heuristic attack
algorithm which serves to illustrate the intrinsic difficulty of attacks. Throughout, we assume Bob
runs a bandit algorithm with sublinear pseudo-regret E

∑T
t=1(maxKj=1 µj −µIt). As Alice does not

know {µi} she must rely on the empirical rewards up to round t− 1 to decide the appropriate attack
αt. The attack is online since αt is computed on-the-fly as It and r0

t are revealed. The attacking
protocol is summarized in Algorithm 1.

Algorithm 1 Alice’s attack against a bandit algorithm

1: Input: Bob’s bandit algorithm, target arm K
2: for t = 1, 2, . . . do
3: Bob chooses arm It to pull.
4: World generates pre-attack reward r0

t .
5: Alice observes It and r0

t , and then decides the attack αt.
6: Alice gives rt = r0

t − αt to Bob.
7: end for

We assume all arm rewards are σ2-sub-Gaussian where σ2 is known to both Alice and Bob. Let
Ni(t) be the number of pulls of arm i up to round t. We say the attack is successful after T rounds if
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the number of target-arm pulls is NK(T ) = T − o(T ) in expectation or with high probability, while
minimizing the cumulative attack cost

∑T
t=1 |αt|. Other attack settings are discussed in Section 7.

For convenience we define the following quantities:

• τi(t) := {s : s ≤ t, Is = i}, the set of rounds up to t where arm i is chosen,
• µ̂0

i (t) := Ni(t)
−1
∑
s∈τi(t) r

0
s , the pre-attack average reward of arm i up to round t, and

• µ̂i(t) := Ni(t)
−1
∑
s∈τi(t) rs, the corresponding post-attack average reward.

The oracle attack, revisited While the oracle attack was impractical, it gives us a baseline for
comparison. The oracle attack drags down the reward of all non-target arms,1 and can be written as

αt = 1{It 6= K} ·∆ε
It .

Proposition 1 shows that the oracle attack succeeds and requires only a logarithmic attack cost.
While more general statements for sublinear-regret algorithms can be made, we focus on logarithmic-
regret bandit algorithms for simplicity. Throughout, omitted proofs can be found in our supplemen-
tary material.

Proposition 1. Assume that Bob’s bandit algorithm achieves an O(log T ) regret bound. Then,
Alice’s oracle attack with ε > 0 succeeds; i.e., ENK(T ) = T − o(T ). Furthermore, the expected

total attack cost is O
(∑K−1

i=1 ∆ε
i log T

)
.2

The heuristic constant attack A slight variant of the oracle attack is to attack all the non-target
arms with a single constant amount A > 0, regardless of the actual µi’s:

αt = 1{It 6= K} ·A.
Let ∆i := ∆0

i . Unfortunately, this heuristic constant attack depends critically on the value of A
compared to the unknown maximum gap maxi ∆i. Proposition 2 states the condition under which
the attack succeeds:

Proposition 2. Assume that Bob’s bandit algorithm achieves an O(log T ) regret bound. Then,
Alice’s heuristic constant attack with A succeeds if and only if A > maxi ∆i. If the attack succeeds,
then the expected attack cost is O(A log T ).

Conversely, if A < maxi ∆i the attack fails. This is because in the transformed bandit problem,
there exists an arm that has a higher expected reward than arm K, and Bob will mostly pull that arm.
Therefore, the heuristic constant attack has to know an unknown quantity to guarantee a successful
attack. Moreover, the attack is non-adaptive to the problem difficulty since some ∆i’s can be much
smaller than A, in which case Alice pays an unnecessarily large attack cost.

We therefore ask the following question:

Does there exist an attacker Alice that guarantees a successful attack with cost adaptive
to the problem difficulty?

The answer is yes. We present attack strategies against two popular bandit algorithms of Bob: ε-
greedy and UCB. We show that Alice can indeed succeed in her attacks and incur cost as small as
that of the oracle with an additive term due to the sub-Gaussian noise level σ.

3 Alice’s Attack on ε-Greedy Bob

The ε-greedy strategy initially pulls each arm once in the first K rounds. For convenience, we
assume that the target arm is pulled first: I1 = K. Our results in this section can be adapted to any
order of initialization with more complicated notation.

1The opposite strategy is to push up the target arm: αt = 1{It = K} · (µK − maxj µj − ε) to make
arm K the best arm in post-attack rewards. However, a successful attack means that Alice pulls the target arm
T − o(T ) times; the attack cost is necessarily linear in T , which is inefficient. Simulations that support “drag
down” instead of “push up” are presented in Appendix D.

2For near-optimal algorithms like UCB [6], one can find the optimal choice of ε. See our supplementary
material for detail.
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Bob’s ε-greedy strategy has the following arm-selection rule for t > K [7]:

It =

{
draw uniform[K], w.p. εt (exploration)
arg maxi µ̂i(t− 1), otherwise (exploitation)

.

