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Abstract— Computation of optimal recovery decisions for
community resilience assurance post-hazard is a combinatorial
decision-making problem under uncertainty. It involves solving
a large-scale optimization problem, which is significantly aggra-
vated by the introduction of uncertainty. In this paper, we draw
upon established tools from multiple research communities to
provide an effective solution to this challenging problem. We
provide a stochastic model of damage to the water network
(WN) within a testbed community following a severe earthquake
and compute near-optimal recovery actions for restoration
of the water network. We formulate this stochastic decision-
making problem as a Markov Decision Process (MDP), and
solve it using a popular class of heuristic algorithms known as
rollout. A simulation-based representation of MDPs is utilized
in conjunction with rollout and the Optimal Computing Budget
Allocation (OCBA) algorithm to address the resulting stochastic
simulation optimization problem. Our method employs non-
myopic planning with efficient use of simulation budget. We
show, through simulation results, that rollout fused with OCBA
performs competitively with respect to rollout with total equal
allocation (TEA) at a meagre simulation budget of 5-10% of
rollout with TEA, which is a crucial step towards addressing
large-scale community recovery problems following natural
disasters.

I. INTRODUCTION

Natural disasters have a significant impact on the eco-
nomic, social, and cultural fabric of affected communities.
Moreover, because of the interconnected nature of com-
munities in the modern world, the adverse impact is no
longer restricted to the locally affected region, but it has
ramifications on national or international scale. Among other
factors, the occurrence of such natural disasters is on the
rise owing to population growth and economic development
in hazard-prone areas [1]. Keeping in view the increased
frequency of natural disasters, there is an urgent need to
address the problem of community recovery post-hazard.
Typically, the resources available to post-disaster planners
are limited and relatively small compared to the impact of
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the damage. Under these scenarios, it becomes imperative
to assign limited resources to various damaged components
in the network optimally to support community recovery.
Such an assignment must also consider multiple objec-
tives and cascading effects due to the interconnectedness
of various networks within the community and must also
successfully adopt previous proven methods and practices
developed by expert disaster-management planners. Holistic
approaches addressing various uncertainties for network-
level management of limited resources must be developed
for maximum effect. Civil infrastructure systems, including
power, transportation, and water networks, play a critical part
in post-disaster recovery management. In this study, we focus
on one such critical infrastructure system, namely the water
networks (WN), and compute near-optimal recovery actions,
in the aftermath of an earthquake, for the WN of a test-bed
community.

Markov decision processes (MDPs) offer a convenient
framework for representation and solution of stochastic
decision-making problems. Exact solutions are intractable for
problems of even modest size; therefore, approximate solu-
tion methods have to be employed. We can leverage the rich
theory of MDPs to model recovery action optimization for
large state-space decision-making problems such as our. In
this study, we employ a simulation-based representation and
solution of MDP. The near-optimal solutions are computed
using an approximate solution technique known as rollout.
Even though state-of-the-art hardware and software practices
are used to implement the solution to our problem, we are
faced with the additional dilemma of computing recovery
actions on a fixed simulation budget without affecting the so-
lution performance. Therefore, any prospective methodology
must incorporate such a limitation in its solution process.
We incorporate the Optimal Computing Budget Allocation
(OCBA) algorithm into our MDP solution process [2], [3] to
address the limited simulation budget problem.

II. TESTBED CASE STUDY
A. Network Characterization

This study considers the potable water network (WN) of
Gilroy, CA, USA as an example to illustrate the proposed
methodology. Gilroy, located 50 kilometers (km) south of
the city of San Jose, CA is approximately 41.91 km? in area,
with a population of 48,821 [4]. We divide our study area
into 36 grid regions to define the properties of infrastructure
systems, household units, and the population. Our model
of the community maintains adequate detail to study the



Fig. 1.

The modeled Water Network of Gilroy

performance of the WN at a community level under severe
earthquakes. The potable water of Gilroy is provided only
by the Llgas sub-basin [5]. The potable water wells, located
in wood-frame buildings, pump water into the distribution
system. The Gilroy municipal water pipelines range from
102 mm to 610 mm in diameter [5]. In this study, a simplified
aggregated model of WN of Gilroy adopted from [5] is
modeled. This model shown in Fig. 1, includes six water
wells, two booster pump stations (BPS), three water tanks
(WT), and the main pipelines.

