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ABSTRACT: Food security can be threatened by extreme natural hazard events for households of all

social classes within a community. To address food security issues following a natural disaster, the

recovery of several elements of the built environment within a community, including its building

portfolio, must be considered. Building portfolio restoration is one of the most challenging elements of

recovery owing to the complexity and dimensionality of the problem. This study introduces a stochastic

scheduling algorithm for the identification of optimal building portfolio recovery strategies. The

proposed approach provides a computationally tractable formulation to manage multi-state, large-scale

infrastructure systems. A testbed community modeled after Gilroy, California, is used to illustrate how

the proposed approach can be implemented efficiently and accurately to find the near-optimal decisions

related to building recovery following a severe earthquake.

One of the principal objectives of the United

Nations (UN) Sustainable Development Goals is

achieving food security. The Food and Agriculture

Organization (FAO) describes food security as: "a

situation that exists when all people, at all times,

have physical, social and economic access to suffi-

cient, safe and nutritious food that meets their di-

etary needs and food preferences for an active and

healthy life" (FAO (2001)). Securing an adequate

food supply to all community inhabitants requires

a food distribution system that is resilient to natu-

ral and man-made hazards. The growth of popu-

lation in hazard-prone regions and climate change

pose numerous challenges to achieving a resilient

food system around the world. The resiliency con-

cept applied to food distribution systems can be
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evaluated with respect to two different time-frames,

namely in "normal" times (i.e., prior to disasters)

and in the aftermath of hazards. Several studies

have investigated different approaches to enhance

the resilience of agri-food systems (Seekell et al.

(2017)). These studies have focused on resilience in

terms of biophysical capacity to increase food pro-

duction, diversity of modern domestic food produc-

tion, and the role played by social status and income

in the impact of food deficits. To mitigate food se-

curity issues, the United States Department of Agri-

culture (USDA) Food and Nutrition Service (FNS)

supplies 15 domestic food and nutrition assistance

programs. The three largest are the Supplemental

Nutrition Assistance Program (SNAP - formerly the

Food Stamp Program), the National School Lunch

Program, and the Special Supplemental Nutrition

Program for Women, Infants, and Children (WIC)

(Oliveira (2017)). However, household food se-

curity following extreme natural hazard events is

also contingent on interdependent critical infras-

tructure systems, such as transportation, energy,

water, household units, and retailer availability.

This study focuses on the connection between

failures in food distribution and food retail in-

frastructure and disruption in civil infrastructure

and structures. Household food security issues

are considerably worsened following natural dis-

asters. For example, Hurricanes Rita, Wilma, and

Katrina, which occurred in 2005, caused disaster-

related food programs to serve 2.4 million house-

holds and distributed $928 million in benefits to

households (Research and Center (2017)). Three

dimensions of food security - accessibility, avail-

ability, and affordability - are particularly relevant

for the nexus between infrastructure and household

food security. Affordability captures the ability of

households to buy food from food retailers, and is

a function of household income, assets, credit, and

perhaps even participation in food assistance pro-

grams. Accessibility is concerned with the house-

holds’ physical access to food retail outlets. Be-

cause at least one functional route must be available

between a household unit and a functioning food

retailer, transportation networks are a major factor

in accessibility. Availability is concerned with the

functionality of the food distribution infrastructure,

beginning with wholesalers, extending to retailers,

and ultimately ending with the household as the pri-

mary consumer. The functionality of food retailers

and household units depends not only on the func-

tionality of their facilities but also the availability

of electricity and water. Therefore, the electrical

power network (EPN), water network (WN), and

the buildings housing retailers and household units

must be considered simultaneously to address avail-

ability.

As is evident from the preceding discussion,

food security relies on a complex supply-chain sys-

tem. If such a system is disrupted, community re-

silience and the food security will be threatened

(Paci-Green and Berardi (2015)). In this paper,

we focus only on household unit structures, which

forms the largest entity in community restoration.

In this paper, we focus on household unit build-

ings, which usually form the largest element of the

built environment in community restoration. A lit-

erature review (Lin and Wang (2017)) shows that

the recovery of building portfolios has been stud-

ied far less than the recovery of other infrastruc-

ture systems. Building portfolio restoration is an

essential element of availability and plays a ma-

jor role towards addressing food security issues.

