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Abstract— Computation of optimal recovery decisions for
community resilience assurance post-hazard is a combinatorial
decision-making problem under uncertainty. It involves solving
a large-scale optimization problem, which is significantly aggra-
vated by the introduction of uncertainty. In this paper, we draw
upon established tools from multiple research communities to
provide an effective solution to this challenging problem. We
provide a stochastic model of damage to the water network
(WN) within a testbed community following a severe earthquake
and compute near-optimal recovery actions for restoration
of the water network. We formulate this stochastic decision-
making problem as a Markov Decision Process (MDP), and
solve it using a popular class of heuristic algorithms known as
rollout. A simulation-based representation of MDPs is utilized
in conjunction with rollout and the Optimal Computing Budget
Allocation (OCBA) algorithm to address the resulting stochastic
simulation optimization problem. Our method employs non-
myopic planning with efficient use of simulation budget. We
show, through simulation results, that rollout fused with OCBA
performs competitively with respect to rollout with total equal
allocation (TEA) at a meagre simulation budget of 5-10% of
rollout with TEA, which is a crucial step towards addressing
large-scale community recovery problems following natural
disasters.

I. INTRODUCTION

Natural disasters have a significant impact on the eco-

nomic, social, and cultural fabric of affected communities.

Moreover, because of the interconnected nature of com-

munities in the modern world, the adverse impact is no

longer restricted to the locally affected region, but it has

ramifications on national or international scale. Among other

factors, the occurrence of such natural disasters is on the

rise owing to population growth and economic development

in hazard-prone areas [1]. Keeping in view the increased

frequency of natural disasters, there is an urgent need to

address the problem of community recovery post-hazard.

Typically, the resources available to post-disaster planners

are limited and relatively small compared to the impact of
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the damage. Under these scenarios, it becomes imperative

to assign limited resources to various damaged components

in the network optimally to support community recovery.

Such an assignment must also consider multiple objec-

tives and cascading effects due to the interconnectedness

of various networks within the community and must also

successfully adopt previous proven methods and practices

developed by expert disaster-management planners. Holistic

approaches addressing various uncertainties for network-

level management of limited resources must be developed

for maximum effect. Civil infrastructure systems, including

power, transportation, and water networks, play a critical part

in post-disaster recovery management. In this study, we focus

on one such critical infrastructure system, namely the water

networks (WN), and compute near-optimal recovery actions,

in the aftermath of an earthquake, for the WN of a test-bed

community.

Markov decision processes (MDPs) offer a convenient

framework for representation and solution of stochastic

decision-making problems. Exact solutions are intractable for

problems of even modest size; therefore, approximate solu-

tion methods have to be employed. We can leverage the rich

theory of MDPs to model recovery action optimization for

large state-space decision-making problems such as our. In

this study, we employ a simulation-based representation and

solution of MDP. The near-optimal solutions are computed

using an approximate solution technique known as rollout.

Even though state-of-the-art hardware and software practices

are used to implement the solution to our problem, we are

faced with the additional dilemma of computing recovery

actions on a fixed simulation budget without affecting the so-

lution performance. Therefore, any prospective methodology

must incorporate such a limitation in its solution process.

We incorporate the Optimal Computing Budget Allocation

(OCBA) algorithm into our MDP solution process [2], [3] to

address the limited simulation budget problem.

II. TESTBED CASE STUDY

A. Network Characterization

This study considers the potable water network (WN) of

Gilroy, CA, USA as an example to illustrate the proposed

methodology. Gilroy, located 50 kilometers (km) south of

the city of San Jose, CA is approximately 41.91 km2 in area,

with a population of 48,821 [4]. We divide our study area

into 36 grid regions to define the properties of infrastructure

systems, household units, and the population. Our model

of the community maintains adequate detail to study the



Fig. 1. The modeled Water Network of Gilroy

performance of the WN at a community level under severe

earthquakes. The potable water of Gilroy is provided only

by the Llgas sub-basin [5]. The potable water wells, located

in wood-frame buildings, pump water into the distribution

system. The Gilroy municipal water pipelines range from

102 mm to 610 mm in diameter [5]. In this study, a simplified

aggregated model of WN of Gilroy adopted from [5] is

modeled. This model shown in Fig. 1, includes six water

wells, two booster pump stations (BPS), three water tanks

(WT), and the main pipelines.

B. Seismic Hazard Simulation

The San Andreas Fault (SAF), which is near Gilroy, is a

source of severe earthquakes. In this study, we assume that

a seismic event of moment magnitude Mw = 6.9 occurs at

one of the closest points on the SAF projection to downtown

Gilroy with an epicentral distance of approximately 12 km.