The strategy uses an exploration scheme {εt} over t. Alice’s attack algorithm is not aware of {εt}
though her cumulative attack cost

∑
|αt| will implicitly depend on it. Later in Corollary 1 we show

that, for the typical decaying scheme εt ∝ 1/t, the cumulative attack cost is mild: O(log(t)).

Alice wants to make Bob always pull the target arm during exploitation rounds. Since Alice has no
influence on which arm is pulled during exploration, this attack goal is the strongest she can achieve.
Here, Algorithm 1 is specialized to ensure the following condition:

µ̂It(t) ≤ µ̂K(t)− 2β(NK(t)), (1)
where we define β(N) as

β(N) :=

√
2σ2

N
log

π2KN2

3δ
. (2)

From this condition, we derive the actual attack αt. Since

µ̂It(t) =
µ̂It(t− 1)NIt(t− 1) + r0

t − αt
NIt(t)

, (3)

we set the attack in Algorithm 1 as
αt =

[
µ̂It(t− 1)NIt(t− 1) + r0

t − (µ̂K(t)− 2β(NK(t)))NIt(t)
]
+
, (4)

where [z]+ = max(0, z). Note α is always non-negative, thus the cumulative attack cost can be
written without absolute value:

∑T
t=1 αt.

With this αt, we claim that (i) Alice forces Bob to pull the target arm in all exploitation rounds
as shown in Lemma 2, and (ii) the cumulative attack cost is logarithmic in t for standard ε-greedy
learner exploration scheme εt = O(1/t) as shown in Corollary 1. Our main result is the following
general upper bound on the cumulative attack cost.

Theorem 1. Let δ ≤ 1/2. With probability at least 1 − 2δ, for any T satisfying
∑T
t=1 εt ≥

K
e−2 log(K/δ),3 Alice forces Bob running ε-greedy to choose the target arm in at least ÑK(T )
rounds, using a cumulative attack cost at most

T∑
t=1

|αt| <

(
K∑
i=1

∆i

)
Ñ(T ) + (K − 1) ·

(
Ñ(T )β(Ñ(T )) + 3Ñ(T )β(ÑK(T ))

)
where

Ñ(T ) =

(∑T
t=1 εt
K

)
+

√√√√3 log

(
K

δ

)(∑T
t=1 εt
K

)
,

ÑK(T ) = T −

(
T∑
t=1

εt

)
−

√√√√3 log

(
K

δ

)( T∑
t=1

εt

)
.

Before proving the theorem, we first look at its consequence. If Bob’s εt decay scheme is εt =
min{1, cK/t} for some c > 0 as recommended in Auer et al. [7], Alice’s cumulative attack cost is
O(
∑K
i=1 ∆i log T ) for large enough T , as the following corollary shows:

Corollary 1. Inherit the assumptions in Theorem 1. Fix K and δ. If εt = cK/t for some constant
c > 0, then

T∑
t=1

|αt| = Ô

((
K∑
i=1

∆i

)
log T + σK

√
log T

)
, (5)

where Ô ignores log log factors.

3 One can drop this condition by considering slightly larger Ñ(t) and smaller ÑK(t). However, we keep
the condition as it simplifies Ñ(t) and ÑK(t). We refer to the proof of Lemma 4 for detail.
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Note that the two important constants are
∑
i ∆i and σ. While a large σ can increase the cost

significantly, the term with
∑
i ∆i dominates the cost for large enough T . Specifically,

∑
i ∆i is

multiplied by log T that is of higher order than
√

log T . We empirically verify the scaling of cost
with T in Section 5.

To prove Theorem 1, we first show that β in (2) is a high-probability bound on the pre-attack empir-
ical mean of all arms on all rounds. Define the event

E := {∀i, ∀t > K : |µ̂0
i (t)− µi| < β(Ni(t))}. (6)

Lemma 1. For δ ∈ (0, 1), P (E) > 1− δ.

The following lemma proves the first half of our claim.
Lemma 2. For δ ≤ 1/2 and under event E, attacks (4) force Bob to always pull the target arm K
in exploitation rounds.

We now show that on average each attack on a non-target arm i is not much bigger than ∆i.
Lemma 3. For δ ≤ 1/2 and under event E, we have for all arm i < K and all t that∑

s∈τi(t)

|αs| < (∆i + β(Ni(t)) + 3β(NK(t)))Ni(t) .

Finally, we upper bound the number of non-target arm i pulls Ni(T ) for i < K. Recall the arm i
pulls are only the result of exploration rounds. In round t the exploration probability is εt; if Bob
explores, he chooses an arm uniformly at random. We also lower bound the target arm pullsNK(T ).

