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MsC: Entropy-based methods are useful tools for investigating various problems in mathemati-
05C70 cal chemistry, computational physics and pattern recognition. In this paper we introduce
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92E10 vestigate their properties. We show that important physical properties of these molecules
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1. Introduction

Graph entropy measures are applications of information theory designed to characterize networks quantitatively. Such
measures were first introduced in the 1950s in the context of biological and chemical systems. Seminal work in this area
was done by Rashevsky [25] and Mowshowitz [19-23], who investigated entropy measures for quantifying the so-called
structural information content of a graph. To date, numerous graph entropies have been developed and applied to various
problems in theoretical and applied disciplines. Examples are biology, computational biology, mathematical chemistry, web
mining, and knowledge engineering [4-12] and [19-23].

In this paper, we develop a framework for applying a measure called Hosoya entropy to some fullerene graphs.
Section 2 explains the concepts and terminology needed to establish the main results, which are then proven in Section 3.

2. Concepts and terminology
2.1. Graph terminology

All graphs considered in this paper are simple, connected and finite. The terminology used here largely follows that of
Harary [16]. The vertex and edge sets of graph G are denoted by V =V (G) and E = E(G), respectively. The graph H is a
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subgraph of G, if V(H)CV(G) and E(H)CE(G). Let G = (V,E) be a graph, and let SCV be any subset of vertices of G. Then the
induced subgraph G[S] of G is a subgraph with vertex set S and two vertices in S are adjacent if and only if they are adjacent
in G.

The distance d(x, y) between two vertices x and y of graph G is the length of shortest path connecting them. The diameter
of a graph G is the maximum distance between any pair of vertices in G.

A permutation 7 on the set of vertices of graph G which preserves the adjacency of vertices of G is called an automor-
phism. The set of all automorphisms of G denoted by Aut(G) forms a group under composition of mappings. A graph G is
vertex transitive if for every u, v € V(G), there is an automorphism S € Aut(G) such that 8(u) = v, in which case A = Aut(G)
has exactly one orbit containing all the vertices of G. In general, we denote the orbit of u by uA%), Vertices u and v satisfy-
ing B(u) = v are said to be similar. The stabilizer of a vertex v under the action of Aut(G) is the set of automorphisms that
fix v and is denoted by A,. A group theory result of special importance to the proofs given in Section 3 is the orbit-stabilizer
theorem which states that |u?||A,| = |A|.

A topological index for a graph G is a numerical quantity invariant under its automorphism group. The Wiener index
[28] is a distance based topological index, defined by

WG = Y dxy).
{xy}cv(G)
The Hosoya polynomial (or the Wiener polynomial) of a graph [17] (see also [1,13,26] is defined as
HG.x)= Y xiv),
uveE(G)

The kth coefficient of H(G, x) is the number of pairs of vertices at distance k from each other and

H' (G, 1) =W(G).
Suppose d(G) is the diameter of graph G and that d(G, k) is the number of pairs of vertices in G at distance k from each
other. Then the Hosoya polynomial can be reformulated as

d@G)
H(G.x) := > d(G, k)x*.
k=1

The partial Hosoya polynomial with respect to vertex v is given by

Hy(Gx)= Y xiv,
ueV(G),u#v

Using the partial Hosoya polynomial, the Hosoya polynomial can be reformulated as

H(G x)= > Hy(Gx).

veV (G)
2.2. Entropy applied to graphs

Shannon entropy [27] is defined as I(p) = — Y L p;log(p;) for a finite probability vector p. Let A = Z?:l Ajand p; =
Ai/A, (i=1,2,...,n). More generally, the entropy of a tuple (A1, Ay, ..., Ay) of real numbers is given by

n n n
A
I(A. 22, ... k) ==Y pilog(p;) = log (E Ai) - 2”7')» log 2.
i =1

i=1 i=1 J

There are many different ways to associate a tuple (A1, Ay, ..., An) to a graph G, and each one can be used to define an
entropy based measure, see [2-12,15] and [23]. As noted above, methods and measures for quantifying structural properties
of networks were developed in the late 1950s and early 1960s, applying information-theoretic measures based on Shannon
entropy to structural problems in chemistry and biology, see [27] for a survey. The earliest such measure I4(G), introduced
by Rashevsky [25] and developed further by Mowshowitz and co-workers [19-23], was called the (topological) information
content of a graph G. It is defined as follows:

k
_ o INil IN;|
IL(G) = ; m log m ,

where N; (1 < i < k) is a set of similar vertices. The collection of k orbits partitions V and thus allows for computing
the Shannon entropy of the finite probability scheme with probabilities |N;|/|V]. It is easy to see that every vertex-transitive
graph is regular, but it is far from the case that all regular graphs are transitive. It is a well-known fact that I;(G) reaches
its maximum value for networks with the identity automorphism group.
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Fig. 1. 2-D graph of zig-zag nanotube T;[m,n], for m = 5, n = 10.