Ground motion prediction equations (GMPE) determine the

conditional probability of exceeding ground motion inten-

sity at specific geographic locations within Gilroy for this

earthquake.

The Abrahamson et al. [6] GMPE is used to estimate

the Intensity Measures (IM) and associated uncertainties.

Peak Ground Acceleration (PGA) is considered for the

above-ground WN facilities and wells, whereas Peak Ground

Velocity (PGV) is considered as IM of pipelines.

C. Fragility and Restoration Assessment of Water Network

The physical damage to WN components can be assessed

by seismic fragility curves. We use the fragility curves

presented in HAZUS-MH [7] for wells, water tanks, and

pump stations based on the IM of PGA. This study adopts the

assumptions in [8] for water pipelines. The failure probability

of a pipe is bounded as follows:

1−GεPGV (−CLµPGV )≤ E[Pf ]≤ 1−E[exp(−CLµPGV )]
(1)

where Pf is the failure probability of a pipe, L is the length

of pipe, µPGV is the average PGV for the entire length of

the water main, and G(·) is the moment-generating function

of εPGV (the residual of the PGV). The term C for water

pipe segment i is C = K × 0.00187×PGVi, where K is a

coefficient determined by the pipe material, diameter, joint

type, and soil condition based on the guidelines prepared by

the American Lifeline Alliance [9]. Adachi and Ellingwood

[8] demonstrated that the Upper Bound (UB) and exact

solutions (1) are close enough so that in practical applications

the UB assessment (conservative evaluation) can be used.

Repair crews, replacement components, and tools are

considered as available units of resources to restore the

damaged components of WN following the hazard. One unit

of resources is required to repair each damaged component

[10], [11]. However, the available units of resources are

limited and depend on the capacities and policy of the entities

within the community. To restore the WN, the restoration

times based on exponential distributions synthesized from

HAZUS-MH [7] are used, as summarized in Table I. The

pipe-restoration time in the WN is based on repair rate or

number of repairs per kilometer.

TABLE I

THE EXPECTED REPAIR TIMES (UNIT: DAYS)

Damage States

Component Minor Moderate Extensive Complete

Water tanks 1.2 3.1 93 155
Wells 0.8 1.5 10.5 26
Pumping plants 0.9 3.1 13.5 35

III. PROBLEM DESCRIPTION AND SOLUTION

A. MDP Framework

We provide a brief description of MDP [12] for the sake

of completeness. An MDP is a controlled dynamical process

useful in modelling of wide range of decision-making prob-

lems. It can be represented by the 4-tuple 〈S,A,T,R〉. Here,

S represents the set of states, and A represents the set of

actions. Let s,s′ ∈ S and a ∈ A; then T is the state transition

function, where T (s,a,s′) = P(s′ | s,a) is the probability of

going into state s′ after taking action a in state s. R is the

reward function, where R(s,a,s′) is the reward received after

transitioning from s to s′ as a result of action a. In this study,

we assume that |S| and |A| are finite; R is bounded and real-

valued and a deterministic function of s, a and s′. Implicit in

our presentation are also the following assumptions: First or-

der Markovian dynamics (history independence), stationary

dynamics (reward function is not a function of absolute time),

and full observability of the state space (outcome of an action

in a state might be random, but we know the state reached

after action is completed). In our study, we assume that we

are allowed to take recovery actions (decisions) indefinitely

until all the damaged components of our modeled problem

are repaired (infinite-horizon planning). In this setting, we

have a stationary policy π , which is defined as π : S→ A.

Suppose that decisions are made at discrete-time t; then π(s)
is the action to be taken in state s (regardless of time t). Our



objective is to find an optimal policy π∗. For the infinite-

horizon case, π∗ is defined as

π
∗ = argmax

π
V π(s0), (2)

where

V π(s0) = E

[

∞

∑
t=0

γ
tR(st ,π(st),st+1)

]

(3)

is called the value function for a fixed policy π , and 0< γ < 1

is the discount factor. Note that the optimal policy is inde-

pendent of the initial state s0. Also, note that we maximize

over policies π , where at each time t the action taken is

at = π(st). Stationary optimal policies are guaranteed to exist

for discounted infinite-horizon optimization criteria [13]. To

summarize, our presentation is for infinite-horizon discrete-

time MDPs with the discounted value as our optimization

criterion.