B. Seismic Hazard Simulation

The San Andreas Fault (SAF), which is near Gilroy, is a
source of severe earthquakes. In this study, we assume that
a seismic event of moment magnitude Mw = 6.9 occurs at
one of the closest points on the SAF projection to downtown
Gilroy with an epicentral distance of approximately 12 km.
Ground motion prediction equations (GMPE) determine the
conditional probability of exceeding ground motion inten-
sity at specific geographic locations within Gilroy for this
earthquake.

The Abrahamson et al. [6] GMPE is used to estimate
the Intensity Measures (IM) and associated uncertainties.
Peak Ground Acceleration (PGA) is considered for the
above-ground WN facilities and wells, whereas Peak Ground
Velocity (PGV) is considered as IM of pipelines.

C. Fragility and Restoration Assessment of Water Network

The physical damage to WN components can be assessed
by seismic fragility curves. We use the fragility curves
presented in HAZUS-MH [7] for wells, water tanks, and
pump stations based on the IM of PGA. This study adopts the
assumptions in [8] for water pipelines. The failure probability
of a pipe is bounded as follows:

1 — Gepov (—CLupgy) < E[Pf] <1—E[exp(—CLupcv)]
(D
where Py is the failure probability of a pipe, L is the length
of pipe, Upgy is the average PGV for the entire length of

the water main, and G(-) is the moment-generating function
of ePGV (the residual of the PGV). The term C for water
pipe segment i is C = K x 0.00187 x PGV;, where K is a
coefficient determined by the pipe material, diameter, joint
type, and soil condition based on the guidelines prepared by
the American Lifeline Alliance [9]. Adachi and Ellingwood
[8] demonstrated that the Upper Bound (UB) and exact
solutions (1) are close enough so that in practical applications
the UB assessment (conservative evaluation) can be used.

Repair crews, replacement components, and tools are
considered as available units of resources to restore the
damaged components of WN following the hazard. One unit
of resources is required to repair each damaged component
[10], [11]. However, the available units of resources are
limited and depend on the capacities and policy of the entities
within the community. To restore the WN, the restoration
times based on exponential distributions synthesized from
HAZUS-MH [7] are used, as summarized in Table I. The
pipe-restoration time in the WN is based on repair rate or
number of repairs per kilometer.

TABLE I
THE EXPECTED REPAIR TIMES (UNIT: DAYS)

Damage States

Component Minor Moderate  Extensive ~ Complete
Water tanks 12 3.1 93 155
Wells 0.8 1.5 10.5 26
Pumping plants 0.9 3.1 13.5 35

ITI. PROBLEM DESCRIPTION AND SOLUTION

A. MDP Framework

We provide a brief description of MDP [12] for the sake
of completeness. An MDP is a controlled dynamical process
useful in modelling of wide range of decision-making prob-
lems. It can be represented by the 4-tuple (S,A,T,R). Here,
S represents the set of states, and A represents the set of
actions. Let s,5" €S and a € A; then T is the state transition
function, where T (s,a,s") = P(s" | 5,a) is the probability of
going into state s’ after taking action a in state s. R is the
reward function, where R(s,a,s’) is the reward received after
transitioning from s to s” as a result of action a. In this study,
we assume that |S| and |A| are finite; R is bounded and real-
valued and a deterministic function of s, a and s'. Implicit in
our presentation are also the following assumptions: First or-
der Markovian dynamics (history independence), stationary
dynamics (reward function is not a function of absolute time),
and full observability of the state space (outcome of an action
in a state might be random, but we know the state reached
after action is completed). In our study, we assume that we
are allowed to take recovery actions (decisions) indefinitely
until all the damaged components of our modeled problem
are repaired (infinite-horizon planning). In this setting, we
have a stationary policy 7, which is defined as w: S — A.
Suppose that decisions are made at discrete-time f; then 7(s)
is the action to be taken in state s (regardless of time #). Our



objective is to find an optimal policy 7*. For the infinite-
horizon case, * is defined as

m* = argmax V" (sp), )
T
where
V(s0) = E | Y V'R(st, w(s1),5041) (3)
=0

is called the value function for a fixed policy 7, and 0 <y < 1
is the discount factor. Note that the optimal policy is inde-
pendent of the initial state sg. Also, note that we maximize
over policies 7, where at each time ¢ the action taken is
a; = (s, ). Stationary optimal policies are guaranteed to exist
for discounted infinite-horizon optimization criteria [13]. To
summarize, our presentation is for infinite-horizon discrete-
time MDPs with the discounted value as our optimization
criterion.