In what follows we will apply Hosoya entropy [23], a distance based measure, to a particular class of graphs called
fullerenes. The analysis involving the Hosoya entropy measure is fully justified by the fact that there is a high correlation
between the boiling point of fullerene compounds and the Hosoya entropy of the graphs representing them.

Given a graph G and a vertex ueV(G), let I';(u) be the number of vertices at distance i from the u. Two vertices u
and v are said to be Hosoya-equivalentor H-equivalent [23] if [';(u) = I';(v) for 1 < i < d(G). Clearly, the family of sets of H-
equivalent vertices constitutes a partition of the vertices. Let G = (V, E) be a graph, and h the number of sets of H-equivalent
vertices in G. If n; is the cardinality of the ith set of H-equivalent vertices for 1 < i < h, the Hosoya entropy (or H-entropy)
of G (introduced in [23]) is given by

h
H(G) = — Z)\., log(kl) and )"i = |nl|/|V|

i=1

Example 1. Let G be a k-regular graph on n vertices in which every two adjacent vertices have A common neighbors and
every two non-adjacent vertices have u common neighbors. Then the graph G with these parameters is denoted by srg(n, k,
A, i) and it is called as strongly regular graph. Every strongly regular graph G where G#Kjy has a path graph P3 as induced
subgraph and so u > 0. Thus every two vertices that are not adjacent have at least a common neighbor so the diameter of G
is 2. Hence, from a result in [23], all of the vertices are H-equivalent which implies thatH(G) = 0. For example, the Petersen
graph P which is an undirected vertex-transitive cubic graph with 10 vertices and 15 edges is a strongly regular graph with
H(P) = 0.

Example 2. A wheel graph is a graph formed by connecting a single vertex to all vertices of a cycle. Consider the wheel
graph W, on n+1 vertices. It is not a vertex-transitive graph, for n> 3. By means of group action, the vertices of Wy, can
be divided in two orbits. The central vertex of degree n is a singleton orbit and all vertices adjacent to the central vertex
compose the other orbit of order n. It is clear that the central vertex is not H-equivalent with the others. Hence, A; =
1/(n+1) and A, =n/(n+ 1). This means that

B 1 o 1 n 10( n )
<n+1 g(n+l)+n+l J n+l>

n
log(n+1) — T log(n).

H(G)

3. Fullerenes

Diamond and graphite are two well-known forms of carbon. In 1985, a third form of carbon called fullerene was discov-
ered, see [14-18]. Buckminster fullerene Cgq is the most abundant form of fullerenes. A Cgy molecule consists of 60 carbon
atoms arranged in a spherical structure. Its shape is the same as a soccer ball which contains 12 pentagons and 20 hexagons.
In general, a fullerene on n vertices has n/2—10 hexagons and 12 pentagons. By this rule, we can construct some classes of
fullerene graphs. In [29] a method is described to obtain a fullerene graph from a zig-zag or armchair nanotubes. Using
the method of [29], we construct some infinite classes of fullerenes and then determine their Hosoya’s entropy. Let Tz[m,n]
denote a zig-zag nanotube with m rows and n columns of hexagons, see Fig. 1. Combine a nanotube T,[5,n] with two copies
of cap B (Fig. 2) as shown in Fig. 3, the resulting graph is a non IPR fullerene, which has 10n vertices and exactly 5n—10
hexagonal faces, and is denoted by Aqgn.

We can apply our method to introduce another infinite class of fullerenes. The main goal of this section is to compute
the entropy of three infinite classes of fullerenes. With respect to the number of their vertices, we called them as Aqg,, B12n
and Cyyp, ;. First, we determine the entropy of fullerene Ajg,. The smallest fullerene in this class has fifty vertices. For n = 5,
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Fig. 2. The cap B.
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Fig. 3. Fullerene Ap, constructed by combining two copies of cap B and the zig-zag nanotube T[5, n].

Table 1
The orbits of the automorphism group of Ajgy, n is even.