B. MDP Solution

A solution to an MDP is the optimal policy π∗. We can

obtain π∗ with linear programming or dynamic program-

ming. In the dynamic programming regime, there are several

solution strategies, namely value iteration, policy iteration,

modified policy iteration, etc. Unfortunately, such exact

solution algorithms are intractable for large state and actions

spaces. We briefly mention here the method of value iteration

because it illustrates the Bellman’s equation [14]. Studying

Bellman’s equation is useful for defining Q value function.

Q value function will play a critical role in describing the

rollout algorithm. Let V π∗ denote the optimal value function

for some π∗; Bellman showed that V π∗ satisfies:

V π∗(s) = max
a∈A(s)

{

γ ·∑
s′

P(s′ | s,a) ·
[

V π∗(s′)+R(s,a,s′)
]

}

.

(4)

Equation (4) is known as the Bellman’s optimality equation,

where A(s) is the set of possible actions in any state s. The

value iteration algorithm solves (4) by using Bellman backup

repeatedly, where Bellman backup is given by:

Vi+1(s) = max
a∈A(s)

{

γ ∑
s′

P(s′ | s,a) ·
[

Vi(s
′)+R(s,a,s′)

]

}

. (5)

Bellman showed that limi→∞ Vi =V π∗ , where V0 is initialised

arbitrarily.1 Next, we define the Q value function of policy

π:

Qπ(s,a) = γ ·∑
s′

P(s′ | s,a) ·
[

V π(s′)+R(s,a,s′)
]

. (6)

The Q value function of any policy π gives the expected

discount reward in the future after starting in some state s,

taking action a and following policy π thereafter. Note that

this is the inner term in (4).

1On a historical note, Lloyd Shapely’s paper [15] included the value
iteration algorithm for MDPs as a special case, but this was recognised
only later on [16].

C. Simulation-Based Representation of MDP

We now briefly explain the simulation-based representa-

tion of an MDP [17]. Such a representation serves well

for large state and action spaces, which is a characteristic

feature of many real-world problems. When |S| or |A| is

large, it is not feasible to represent T and R in a matrix

form. A simulation-based representation of an MDP is a 5-

tuple 〈S,A,R,T, I〉, where S and A are as before, except |S|
and |A| are large. Here, R is a stochastic real-valued bounded

function that stochastically returns a reward r when input s

and a are provided, where a is the action applied in state s. T

is a simulator that stochastically returns a state s′ when state

s and action a are provided as inputs. I is the stochastic initial

state function that stochastically returns a state according to

some initial state distribution. R, T , and I can be thought of

as any callable library functions that can be implemented in

any programming language.

D. Problem Formulation

After an earthquake event occurs, the components of the

water network remain undamaged or exhibit one of the

damage states as shown in Table I. Let L′ be the total

number of damaged component at t. Let tc represent the

decision time when all components are repaired. There is a

fixed number of resource units (M) available to the decision

maker. At each discrete-time t, the decision maker has to

decide the assignment of unit of resource to the damaged

locations; each component cannot be assigned more than one

resource unit. When the number of damaged locations is less

than the number of units of resources (because of sequential

application of repair actions, or otherwise), we retire the extra

unit of resources so that M is equal to the number of damaged

locations.

• States S: Let st be the state of the damaged components

of the system at time t; then st is a vector of length L′,

st = (s1
t , . . . ,s

L′

t ), and sl
t is one of the damaged state in

Table I where l ∈ {1, . . . ,L′}.
• Actions A: Let at denote the repair action to be carried

out at time t. Then, at is a vector of length L′, at =
(a1

t , . . . ,a
L′

t ), and al
t ∈{0,1} ∀l, t. When al

t = 0, no repair

work is to be carried out at l. Similarly, when al
t = 1,

repair work is carried out at l.

• Simulator T: The repair time associated with each

damaged location depends on the state of the damage

to the component at that location (see Table I). This

repair time is random and is exponentially distributed

with expected repair times shown in Table I. Given st

and at , T gives us the new state st+1. We say that a

repair action is complete as soon as at least one of

the locations where repair work is carried out is fully

repaired. Let’s denote this completion time at every

t by t̂t . Note that it is possible for the repair work

at two or more damaged locations to be completed

simultaneously. Once the repair action is complete,

the units of resources at remaining locations, where

repair work was not complete, are also available for



reassignment along with unit of resources where repair

was complete. The new repair time at such unrepaired

locations is calculated by subtracting t̂ from the time

required to repair these locations. It is also possible

to reassign the unit of resource at the same unrepaired

location if it is deemed important for the repair work to

be continued at that location by the planner. Because of

this reason, preemption of repair work during reassign-

ment is not a restrictive assumption, on the contrary,

it allows greater flexibility to the decision maker for

planning. Because the repair times are random, the

outcomes of repair actions are random as not the same

damaged component will be repaired first even if the

same repair action at is applied in st (We would like to

stress again that the state-dependent random repair time

is exponentially distributed with expected repair times

shown in Table I). Hence, our simulator T is stochastic.