Lemma 4. Let δ < 1/2. Suppose T satisfy
∑T
t=1 εt ≥

K
e−2 log(K/δ). With probability at least

1− δ, for all non-target arms i < K,

Ni(T ) <
T∑
t=1

εt
K

+

√√√√3
T∑
s=1

εt
K

log
K

δ
.

and for the target arm K,

NK(T ) > T −
T∑
t=1

εt −

√√√√3
T∑
s=1

εt log
K

δ
.

We are now ready to prove Theorem 1.

Proof. The theorem follows immediately from a union bound over Lemma 3 and Lemma 4 below.
We add up the attack costs over K − 1 non-target arms. Then, we note that Nβ(N) is increasing
in N so Ni(T )β(Ni(T )) ≤ Ñ(T )β(Ñ(T )). Finally, by Lemma 8 in our supplementary material
β(N) is decreasing in N , so β(NK(T )) ≤ β(ÑK(T )).

4 Alice’s Attack on UCB Bob

Recall that we assume rewards are σ2-sub-Gaussian. Bob’s UCB algorithm in its basic form often
assumes rewards are bounded in [0, 1]; we need to modify the algorithm to handle the more general
sub-Gaussian rewards. By choosing α = 4.5 and ψ : λ 7→ σ2λ2

2 in the (α,ψ)-UCB algorithm of
Bubeck & Cesa-Bianchi [8, Section 2.2], we obtain the following arm-selection rule:

It =

{
t, if t ≤ K
arg maxi

{
µ̂i(t− 1) + 3σ

√
log t

Ni(t−1)

}
, otherwise.

For the first K rounds where Bob plays each of the K arms once in an arbitrary order, Alice does
not attack: αt = 0 for t ≤ K. After that, attack happens only when It 6= K. Specifically, consider
any round t > K where Bob pulls arm i 6= K. It follows from the UCB algorithm that

µ̂i(t− 1) + 3σ

√
log t

Ni(t− 1)
≥ µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
.
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Alice attacks as follows. She computes an attack αt with the smallest absolute value, such that
µ̂i(t) ≤ µ̂K(t− 1)− 2β(NK(t− 1))−∆0 ,

where ∆0 ≥ 0 is a parameter of Alice. Since the post-attack empirical mean can be computed
recursively by the following

µ̂i(t) =
Ni(t− 1)µ̂i(t− 1) + r0

t − αt
Ni(t− 1) + 1

,

where r0
t is the pre-attack reward; this enables us to write down in closed form Alice’s attack:

αt =
[
Ni(t)µ̂

0
i (t)−

∑
s∈τi(t−1)

αs −Ni(t) · (µ̂K(t− 1)− 2β(NK(t− 1))−∆0)
]

+
. (7)

For convenience, define αt = 0 if It = K. We now present the main theorem on Alice’s cumulative
attack cost against Bob who runs UCB.

Theorem 2. Suppose T ≥ 2K and δ ≤ 1/2. Then, with probability at least 1− δ, Alice forces Bob
to choose the target arm in at least

T − (K − 1)

(
2 +

9σ2

∆2
0

log T

)
,

rounds, using a cumulative attack cost at most

T∑
t=1

αt ≤
(

2 +
9σ2

∆2
0

log T

)∑
i<K

(∆i + ∆0) + σ(K − 1)

√√√√
32(2 +

9σ2

∆2
0

log T ) log
π2K(2 + 9σ2

∆2
0

log T )2

3δ
.

While the bounds in the theorem are somewhat complicated, the next corollary is more interpretable
and follows from a straightforward calculation. Specifically, we have the following by straightfor-
ward calculation:

Corollary 2. Inherit the assumptions in Theorem 2 and fix δ. Then, the total number of non-target
arm pulls is

O

(
K +

Kσ2

∆2
0

log T

)
,

and the cumulative attack cost is

Ô

((
1 +

σ2

∆2
0

log T

)∑
i<K

(∆i + ∆0) + σK ·
(

1 +
σ

∆0

√
log T

)√
log

(
1 +

Kσ

∆0

))
,

where Ô ignores log log(T ) factors.

We observe that a larger ∆0 decreases non-target arm pulls (i.e. a more effective attack). The
effect diminishes when ∆0 > σ

√
log T since Kσ2

∆2
0

log T < K. Thus there is no need for Alice

to choose a larger ∆0. By choosing ∆0 = Θ(σ), the cost is Ô(
∑
i<K ∆i log T + σK log T ).

This is slightly worse than the cost of attacking ε-greedy where σ is multiplied by
√

log T rather
than log T . However, we find that a stronger attack is possible when the time horizon T is fixed
and known to Alice ahead of time (i.e., the fixed budget setting). One can show that this choice
∆0 = Θ

(
σ
√

log T
)

minimizes the cumulative attack cost, which is Ô
(
Kσ
√

log T
)
. This is a very

strong attack since the dominating term w.r.t. T does not depend on
∑
i<K ∆i; in fact the cost

associated with
∑
i<K ∆i does not grow with T at all. This means that under the fixed budget

setting algorithm-specific attacks can be better than the oracle attack that is algorithm-independent.
Whether the same is true in the anytime setting (i.e., T is unknown ahead of time) is left as an open
problem.