Effective emergency logistics demand a compre-

hensive decision-making framework that addresses

and supports policymakers’ preferences by provid-

ing efficient recovery plans. In this study, we em-

ploy Markov decision processes (MDPs) along with

an approximate dynamic programming (ADP) tech-

nique to provide a practical framework for rep-

resentation and solution of stochastic large-scale

decision-making problems. The scale and com-

plexity of building portfolio restoration is captured

by the proposed simulation-based representation

and solution of the MDP. The near-optimal solu-

tions are illustrated for the building portfolio of a

testbed community modeled after Gilroy, Califor-

nia, United States.

1. TESTBED CASE STUDY

As an illustration, this study considers the building

portfolio of Gilroy, California, USA. The City of

Gilroy is a moderately sized growing city in south-

2



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13

Seoul, South Korea, May 26-30, 2019

ern Santa Clara County, California, with a popula-

tion of 48,821 at the time of the 2010 census. The

study area is divided into 36 rectangular regions

organized as a grid to define the properties of the

community with an area of 42 km2 and a popula-

tion of 47,905. Household units are growing at a

faster pace in Gilroy than in Santa Clara County

and the State of California (Harnish (2014)). The

average number of people per household in Gilroy

in 2010 was 3.4, greater than the state and county

average. Approximately 95% of Gilroy’s housing

units are occupied. A heat map of household units

in the grid is shown in Figure 1. Age distribution of

Gilroy is tabulated in Table 1.

Figure 1: Housing units over the defined grids.

Table 1: Age distribution of Gilroy (Harnish (2014)).

Age Group Percent

Children (0-17 years) 30.60

Adults (18-64 years) 61

Senior Citizen (65+ years) 8.40

2. SEISMIC HAZARD AND DAMAGE AS-

SESSMENT
The seismic hazard is a dominant hazard of Cali-

fornia. Hence, we consider a seismic event of mo-

ment magnitude Mw = 6.9 that occurs at one of the

closest points on the San Andreas Fault to down-

town Gilroy with an epicentral distance of approx-

imately 12 km. We used the Abrahamson et al.

(2013) ground motion prediction equation (GMPE)

to evaluate the Intensity Measures (IM) and associ-

ated uncertainties, including the intra-event (within

event) and inter-event (event-to-event) uncertain-

ties, at the sites of each of the 14,702 buildings

in Gilroy. We assessed the damage to household

units and food retailers with the seismic fragility

curves presented in HAZUS-MH (FEMA (2003)).

We considered repair vehicles, crews, and tools as

available resource units (RUs) to restore the build-

ings following the hazard. One RU is required to

repair each damaged building (Masoomi (2018)).

We adopted the synthesized restoration time from

HAZUS-MH.

3. MARKOV DECISION PROCESS

FRAMEWORK

We provide a brief description of MDPs; additional

details of MDPs are available elsewhere (Puter-

man (2014)). A MDP is defined by the five-tuple

(X ,A,P,R,γ), where X denotes the state space, A

denotes the action space, P(y|x,a) is the probabil-

ity of transitioning from state x ∈ X to state y ∈ Y

when action a is taken, , R(x,a) is the reward ob-

tained when action a is taken in state x ∈ X , and

γ is the discount factor. A policy π : X −→ A is a

mapping from states to actions, and Π be the set of

policies (π). The objective is then to find the opti-

mal policy, denoted by π∗, that maximizes the total

reward (or minimizes the total cost) over the time

horizon, i.e.,

π∗ := arg sup
π∈Π

V π(x), (1)

where

V π(x) := E

[

∞

∑
t=0

γ tR(xt ,π(xt))|x0 = x

]

, (2)

V π(x) is called the value function for a fixed pol-

icy π , and 0 < γ < 1 is the discount factor (Puter-

man (2014)). The optimal value function for a given

state x ∈ X is connoted as V π∗
(x) : X −→ R given

by

V π∗
(x) := sup

π∈Π

V π(x). (3)

Bellman’s optimality principle (Bertsekas

(2005)) is useful for defining Q-value function.

Q-value function plays a pivotal role in the descrip-

tion of the rollout algorithm. Bellman’s optimality
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principle states that V π∗
(x) satisfies

V π∗
(x) := sup

a∈A(x)

[

R(x,a)+ γ ∑
y∈X

P(y|x,a)V π∗
(y)

]

,

(4)

The Q-value function associated with the optimal

policy π∗ is defined as

Qπ∗
(x,a) := R(x,a)+ γ ∑

y∈X

P(y|x,a)V π∗
(y), (5)

which is the inner-term on the R.H.S. in Eq. (4).