B. MDP Solution

A solution to an MDP is the optimal policy 7*. We can
obtain 7* with linear programming or dynamic program-
ming. In the dynamic programming regime, there are several
solution strategies, namely value iteration, policy iteration,
modified policy iteration, etc. Unfortunately, such exact
solution algorithms are intractable for large state and actions
spaces. We briefly mention here the method of value iteration
because it illustrates the Bellman’s equation [14]. Studying
Bellman’s equation is useful for defining Q value function.
Q value function will play a critical role in describing the
rollout algorithm. Let V** denote the optimal value function
for some 7*; Bellman showed that VT satisfies:

VE (s) = ma(x) v-Y P(s'|s,.a)- [V”* (s') +R(s,a,s")
acA(s 5

“4)

Equation (4) is known as the Bellman’s optimality equation,
where A(s) is the set of possible actions in any state s. The
value iteration algorithm solves (4) by using Bellman backup
repeatedly, where Bellman backup is given by:

Viti(s) = max

ax yZP(s’ |s,a)- [V,-(s') —|—R(s,a,s’)] . (5

Bellman showed that lim;_,..V; = V™, where V is initialised
arbitrarily." Next, we define the Q value function of policy
T

Ox(s,a) = }/-ZP(S' | s,a)- [V*(s') +R(s,a,5")] . (6)

The Q value function of any policy @ gives the expected
discount reward in the future after starting in some state s,
taking action a and following policy 7 thereafter. Note that
this is the inner term in (4).

'On a historical note, Lloyd Shapely’s paper [15] included the value
iteration algorithm for MDPs as a special case, but this was recognised
only later on [16].

C. Simulation-Based Representation of MDP

We now briefly explain the simulation-based representa-
tion of an MDP [17]. Such a representation serves well
for large state and action spaces, which is a characteristic
feature of many real-world problems. When |S| or |A] is
large, it is not feasible to represent 7 and R in a matrix
form. A simulation-based representation of an MDP is a 5-
tuple (S,A,R,T,I), where S and A are as before, except |S|
and |A| are large. Here, R is a stochastic real-valued bounded
function that stochastically returns a reward » when input s
and a are provided, where a is the action applied in state s. T
is a simulator that stochastically returns a state s’ when state
s and action a are provided as inputs. [ is the stochastic initial
state function that stochastically returns a state according to
some initial state distribution. R, T, and I can be thought of
as any callable library functions that can be implemented in
any programming language.

D. Problem Formulation

After an earthquake event occurs, the components of the
water network remain undamaged or exhibit one of the
damage states as shown in Table 1. Let L’ be the total
number of damaged component at ¢. Let 7. represent the
decision time when all components are repaired. There is a
fixed number of resource units (M) available to the decision
maker. At each discrete-time ¢, the decision maker has to
decide the assignment of unit of resource to the damaged
locations; each component cannot be assigned more than one
resource unit. When the number of damaged locations is less
than the number of units of resources (because of sequential
application of repair actions, or otherwise), we retire the extra
unit of resources so that M is equal to the number of damaged
locations.

o States S: Let s; be the state of the damaged components
of the system at time ¢; then s; is a vector of length L',
s =(s!,...,s£), and s/ is one of the damaged state in
Table I where [/ € {1,...,L'}.

o Actions A: Let a; denote the repair action to be carried
out at time r. Then, a, is a vector of length L', a, =
(a),...,a"), and a! € {0,1} VI,+. When a! =0, no repair
work is to be carried out at /. Similarly, when aﬁ =1,
repair work is carried out at /.