Orbits Elements

Vi 1,2,3,4,5,10n —4,10n - 3,10n — 2,10n — 1, 10n
Va 6,7.8,9,10,10n -9, 10n — 8,10n —7,10n - 6,10n — 5
V3 11,12,13,14,15,16,17,18,19,20,10n - 19, ..., 10n - 10

A 21,22,23,24,25,26,27,28,29,30,10n - 29, ..., 10n — 20

V241 5n-9,5n-8, ..., 5n+10

using a GAP program we find that H(Asg) ~ 1.2094. For n = 6, the fullerene Agg is isomorphic with the famous Buckminster
fullerene Cgg. Hence, Agg is vertex-transitive and so H(Agg) = 0.

Theorem 1. The Hosoya entropy of the fullerene graph Aqq,, with n>7, is given by

log (n) + % —1 ifniseven
H(A1on) =
log (n) + %—1 if nis odd

Proof. For n> 7, first suppose n is even and consider the graph Ay, as depicted in Fig. 4. It is easy to see that the following
elements are in the automorphism group of fullerene graph Aqg,

o =(1,2)(3,5)...(10n - 3,10n)(10n — 2,10n — 1),
B=(1,10n)(2,10n—1)---(3,10n —2)(4, 10n — 3)(5, 10n — 4),
y =(1,2,3,4,5)(6,7,8,9,10)...(10n — 4,10n — 3, 10n — 2, 10n — 1, 10n).

If By = p, it is clear that a? = p!® =1, apa = p~! and thus T = (a, p) <A = Aut(Ajgn) is isomorphic with dihedral
group Dyg on 20 elements. On the other hand, every symmetry element which fixes 4, must also fixes {9, 10n-9, 10n-4}.
The identity element and the symmetry element « do this. Hence, the orbit-stabilizer property ensures that |A] = |44].JA4]
and thus |A| = 10 x 2 = 20 which implies that A=D,q. The orbits of the automorphism group are given in Table 1. We claim

that in fullerene Ajq, the orbits of the automorphism group and the Hosoya-partitions coincide. For n = 8 and 10, by an
elementary computation, we see that the Hosoya-partitions are the same as the orbits of its automorphism group. Let n> 12,
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10n-4

5n+i

10n 10n-3

10n-1 10n-2

Fig. 4. Labeling the vertices of fullerene graph Ao, n is even.

according to [24], the diameter of this graph is n + 3. Also, the vertices of each orbit of size 20 have the eccentricity equal
n+3—i(1 <i<n/2—1). This means that the orbits V3,Vy,...,V, .1 are Hosoya-partitions. The vertices of two orbits V;
and V, have the same eccentricity equal with n + 3. We claim that two orbits V; and V, are also Hosoya-partitions. To do
this, notice that there are ten vertices {10n—26, 10n—25, 10n—24, 10n-23, 10n—18, 10n—-17, 10n—12, 10n—11, 10n-9, 10n-5}
at distance n with vertex 1 while there are eight vertices {10n—35, 10n—34, 10n—26, 10n—23, 10n-17, 10n—12, 10n—4, 10n}
at distance n with vertex 6. This implies that V; and V, are Hosoya-partitions. Hence the Hosoya-partitions and the orbits of
above action Aqg, are coincide. This means that there are two equivalence classes of size 10 and n/2—1 equivalence classes
of size 20. Now, let n is odd and consider the graph Ap, depicted in Fig. 5. Similar to the last discussion, one can prove
that its automorphism group is isomorphic with dihedral group D,q. Again we can prove that the Hosoya-partitions and the
set of orbits are coincide which means that the Hosoya-partitions are given in Table 2. By above discussion we found that
there are three equivalence classes of size 10 and (n — 3)/2 equivalence classes of size 20. This completes the proof. O

Theorem 2. The Hosoya entropy of the fullerene graph B3, (shown in Figs. 6 and 7) with n >4 is given by

H(By2,) = log(n).
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10n-4

10n-3

10n

10n-14 40n-15

10n-1 10n-2

Fig. 5. Labeling the vertices of fullerene graph Asq,, 1 is odd.

Table 2
The Hosoya-partitions of Ao, n is odd.