Alternative formulation where outcome of repair action

is deterministic is also an active area of research [18]–

[20].

• Rewards R: We wish to optimally plan decisions so that

maximum people will get water in minimum amount of

time. We combine these two competing objectives to

define our reward as:

R(st ,at ,st+1) =
r

trep

, (7)

where r is the number of people who have water after

action at is completed, and trep is the total repair time

(days) required to reach st+1 from any initial state s0.

Note that the total repair time trep, after an action at

is completed, is the sum of the completion time t̂t , at

each t. Therefore, the state-action dependent definition

of the reward function in (7) is based on the time period

required to complete an action (completion time t̂t ), and

captures the time-critical aspect of the recovery actions

in its definition, which plays an important part in post-

hazard recovery problems. Also, note that our reward

function is stochastic because the outcome of our action

at is random.

• Initial State I: We have already described the stochastic

damage model of the components for the modeled

network in Section II-B and Section II-C. The initial

damage states associated with the components will be

provided by these models.

• Discount factor γ: In our simulation studies, γ is fixed

at 0.99.

E. Rollout

The rollout algorithm was first proposed for stochastic

scheduling problems by Bertsekas and Castanon [21]. Instead

of the dynamic programming formalism [21], we motivate

the rollout algorithm in relation to the simulation-based

representation of our MDP. Suppose that we have access

to a non-optimal policy π , and our aim is to compute an

improved policy π ′. Then, we have:

π
′(st) = argmax

at

Qπ(st ,at), (8)

where the Q function is as defined in (6). If the policy defined

in (8) π ′ is non-optimal, it is a strict improvement over π

[13]. This result is termed as policy improvement theorem.

Note that the improved policy π ′ is generated as a greedy

policy w.r.t. Qπ . Unlike the exact solution methods described

in Section III-B, we are interested here in computing π ′ only

for the current state. Methods that use (8) as the basis for

updating the policy suffer from the curse of dimensionality.

Before performing the policy improvement step in (8), we

have to first calculate the value of Qπ . Calculating the

value of Qπ in (8) is known as policy evaluation. Policy

evaluation is intractable for large or continuous state and

action spaces. Approximation techniques alleviate this prob-

lem by calculating an approximate Q value function. Rollout

is one such approximation technique that utilises monte-

carlo simulations. Particularly, rollout can be formulated

as an approximate policy iteration algorithm [17], [22].

An implementable (programming sense) stochastic function

(simulator) SimQ(st ,at ,π,h) is defined in such a way that

its expected value is Qπ(st ,at ,h), where h is a finite number

representing horizon length. In the rollout algorithm, SimQ is

implemented by simulating action at in state st and following

π thereafter for h−1 steps. This is done for all the actions

at ∈ A(st). A finite horizon approximation of Qπ(st ,at)
(termed as Qπ(st ,at ,h)), is required; our simulation would

never finish in the infinite horizon case because we would

have to follow policy π indefinitely. However, V π(st), and

consequently Qπ(st ,at), is defined over the infinite horizon.

It is easy to show the following:

|Qπ(st ,at)−Qπ(st ,at ,h)|=
γ hRmax

1− γ
. (9)

The approximation error in (9) reduces exponentially fast

as h grows. Therefore, the h-horizon results apply to the

infinite horizon setting, for we can always choose h such

that the error in (9) is negligible. To summarize, the rollout

algorithm can be presented in the following fashion for our

problem:

Algorithm 1 Uniform Rollout (π ,h,α ,st )

for i = 1 to n do

for j = 1 to α do

ãi, j← SimQ(st ,a
i, j
t ,π,h) . See algorithm 2

end for

end for

ãi
t ←Mean(ãi, j)

k← argmax ãi
t

return ak
t

In Algorithm 1, n denotes |A(st)|. Note that Algorithm 2

returns the discounted sum of rewards. When h= tc, we term

the rollout as complete rollout, and when h < tc, the rollout

is called truncated rollout [21]. It is possible to analyse

the performance of uniform rollout in terms of uniform

allocation α and horizon depth h [17], [23].
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