o Simulator T: The repair time associated with each
damaged location depends on the state of the damage
to the component at that location (see Table I). This
repair time is random and is exponentially distributed
with expected repair times shown in Table 1. Given s;
and a;, T gives us the new state s;;. We say that a
repair action is complete as soon as at least one of
the locations where repair work is carried out is fully
repaired. Let’s denote this completion time at every
t by #. Note that it is possible for the repair work
at two or more damaged locations to be completed
simultaneously. Once the repair action is complete,
the units of resources at remaining locations, where
repair work was not complete, are also available for



reassignment along with unit of resources where repair
was complete. The new repair time at such unrepaired
locations is calculated by subtracting 7 from the time
required to repair these locations. It is also possible
to reassign the unit of resource at the same unrepaired
location if it is deemed important for the repair work to
be continued at that location by the planner. Because of
this reason, preemption of repair work during reassign-
ment is not a restrictive assumption, on the contrary,
it allows greater flexibility to the decision maker for
planning. Because the repair times are random, the
outcomes of repair actions are random as not the same
damaged component will be repaired first even if the
same repair action a, is applied in s, (We would like to
stress again that the state-dependent random repair time
is exponentially distributed with expected repair times
shown in Table I). Hence, our simulator 7 is stochastic.
Alternative formulation where outcome of repair action
is deterministic is also an active area of research [18]—
[20].

o Rewards R: We wish to optimally plan decisions so that
maximum people will get water in minimum amount of
time. We combine these two competing objectives to
define our reward as:

R(StaatvstJrl):La (7)

trep

where r is the number of people who have water after
action ¢, is completed, and ?,, is the total repair time
(days) required to reach s;11 from any initial state sq.
Note that the total repair time t,,, after an action a,
is completed, is the sum of the completion time 7, at
each r. Therefore, the state-action dependent definition
of the reward function in (7) is based on the time period
required to complete an action (completion time 7), and
captures the time-critical aspect of the recovery actions
in its definition, which plays an important part in post-
hazard recovery problems. Also, note that our reward
function is stochastic because the outcome of our action
a; is random.

o Initial State I: We have already described the stochastic
damage model of the components for the modeled
network in Section II-B and Section II-C. The initial
damage states associated with the components will be
provided by these models.

o Discount factor 7y: In our simulation studies, 7 is fixed
at 0.99.

E. Rollout

The rollout algorithm was first proposed for stochastic
scheduling problems by Bertsekas and Castanon [21]. Instead
of the dynamic programming formalism [21], we motivate
the rollout algorithm in relation to the simulation-based
representation of our MDP. Suppose that we have access
to a non-optimal policy 7z, and our aim is to compute an
improved policy 7. Then, we have:

' (s;) = arg max Oxr(s,ar), ®)

where the Q function is as defined in (6). If the policy defined
in (8) 7’ is non-optimal, it is a strict improvement over T
[13]. This result is termed as policy improvement theorem.
Note that the improved policy 7’ is generated as a greedy
policy w.r.t. Q. Unlike the exact solution methods described
in Section III-B, we are interested here in computing 7’ only
for the current state. Methods that use (8) as the basis for
updating the policy suffer from the curse of dimensionality.
Before performing the policy improvement step in (8), we
have to first calculate the value of Q. Calculating the
value of Qn in (8) is known as policy evaluation. Policy
evaluation is intractable for large or continuous state and
action spaces. Approximation techniques alleviate this prob-
lem by calculating an approximate Q value function. Rollout
is one such approximation technique that utilises monte-
carlo simulations. Particularly, rollout can be formulated
as an approximate policy iteration algorithm [17], [22].
An implementable (programming sense) stochastic function
(simulator) SimQ(s;,a;, 7, h) is defined in such a way that
its expected value is Qr(s;,a;,h), where h is a finite number
representing horizon length. In the rollout algorithm, SimQ is
implemented by simulating action g, in state s; and following
7 thereafter for 7 — 1 steps. This is done for all the actions
a; € A(s;). A finite horizon approximation of Qpr(s;,ar)
(termed as Qp(s;,a;,h)), is required; our simulation would
never finish in the infinite horizon case because we would
have to follow policy 7 indefinitely. However, V7*(s;), and
consequently Qx(s;,a;), is defined over the infinite horizon.
It is easy to show the following:

thmax
11—y~

|Q7T(St7at)_Qﬂ(Sl‘7al‘7h>‘: (9)