For the proof of Theorem 2 we use the following two lemmas.

Lemma 5. Assume event E holds and δ ≤ 1/2. Then, for any i < K and any t ≥ 2K, we have

Ni(t) ≤ min{NK(t), 2 +
9σ2

∆2
0

log t} . (8)
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(a) Attack cost
∑t
s=1 |αs| as ∆1

varies
(b) Attack cost as σ varies; dot-
ted lines depict slope 1/2 and 1 for
comparison.

(c) Target arm pulls NK(t)

Figure 1: Attack on ε-greedy bandit.

Lemma 6. Assume event E holds and δ ≤ 1/2. Then, at any round t ≥ 2K, the cumulative attack
cost to any fixed arm i < K can be bounded as:∑

s∈τi(t)

αs ≤ Ni(t)
(

∆i + ∆0 + 4β(Ni(t))
)
.

Proof of Theorem 2. Suppose event E holds. The bounds are direct consequences of Lemmas 6
and 5 below, by summing the corresponding upper bounds over all non-target arms i. Specifically,
the number of target arm pulls is T −

∑
i<K Ni(T ), and the cumulative attack cost is

∑T
t=1 αt =∑

i<K

∑
t∈τi(T ) αt. Since event E is true with probability at least 1 − δ (Lemma 1), the bounds

also hold with probability at least 1− δ.

5 Simulations

In this section, we run simulations on attacking ε-greedy and UCB algorithms to illustrate our theo-
retical findings.

Attacking ε-greedy The bandit has two arms. The reward distributions of arms 1 and 2 are
N (∆1, σ

2) andN (0, σ2), respectively, with ∆1 > 0. Alice’s target arm is arm 2. We let δ = 0.025.
Bob’s exploration probability decays as εt = 1

t . We run Alice and Bob for T = 105 rounds; this
forms one trial. We repeat 1000 trials.

In Figure 1(a), we fix σ = 0.1 and show Alice’s cumulative attack cost
∑t
s=1 |αs| for different ∆1

values. Each curve is the average over 1000 trials. These curves demonstrate that Alice’s attack cost
is proportional to log t as predicted by Corollary 1. As the reward gap ∆1 becomes larger, more
attack is needed to reduce the reward of arm 1, and the slope increases.

Furthermore, note that
∑T
t=1 |αt| = Ô

(
∆1 log T + σ

√
log T

)
. Ignoring log log T terms, we have∑T

t=1 |αt| ≤ C(∆1 log T + σ
√

log T ) for some constant C > 0 and large enough T . Therefore,

log
(∑T

t=1 |αt|
)
≤ max{log log T + log ∆1,

1
2 log log T + log σ} + logC. We thus expect the

log-cost curve as a function of log log T to behave like the maximum of two lines, one with slope
1/2 and the other with slope 1. Indeed, we observe such a curve in Figure 1(b) where we fix ∆1 = 1
and vary σ. All the slopes eventually approach 1, though larger σ’s take a longer time. This implies
that the effect of σ diminishes for large enough T , which was predicted by Corollary 1.

In Figure 1(c), we compare the number of target arm (the suboptimal arm 2) pulls with and without
attack. This experiment is with ∆1 = 0.1 and σ = 0.1. Alice’s attack dramatically forces Bob
to pull the target arm. In 10000 rounds, Bob is forced to pull the target arm 9994 rounds with the
attack, compared to only 6 rounds if Alice was not present.

Attacking UCB The bandit has two arms. The reward distributions are the same as the ε-greedy
experiment. We let δ = 0.05. To study how σ and ∆0 affects the cumulative attack cost, we perform
two groups of experiments. In the first group, we fix σ = 0.1 and vary Alice’s free parameter ∆0

while in the second group, we fix ∆0 = 0.1 and vary σ. We perform 100 trials with T = 107 rounds.
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(a) Attack cost
∑t
s=1 αs as ∆0

varies
(b) Attack cost as σ varies (c) Target arm pulls NK(t)

Figure 2: Attack on UCB learner.

Figure 2(a) shows Alice’s cumulative attack cost as ∆0 varies. As ∆0 increases, the cumulative
attack cost decreases. In Figure 2(b), we show the cost as σ varies. Note that for large enough t,
the cost grows almost linearly with log t, which is implied by Corollary 2. In both figures, there
is a large attack near the beginning, after which the cost grows slowly. This is because the initial
attacks drag down the empirical average of non-target arms by a large amount, such that the target
arm appears to have the best UCB for many subsequent rounds. Figure 2(c) again shows that Alice’s
attack forces Bob to pull the target arm: with attack Bob is forced to pull the target arm 107 − 2
times, compared to only 156 times without attack.