H-partitions  Elements

Vi 1,2,3,4,5,10n —4,10n - 3,10n - 2,10n - 1, 10n

Vy 6,7,8,9,10,10n —9,10n —8,10n - 7,10n — 6, 10n — 5

V3 11,12, 13,14, 15,16,17, 18, 19,20, 10n - 19, ..., 10n - 10
Vy 21,22,23,24,25,26,27,28,29,30,10n - 29, .. ., 10n - 20
Vinizy 2 5n—-4,5n-3,5n—-2,5n—-1,5n,5n+1,...,5n1+5

Proof. Let n be an even number and consider the fullerene B;,, in Fig. 6. Consider two permutations «, 8 with the following
permutation representations:

o =02,6)3,5)...(12n-5,12n)(12n - 4,12n - 1)(12n — 3, 12n - 2),
B=00,12n-2,2,12n-1,3,12n,4,12n-5,5,12n - 4,6,12n - 3) ...
(bn—-5,6n+2,6n-3,6n+4,6n-1,6n+6,6n+1,6n-4,6n+3,6n-2,6n+5,6n).



94 M. Ghorbani, M. Dehmer and M. Rajabi-Parsa et al./Applied Mathematics and Computation 352 (2019) 88-98

12n-5

12n-4

12n-3

Fig. 6. Labeling of vertices of fullerene graph Bi,,, n is even.

One can prove that o? =812 =1, fa =B~ and thus A = Aut(By,) > (o, B) = Dyy. On the other hand, the identity
element and the symmetry element « fix 1. Hence, the orbit-stabilizer property implies that |A| = |14|.|A;| and thus
|A] = 12 x 2 and thus A=Dy,.

Similar to the proof of Theorem 1, all orbits of the action of automorphism group of the set of vertices are the same
as the Hosoya-partitions. They are reported in Table 3. This means that the vertices of this graph are partitioned to n
equivalence classes of size 12 and its entropy is

12 12n
H(Bi2n) = n<m10g <f)) = log(n).

Now, suppose n is an odd number, see Fig. 7. Again, similar to the proof of Theorem 1, we can prove that for n > 5 the
set of orbits and equivalence classes coincide and the Hosoya-partitions are as given in Table 4. The exceptional cases are
given in Table 5.
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12n-5

12n-45| 6n+8

12n-46\ 6n+7

12n-2

12n-4

12n-3

Fig. 7. Labeling of vertices of fullerene graph By, n is odd.

As a result of Theorem 2, one can see that there is a correlation between entropy and the boiling point of fullerene B1y,.
In other words, the boiling points of 7 members of fullerene graph B, are given in Table 6. By comparing these values
with the Hosoya entropy of these fullerenes computed directly from Theorem 2, one can easily determine the correlation
R = 0.998 between them. It should be noted that, this is the first attempt to estimate the boiling point of fullerene graphs
with respect to Hosoya entropy. We can apply our method for other classes of fullerenes introduced in this paper. O

Theorem 3. The Hosoya entropy of the fullerene graph Cqz,.2, with n>7, is given by

1
H(Cizni2) = l0g(12n+2) — 152 (120 + 26 + (121 - 36)log3).

Proof. For n> 7, consider the graph shown in Fig. 8. If
o =(1,5)(2,4)(6,8)...(12n - 3,12n - 1)(12n + 2, 12n),
B=02,8@3,7)4,6)...(12n-3,12n+2)(12n - 2,12n + 1) (12n — 1, 12n).
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Table 3
The Hosoya-partitions of fullerene graph By, n is even.

H-partitions Elements

Vi 1,2,3,4,5,6,12n-5,...,12n

Vs 7,9,11,13,15,17,12n - 16,...,12n - 6

V3 8,10,12,14,16,18,12n —17,12n - 15,...,12n - 7

Vs 19,21, 23, 25,27,29,12n — 28, 12n — 26, 12n — 24,
12n—22,12n—-20,12n - 18

Vs 20,22,24,26,28,30,12n — 29, 12n — 27, 12n — 25,
12n-23,12n-21,12n-19

Ve 31,33,35,37, 39,41, 12n — 40, 12n — 38, 12n — 36,
12n—34,12n - 32,12n - 30

Vs 32,34,36,38,40,42,12n — 41,12n — 39, 12n — 37,
12n—-35,12n - 33,12n - 31

Vs 43,45,47,49,51,53,12n — 52, 12n — 50, 12n — 48,
12n — 46, 12n — 44, 12n — 42

Vo 44,46, 48,50,52, 54, 12n — 53, 12n — 51, 12n — 49,

12n —47,12n —45,12n - 43

Vi 6n-5,6n-4,6n-3,6n—-2,6n-1,6n,6n+1,6n+2,
6n+3,6n+4,6n+5,6n+6

Table 4
The Hosoya-partitions of fullerene graph By, n is odd.