The approximation error in (9) reduces exponentially fast
as h grows. Therefore, the h-horizon results apply to the
infinite horizon setting, for we can always choose & such
that the error in (9) is negligible. To summarize, the rollout
algorithm can be presented in the following fashion for our
problem:

Algorithm 1 Uniform Rollout (7,h,a,s;)

for i=1ton do

for j=1t0oaxdo

aJ « SimQ(s;,a,”, 7, h)

end for
end for
i < Mean(a)
k < argmax d

return a

> See algorithm 2

In Algorithm 1, n denotes |A(s;)|. Note that Algorithm 2
returns the discounted sum of rewards. When h =t¢., we term
the rollout as complete rollout, and when & < f., the rollout
is called truncated rollout [21]. It is possible to analyse
the performance of uniform rollout in terms of uniform
allocation o and horizon depth A [17], [23].



Algorithm 2 Simulator SimQ(s,,aﬁ’j , T, h)

St41 T(s',,.a;’])
r< R(s;,a;” ,si11)
for p=1toh—1do
St414p < T (St4p, T(s14p))
= rHYPR(St4p, T (St4p), Si414p)
end for
return r

F. Optimal Computing Budget Allocation

In the previous section, we presented the rollout method
for solving our MDP problem. In the case of uniform rollout,
we allocate a fixed rollout sampling budget o to each action,
i.e., we obtain o number of rollout samples per candidate
action to estimate the Q value associated with the action. In
the simulation optimization community, this is analogous to
total equal allocation (TEA) [24] with a fixed budget « for
each simulation experiment (a single simulation experiment
is equivalent to one rollout sample). In practice, we are only
interested in the best possible action, and we would like to
direct our search towards the most promising candidates.
Also, for large real-world problems, the simulation budget
available is insufficient to allocate o number of rollout
samples per action. We would like to get a rough estimate of
the performance of each action and spend the remaining sim-
ulation budget in refining the accuracy of the best estimates.
This is the classic exploration vs. exploitation problem faced
in optimal learning and simulation optimization problems.

Instead of a uniform allocation ¢ for each action, non-
uniform allocation methods have been explored in the litera-
ture pertaining to Algorithm 1 called as adaptive rollout [25].
An analysis of performance guarantees for adaptive rollout
remains an active area of research [25]-[27]. These non-
uniform allocation methods guarantee performance without
a constraint on the budget of rollouts. Hence, we explore
an alternative non-uniform allocation method that would not
only fuse well into our solutions (adaptively guiding the
stochastic search) but would also incorporate the constraint
of simulation budget in its allocation procedure. Numerous
techniques have been proposed in the simulation optimiza-
tion community to solve this problem. We draw upon one of
the best performers [28] that naturally fits into our solution
framework—OCBA. Moreover, the probability of correct
selection P{CS} of an alternative in OCBA mimics finding
the best candidate action at each stage in Algorithm 1.
Formally, the OCBA problem [29] for Section III-D can be
stated as :

n
Jnax P{CS} such that )}’ N; = B, (10)
Lyeestin i=1
where B represents the simulation budget for determining
optimal a, for s, at any ¢, and N; is the simulation budget
for the i’ action at a particular 7. At each OCBA allocation
step (for the definition of the allocation step, see variable / in
[29]), barring the best alternative, the OCBA solution assigns
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Fig. 2. Performance comparison of rollout vs base policy for 3 units of
resources.

an allocation that is directly proportional to the variance of
each alternative and inversely proportional to the squared
difference between the mean of that alternative and the best
alternative.

Here, we only provide information required to initialize
the OCBA algorithm. For a detailed description of OCBA,
including the solution to the problem in (10), see [29]. The
key initialization variables, for the OCBA algorithm [29], are
k, T (not to be confused with T in this paper), A, and ng. The
variable k is equal to variable n in our problem. The value of
n changes at each ¢ and depends on the number of damaged
components and units of resources. The variable T is equal to
per-stage budget B in our problem. More information about
the exact value assigned to B is described in Section IV. We
follow the guidelines specified in [30] to select ny and A; ng
in the OCBA algorithm is selected equal to 5, and A is kept
at 15% of n (within rounding).