6 Related Work

The literature on general adversarial learning is vast and covers ethics, safety, fairness, and legal
concerns; see e.g. Joseph et al. [15] and Goodfellow et al. [12]. Related to MAB, there has been
empirical evidence that suggests adversarial attacks can be quite effective, even in the more gen-
eral multi-step reinforcement learning problems, as opposed to the bandit case considered in this
paper. The learned policy may be lured to visit certain target states when adversarial examples are
driven [19], or have inferior generalization ability when training examples are corrupted [14]. There
are differences, though. In the first, non-stochastic setting [7, 11], the reward is generated by an
adversary instead of a stationary, stochastic process. However, the reward observed by the learner
is still a real reward, in that the learner is still interested in maximizing it, or more precisely, min-
imizing some notion of regret in reference to some reference policy [8]. Another related problem
is reward shaping (e.g., Dorigo & Colombetti [10]), where the reward received by the learner is
modified, as in our paper. However, those changes are typically done to help the learner in various
ways (such as promoting exploration), and are designed in a way not to change the optimal policy
the learner eventually converges to [22].

A concurrent work by Lykouris et al. [20] considers a complementary problem to ours. They propose
a randomized bandit algorithm that is robust to adversarial attacks on the stochastic rewards. In
contrast, our work shows that the existing stochastic algorithms are vulnerable to adversarial attacks.
Note that their attack protocol is slightly different in that the attacker has to prepare attacks for all
the arms before the learner chooses an arm. Furthermore, they have a different attack cost definition
where the cost in a round is the largest manipulation over the arms, regardless of which arm the
learner selects afterwards.

Another concurrent work by Ma et al. [21] considers attacking stochastic contextual bandit algo-
rithms. The authors show that for a contextual bandit algorithm which periodically updates the arm
selection policy, an attacker can perform offline attack to force the contextual bandit algorithm to
pull some pre-specified target arm for a given target context vector. Our work differs in that we
consider online attack, which is performed on the fly rather than offline.

7 Conclusions and Future Work

We presented a reward-manipulating attack on stochastic MABs. We analyzed the attack against
ε-greedy and a generalization of the UCB algorithm, and proved that the attacker can force the
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algorithms to almost always pull a suboptimal target arm. The cost of the attack is only logarithmic
in time. Given the wide use of MABs in practice, this is a significant security threat.

Our analysis is only the beginning. We targeted ε-greedy and UCB learners for their simplicity and
popularity. Future work may look into attacking Thompson sampling [23, 4], linear bandits [1, 5],
and contextual bandits [18, 2], etc. We assumed the reward attacks αt are unbounded from above;
new analysis is needed if an application’s reward space is bounded or discrete. It will also be useful
to establish lower bounds on the cumulative attack cost.

Beyond the attack studied in this paper, there is a wide range of possible attacks on MABs. We may
organize them along several dimensions:

• The attack goal: The attacker may force the learner into pulling or avoiding target arms, or
worsen the learner’s regret, or make the learner identify the wrong best-arm, etc.
• The attack action: The attacker can manipulate the rewards or corrupt the context for con-

textual bandits, etc.
• Online vs. offline: An online attacker must choose the attack action in real time; An offline

attacker poisons a dataset of historical action-reward pairs in batch mode, then the learner
learns from the poisoned dataset.

The combination of these attack dimensions presents fertile ground for future research into both
bandit-algorithm attacks and the corresponding defense mechanisms.
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Supplementary Material

A Details on the oracle and constant attack

Logarithmic regret and the suboptimal arm pull counts. For simplicity, denote by i∗ the unique
best arm; that is, i∗ = arg maxi=1,...,K µi. We show that a logarithmic regret bound implies that the
arm pull count of arm i 6= i∗ is at most logarithmic in T .

Lemma 7. Assume that a bandit algorithm enjoys a regret bound of O(log(T )). Then, ENi(T ) =
O(log(T )), ∀i 6= i∗.

Proof. The logarithmic regret bound implies that for a large enough T there exists C > 0 such that∑K
i=1 ENi(T )(µi∗ − µi) ≤ C log T . Therefore, for any i 6= i∗, we have ENi(T )(µi∗ − µi) ≤

C log T , which implies that

ENi(T ) ≤ C

µi∗ − µi
log T = O(log T ) .

Proof of Proposition 1 By Lemma 7, a logarithmic regret bound implies that the bandit algorithm
satisfies ENi(T ) = O(log(T )). That is, for a large enough T , ENi(T ) ≤ Ci log(T ) for some
Ci > 0. Based on the view that the oracle attack effectively shifts the means µ1, · · · , µK , the best
arm is now theK-th arm. Then, ENK(T ) = T−

∑
i6=K ENi(T ) ≥ T−

∑
i6=K Ci log T = T−o(T ),

which proves the first statement.