H-partitions ~ Elements

Vi 1,2,3,4,5,6,12n-5,12n—-4,12n-3,12n-2,12n—1,12n

Va 7.9,11,13,15,17,12n — 16, 12n — 14, 12n — 12,
12n-10,12n-8,12n - 6

V3 8,10,12,14,16,18,12n — 17,12n — 15, 12n — 13,
12n-11,12n-9,12n -7

Vy 19,21, 23,25,27,29, 12n — 28, 12n — 26, 12n — 24,
12n —-22,12n - 20,12n - 18

Vs 20,22,24,26,28,30,12n — 29, 12n — 27, 12n — 25,
12n-23,12n-21,12n-19

Ve 31,33, 35,37,39,41, 12n — 40, 12n — 38, 12n - 36,
12n —34,12n-32,12n-30

Vs 32,34,36,38,40,42,12n — 41, 12n — 39, 12n — 37,
12n—-35,12n-33,12n - 31

Vs 43,45,47,49,51,53,12n — 52, 12n — 50, 12n — 48,
12n — 46, 12n — 44, 12n — 42

Vo 44,46, 48,50, 52,54, 12n — 53, 12n — 51, 12n — 49,

12n —47,12n —45,12n - 43

Viq 6n-11,6n-9,6n—-7,6n-5,6n-3,6n—-1,6n+1,6n+ 3,

6n+5,6n+7,6n+9,6n+11
Vo 6n—10,6n—-8,6n —6,6n—4,6n—2,6n,6n+2,6n+4,

6n+6,6n+8,6n+10,6n+ 12

Table 5
The exceptional cases of the entropy of
fullerene By

Fullerene  entropy

B4 H(Ba4) = log]2 ,
Bss H(Bss) = *510g3 +3
Table 6
Compairing the entropy with boiling point of fullerene Byy,.
Fullerenes  entropy BP (Centigrade degree)
By H(By4) =log2 4435
Bsg H(Bsg) = —(log3)/3+2/3 601.7
Bus H(B4g) = log4 733.6
Bso H(Bgo) = log5 849
B, H(By;) =log6 953
Bs4 H(Bg4) = 10g7 1048

Bog H(Bgs) = log 8 1136
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12n-3
12n+2

12n+1
12n-2

12n 12n-1

Fig. 8. Labeling the vertices of fullerene graph Cyp;2.

Table 7
Some exceptional cases of fullerene Cyzpy2.

Fullerenes  entropy

Cys H(Cze) = log 13- % log3
6 14
Csg H(ng):log19—ﬁlog3—ﬁ
3 18
Cso H(Csp) = log25 — 55 log3 — 55
12 18
Cs2 H(Cg) =log31 — e log3 — 3
15 20
Cya H(C4) = log37 — 3—710g3— 37

then T' = (o, B) <A = Aut(Cizn,2) and the orbit-stabilizer property implies that |A| = |14].|A;| and thus one can see that
A=Z, x Z,. By a method similar to that used in the proof of Theorem 1, we can show that the Hosoya-partitions are

{1,5},{2,4,6,8},{3,7}.{9, 15}, {10, 14, 16, 20}, {11, 13, 17, 19},

(21,27}, {22, 26, 28, 32}, {23, 25, 29, 31}, {24, 30}, {33, 39},
(34, 36,38, 40, 42, 44}, {35, 37, 41, 43}, {45, 47, 49, 51, 53, 55},
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{12, 18}, {46, 48, 50, 52, 54, 56}, ... .,

{12n—15,12n — 13,12n — 11,12n — 9, 12n — 7, 12n — 5},
{12n - 14,12n — 12, 12n — 10, 12n — 8, 12n — 6, 12n — 4},
(12n-3,12n—2,12n—1,12n, 12n + 1, 12n + 2}.

In other words, there are seven equivalence classes of size 2, six equivalence classes of size 4 and 2n — 6 equivalence classes
of size 6. The exceptional cases are given in Table 7 and this completes the proof. O

4. Summary and conclusion

In this paper we have applied the concept of Hosoya entropy, introduced in [23], to study properties of a class of graphs
representing chemical molecules known as fullerenes. We have shown that important physical properties of these molecules
can be determined by applying Hosoya entropy to their corresponding graphs. Hosoya entropy is a very specialized measure,
and of course other entropy measures might capture other different properties of these molecules. Future work in this area
is needed to identify the particular physical properties of fullerenes captured by different entropy based graph measures.
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