IV. SIMULATION RESULTS

We simulate 100 different initial damage scenarios for
each of the plots presented in this section. There will be
a distinct recovery path for each of the initial damage
scenarios. All the plots presented here represent the average
of 100 such recovery paths. Two different simulation plots of
rollout fused with OCBA are provided in Fig. 2 and Fig. 3.
They are termed as rollout with OCBA1 and rollout with
OCBA2. The method applied is the same for both cases;
only the per-stage simulation budget is different. A per-stage
budget (budget at each decision time ¢) of B =5-n+ 5000
is assigned for rollout with OCBA1 and B =5 -n+ 10000
for rollout with OCBAZ2. Fig. 2 compares the performance
of rollout fused with OCBA and base policy. The rollout
algorithm is known to have the “lookahead property” [21].
This behavior of the rollout algorithm is evident in the results
in Fig. 2, where the base policy initially outperforms the
rollout policy, but after about six days the former steadily
outperforms the later. Recall, that our objective is to perform
repair actions so that maximum people will have water in
minimum amount of time. Evaluating the performance of our
method in meeting this objective is equivalent to checking
the area under the curve of our plots. This area represents
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the product of the number of people who have water and
the number of days for which they have water. A larger area
represents that greater number of people were benefitted as
a result of the recovery actions. The area under the curve for
recovery with rollout (blue and red plots) is more than its
base counterpart (black). A per-stage budget increase of 5000
simulations in rollout with OCBA2 with respect to rollout
with OCBA1 shows improvements in the recovery process.

In the plots shown in Fig. 3, we use M = 5. In the
initial phase of planning, it might appear that the base
policy outperforms the rollout for a substantial amount of
time. However, this is not the case. Note that the number
of days for which the base policy outperforms rollout, in
both Fig. 2 and Fig. 3, is about six days, but because the
number of resource units has increased from three to five,
the recovery is faster, giving an illusion that the base policy
outperforms rollout for a longer duration. It was verified that
the area under the curve for recovery with rollout (blue and
red curves) is more than its base counterpart (black curve).
Because OCBA is fused with rollout here, we would like to
ascertain the exact contribution of the OCBA approach in
enhancing the rollout performance.

For the rollout with OCBA in Fig. 4, B=5-n+ 20000,
whereas o = 200 for the uniform rollout simulations. The
recovery as a result of these algorithms outperforms the base

policy recovery in all cases. Also, rollout with OCBA per-
forms competitively with respect to uniform rollout despite
a meagre simulation budget of 10% of uniform rollout. The
area under the recovery process in Fig. 4, as a result of
uniform rollout, is only marginally greater than that due
to rollout with OCBA. Note that after six days, OCBA
slightly outperforms uniform rollout because it prioritizes the
simulation budget on the most promising actions per-stage.
Rollout exploits this behavior in each stage and gives a set
of sequential recovery decisions that further enhances the
outcome of the recovery decisions. We would like to once
again stress that such an improvement is being achieved at a
significantly low simulation budget with respect to uniform
rollout. Therefore, these two algorithms form a powerful
combination together, where each algorithm consistently and
sequentially reinforces the performance of the other. Such
synergistic behavior of the combined approach is appealing.
Lastly, our simulation studies show that increments in the
simulation budget of rollout results in marginal performance
improvement for each increment. Beyond a certain increment
in the simulation budget, the gain in performance might not
scale with the simulation budget expended. A possible ex-
planation is that small simulation budget increase might not
dramatically change the approximation of Q value function
associated with a state-action pair. Thus, 7’ in (8) might not
show a drastic improvement compared to the one computed
by a lower simulation budget (policy improvement based on
Q approximation that utilises lower simulation budget).

V. FUTURE WORK

For future work, we would like to leverage the availability
of multiple base polices in the aftermath of hazards in our
framework and incorporate parallel rollout in the solution
method [31]. We anticipate further improvements to the
performance demonstrated here when OCBA is fused with
parallel rollout. In the future, we will also present the
inter-relationship in other critical infrastructure systems like
electrical power, roads, bridges, and water networks and the
impact such dynamic interactive system has on the recovery
process post-hazard. We are also interested in exploring the
social impact of the optimized recovery process. We will
examine how to incorporate meta-heuristics to guide the
stochastic search that determines most promising actions
[32].
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