For the second statement, we notice that ENi(T ) = Ci log T for any i 6= K and that we do not
attack the K-th arm. Therefore,

E

[
T∑
t=1

|αt|

]
=
K−1∑
i=1

ENi(T ) ·∆ε
i ≤

K−1∑
i=1

Ci∆
ε
i log T = O

(
K−1∑
i=1

∆ε
i log T

)
.

Proof of Proposition 2 By Lemma 7, a logarithmic regret bound implies that the bandit algorithm
satisfies ENi(T ) = O(log(T )). Note that the constant attack effectively shifts the means of all
the arms by A′ except for the K-th arm. Since A′ > maxi ∆i, the best arm is now the K-th arm.
Then, ENK(T ) = T −

∑K−1
i=1 ENi(T ) ≥ T −

∑K−1
i=1 Ci log T = T − o(T ), which proves the first

statement.

For the second statement, we notice that ENi(T ) = Ci log T for any i 6= K, and we do not attack
the K-th arm. Therefore,

E

[
T∑
t=1

|αt|

]
=

K−1∑
i=1

ENi(T ) ·A′ ≤ A′
K−1∑
i=1

Ci log T = O(A′ · log T ) .

The best ε for Alice’s oracle attack Consider the case where Bob employs a near-optimal bandit
algorithm such as UCB [6], which enjoys ENi(T ) = Θ(1 + ∆−2

i log T ). When the time horizon T
is known ahead of time, one can compute the best ε ahead of time. Hereafter, we omit unimportant
constants for simplicity. Since Alice employs the oracle attack, Bob pulls each arm C + ε−2 log(T )
times for some C > 0 in expectation. Assuming that the target arm is K, the attack cost is

K−1∑
i=1

∆ε
i · (C + ε−2 log(T )) = C

K−1∑
i=1

∆i + (K − 1)C · ε+
K−1∑
i=1

(
∆i

ε2
+

1

ε

)
log T

To balance the two terms, one can see that ε has to grow with T and the term ∆i/ε
2 is soon dominated

by 1/ε. Thus, for large enough T the optimal choice of ε is
√
C log(T ), which leads to the attack

cost of O(K
√
C log T ).

B Details on attacking the ε-greedy strategy

Lemma 8. For δ ≤ 1/2, the β(N) defined in (2) is monotonically decreasing in N .
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Proof. It suffices to show that f(x) = 2σ2

x log π2Kx2

3δ is decreasing for x ≥ 1. Note that δ ≤ 1/2 ≤
K
3 (πe )2, thus for x ≥ 1 we have

f ′(x) = −2σ2

x2
log

π2Kx2

3δ
+

2σ2

x

3δ

π2Kx2

2π2Kx

3δ

=
2σ2

x2
(2− log

π2Kx2

3δ
) ≤ 2σ2

x2
(2− log

π2K

3δ
)

≤ 2σ2

x2
(2− log e2) = 0.

Proof of Corollary 1 When T is larger than the following threshold:

K + 1

K
(
T∑
t=1

εt) +

√√√√12 log(K/δ)(
K + 1

K

T∑
t=1

εt),

we have ÑK(T ) ≥ Ñ(T ). Because β(N) is decreasing in N ,

Ñ(T )β(Ñ(T )) + 3Ñ(T )β(ÑK(T )) ≤ 4Ñ(T )β(Ñ(T )). (9)
Due to the the exploration scheme of the strategy,

T∑
t=1

εt = cK
T∑
t=1

1/t ≤ cK(log(T ) + 1).

Thus by the definition of Ñ(T ),

Ñ(T ) ≤ c(log T + 1) +

√
3 log

(
K

δ

)
c(log T + 1).

For sufficiently large T , there exists a constant c2 depending on c,K, δ to further upper bound the
RHS as follows:

c(log T + 1) +

√
3 log

(
K

δ

)
c(log T + 1) ≤ c2 log T := N̆(T ). (10)

Since Nβ(N) is increasing in N , combining (9) and (10) we have for sufficiently large T ,

Ñ(T )β(Ñ(T )) + 3Ñ(T )β(ÑK(T )) ≤ 4N̆(T )β(N̆(T )).

Plugging this upper bound into Theorem 1,
T∑
t=1

αt <

(
K∑
i=1

∆i

)
N̆(T ) + 4(K − 1)N̆(T )β(N̆(T ))

= c2

(
K∑
i=1

∆i

)
log T +

√
32c2(K − 1)σ ·

√
log T

(
2 log log T + log

π2Kc22
3δ

)
. (11)

Proof of Lemma 1 Let {Xj}∞j=1 be a sequence of i.i.d. σ2-sub-Gaussian random variables with
mean µ. Let µ̂0

N = 1
N

∑N
j=1Xj . By Hoeffding’s inequality

P(|µ̂0
N − µ| ≥ η) ≤ 2 exp

(
−Nη

2

2σ2

)
.

Define δiN := 6δ
π2N2K . Apply union bound over arms i and pull counts N ∈ N,

P
(
∃i,N : |µ̂0

i,N − µi| ≥ β(N)
)
≤

K∑
i=1

∞∑
N=1

δiN = δ.
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Proof of Lemma 2 We show by induction that at the end of any round t ≥ K Algorithm 1
maintains the invariance

µ̂K(t) > µ̂i(t), ∀i < K, (12)
which forces the learner to pull arm K if t+ 1 is an exploitation round.

Base case: By definition the learner pulls arm K first, then all the other arms once. During round
t = 2 . . .K the attack algorithm ensures µ̂i(t) ≤ µ̂K(t)− 2β(1) < µ̂K(t) for arms i < K, trivially
satisfying (12).

Induction: Suppose (12) is true for rounds up to t− 1. Consider two cases for round t:

If round t is an exploration round and It 6= K is pulled, then only µ̂It(t) changes; the other arms
copy their empirical mean from round t − 1. The attack algorithm ensures µ̂K(t) ≥ µ̂It(t) +
2β(NK(t)) > µ̂It(t). Thus (12) is satisfied at t.

Otherwise either t is exploration and K is pulled; or t is exploitation – in which case K is pulled
because by inductive assumption (12) is satisfied at the end of t− 1. Regardless, this arm K pull is
not attacked by Algorithm 1 and its empirical mean is updated by the pre-attack reward. We show
this update does not affect the dominance of µ̂K(t). Consider any non-target arm i < K. Denote
the last time µ̂i was changed by t′. Note t′ < t and NK(t′) < NK(t). At round t′, Algorithm 1
ensured that µ̂i(t′) ≤ µ̂K(t′)− 2β(NK(t′)). We have:

µ̂K(t) = µ̂0
K(t) (arm K never attacked)

> µ0
K − β(NK(t)) ((6) lower bound)

> µ0
K − β(NK(t′)) (Lemma 8)

> µ̂K(t′)− 2β(NK(t′)) ((6) upper bound)

≥ µ̂i(t′) (Algorithm 1)
= µ̂i(t) .

Thus (12) is also satisfied at round t.

Proof of Lemma 3 Without loss of generality assume in round t arm i is pulled and the attacker
needed to attack the reward (i.e. It = i and αt > 0). By definition (4),

αt = µ̂i(t− 1)Ni(t− 1) + r0
t − (µ̂K(t)− 2β(NK(t)))Ni(t)

=
∑

s∈τi(t−1)

(r0
s − αs) + r0

t − (µ̂K(t)− 2β(NK(t)))Ni(t)

=
∑

s∈τi(t)

r0
s −

∑
s∈τi(t−1)

αs − (µ̂K(t)− 2β(NK(t)))Ni(t).

Therefore, the cumulative attack on arm i is∑
s∈τi(t)

αs =
∑

s∈τi(t)

r0
s − (µ̂K(t)− 2β(NK(t)))Ni(t)

=
(
µ̂0
i (t)− µ̂K(t) + 2β(NK(t))

)
Ni(t).

One can think of the term in front of Ni(t) as the amortized attack cost against arm i. By Lemma 1,

µ̂0
i (t) < µi + β(Ni(t))

µ̂K(t) = µ̂0
K(t) > µK − β(NK(t))

Therefore,
t∑

s:Is=i

αs < (µi − µK + β(Ni(t)) + 3β(NK(t)))Ni(t)

≤ (∆i + β(Ni(t)) + 3β(NK(t)))Ni(t).

The last inequality follows from the gap definition ∆i := [µi − µK ]+.
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Proof of Lemma 4 Fix a non-target arm i < K. Let Xt be the Bernoulli random variable for
round T being arm i pulled. Then,

Ni(T ) =
T∑
t=1

Xt

E[Xt] =
εt
K

V[Xt] =
εt
K

(1− εt
K

) <
εt
K
.

Since Xt’s are independent random variables, we may apply Lemma 9 of Agarwal et al. [2], so that
for any λ ∈ [0, 1], with probability at least 1− δ/K,

T∑
t=1

(Xt −
εt
K

) ≤ (e− 2)λ
T∑
t=1

V[Xt] +
1

λ
log

K

δ

< (e− 2)λ
T∑
t=1

E[Xt] +
1

λ
log

K

δ
.

Choose λ =
√

log(K/δ)

(e−2)
∑T

t=1 E[Xt]
, and we get that

T∑
t=1

Xt <
T∑
t=1

εt
K

+ 2

√√√√(e− 2)
T∑
t=1

εt
K

log
K

δ

<
T∑
t=1

εt
K

+

√√√√3
T∑
t=1

εt
K

log
K

δ
:= Ñ(T ) .

The same reasoning can be applied to all non-target arm i < K. 4

The case with the target arm is similar, with the only change that E[Xt] > 1 − εt and V[Xt] < εt,
leading to the lower bound:

NK(T ) > T −
T∑
t=1

εt −

√√√√3
T∑
t=1

εt log
K

δ
=: ÑK(T ) .

Finally, a union bound is applied to all K arms to complete the proof.

C Details on attacking the UCB strategy

Proof of Lemma 5 Fix some t ≥ 2K. If Ni(t) ≤ 2 for all i < K, then NK(t) ≥ 2, which implies
Ni(t) ≤ min{NK(t), 2}. Thus, (8) holds trivially and we are done.

Now fix any i < K such that Ni(t) > 2. As the desired upper bound is nondecreasing in t, we
only need to prove the result for t where It = i. Let t′ be the previous time where arm i was pulled.
Note that t′ satisfies K < t′ < t as Ni(t) > 2, so the attacker has started attacking at round t′. This
implies that Ni(t′ − 1) + 1 = Ni(t

′) = Ni(t− 1) = Ni(t)− 1.

On one hand, it is clear that after attack αt′ was added at round t′, the following holds:
µ̂i(t

′) ≤ µ̂K(t′)− 2β(NK(t′))−∆0 . (13)

4Note the upper bound above is valid for T such that
∑T
t=1 εt ≥

K
e−2

log(K/δ) only as otherwise λ is
greater than 1. One can get rid of such a condition by a slightly looser bound. Specifically, using λ = 1
gives us a bound that holds true for all T . We then take the max of the two bounds, which can be simplified

as
∑T
t=1 Xt < (e − 1)

∑T
t=1

εt
K

+
√

3
∑T
t=1

εt
K

log K
δ

+ log K
δ
. The condition on T in Theorem 1 can be

removed using this bound. However, by keeping the mild assumption on T we keep the exposition simple.
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On the other hand, at round t, it must be the case that

µ̂i(t− 1) + 3σ

√
log t

Ni(t− 1)
≥ µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
,

which is equivalent to

µ̂i(t
′) + 3σ

√
log t

Ni(t′)
≥ µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
.

Therefore,

3σ

√
log t

Ni(t′)
− 3σ

√
log t

NK(t− 1)
≥ µ̂K(t− 1)− µ̂i(t′)

≥ µ̂K(t− 1)− µ̂K(t′) + 2β(NK(t′)) + ∆0

≥ ∆0 ,

where we have used Eqn. 13 in the second inequality, the condition in event E as well as Lemma 8
in the third. Since ∆0 > 0, we can see that Ni(t′) < NK(t− 1), and thus

Ni(t) = Ni(t
′) + 1 ≤ NK(t− 1) = NK(t) . (14)

Furthermore, since 3σ
√

log t
NK(t−1) > 0, we have 3σ

√
log t
Ni(t′)

> ∆0, which implies

Ni(t) = 1 +Ni(t
′) ≤ 1 +

9σ2

∆2
0

log t . (15)

Combining (14) and (15) gives the desired bound (8).

Proof of Lemma 6 Fix any i < K. As the desired upper bound is increasing in t, we only need to
prove the result for t where It = i and αt > 0. It follows from (7) that,

1

Ni(t)

∑
s∈τi(t)

αs = µ̂0
i (t)− µ̂K(t− 1) + 2β(NK(t− 1)) + ∆0 .

Since event E holds, we have
1

Ni(t)

∑
s∈τi(t)

αs ≤ ∆i + ∆0 + β(Ni(t)) + 3β(NK(t− 1)) .

The proof is completed by observing NK(t − 1) = NK(t), Ni(t) ≤ NK(t) (Lemma 5) and
Lemma 8.

D Simulations on Heuristic Constant Attack

We run simulations on ε-greedy and UCB to illustrate the heuristic constant attack algorithm. The
bandit has two arms, where the reward distributions areN (1, 0.12) andN (0, 0.12) respectively, thus
maxi ∆i = µ1 − µ2 = 1. Alice’s target arm is arm 2. In our experiment, Alice tried two different
constants for attack: A = 1.2 and A = 0.8, one being greater and the other being smaller than
maxi ∆i. We run the attack for T = 104 rounds. Fig. 3 and Fig. 4 show Alice’s cumulative attack
cost and Bob’s number of target arm pulls NK(t) for ε-greedy and UCB. Note that if A > maxi ∆i,
then NK(t) ≈ t, which verifies that Alice succeeds with the heuristic constant attack. At the same
time, pushing up the target arm would incur linear cost; while dragging down the non-target arm
achieves logarithmic cost. In summary, Alice should use an A value larger than ∆, and should drag
down the expected reward of the non-target arm by amount A.
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(a) push up the target arm: αt = 1{It = 2} · (−A) (b) drag down the non-target arm: αt = 1{It 6= 2} ·A

Figure 3: Constant attack on ε-greedy

(a) push up the target arm (b) drag down the non-target arm

Figure 4: Constant attack on UCB1
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