Theoretically, π∗ can be computed with lin-

ear programming or dynamic programming (DP).

However, exact methods are not feasible for real-

world problems that have large state and ac-

tion spaces, like the community-level optimization

problem considered herein, owing to the curse of

dimensionality; thus, an approximation technique

is essential to obtain the solution. In the realm

of approximate dynamic programming (ADP) tech-

niques, a model-based, direct simulation approach

for policy evaluation is used (Sarkale et al. (2018)).

This approach is called “rollout.” Briefly, an esti-

mate Q̂π(x,a) of the Q-value function is calculated

by Monte Carlo simulations (MSC) in the rollout

algorithm as follows: we first simulate NMC num-

ber of trajectories, where each trajectory is gener-

ated using the policy π (called the base policy),

has length K, and starts from the pair (x,a); then,

Q̂π(x,a) is the average of the sample functions

along these trajectories:

Q̂π(x,a) =
1

NMC
∑

NMC

i0=1

[

R(x,a,xi0,1)+∑
K
k=1 γkR(xi0,k,π(xi0,k,xxi0,k+1

))
]

.

(6)

For each trajectory i0, we fix the first state-action

pair to (x,a); the next state xi0,1 is calculated when

the current action a in state x is completed. There-

after, we choose actions using the base policy. A

more complete description of the rollout algorithm

can be found in (Bertsekas (2005); Nozhati et al.

(2019)).

4. BUILDING PORTFOLIO RECOVERY
Each household unit and retailer building remains

undamaged or exhibits one of the damage states

(i.e., Minor, Moderate, Major, and Collapse) based

on the level of intensity measure and the seismic

fragility curves. There is a limited number of RUs

(defined earlier) available to the decision maker for

the repair of the buildings in the community. In this

study, we also limit the number of RUs for each ur-

ban grid so that the number of available RUs for

each grid RUg is 20 percent of the number of dam-

aged buildings in each region of the grid. There-

fore, the number of RUs varies over the community

in proportion to the density of the damaged build-

ings.

Let xt be the state of the damaged structures of

the building portfolio at time t; xt is a vector, where

each element represents the damage state of each

building in the portfolio based on the level of in-

tensity measure and the seismic fragility curves.

Let a
g
t denote the repair action to be carried out

on the damaged structures in the gth region of the

grid at time t; each element of a
g
t is either zero or a

one, where zero means do not repair and one means

carry out repair. Note that the sum of elements of

a
g
t is equal to RUg. The repair action for the entire

community at time t, at , is the stack of the repair

action a
g
t . The assignment of RUs to damaged lo-

cations is non − preemptive in the sense that the

decision maker cannot preempt the assigned RUs

from completing their work and reassign them to

different locations at every decision epoch t. This

type of scheduling is more suitable when the deci-

sion maker deals with non-central stakeholders and

private owners, which is the case for a typical build-

ing portfolio. We wish to plan decisions optimally

so that a maximum number of inhabitants have safe

household unit structures per unit of time (day in

our case). Therefore, the reward function embeds

two objectives as follows:

R(xt ,at ,xt+1) =
r

trep
, (7)

where r is the number of people benefited from

household units after the completion of at , and trep

is the total repair time to reach xt+1 from any initial

state x0. Note that the reward function is stochastic

because the outcome of the repair action is stochas-

tic. In this study, we set the discount factor to

be 0.99, implying that the decision maker is “far-

sighted” in the consideration of the future rewards.

We simulated NMC number of trajectories to
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reach a low (0.1 in this study) dispersion in Eq. (6).

As Eq. (6) shows, we addressed the mean-based

optimization that is suited to risk-neutral decision-

makers. However, this approach can easily address

different risk aversion behaviors. Figure 2 shows

the total number of people with inhabitable struc-

tures (undamaged or repaired) over the commu-

nity. We also computed the different numbers of

children, adults, and senior citizens that have safe

buildings over the recovery. Different age groups

have different levels of vulnerability to food inse-

curity; for example, children are a vulnerable group

and must be paid more attention during the recov-

ery process.

Figure 2: Different numbers of people based on age

with inhabitable structures.

Figure 3 depicts the spatio-temporal evolution

of the community for people with inhabitable

structurally-safe household units. This figure shows

that for urban grids with a high density of damaged

structures, complete recovery is prolonged despite

availability of additional RUs. The spatio-temporal

analysis of the community is informative for policy

makers whereby they can identify the vulnerable ar-

eas of the community across time.

Figure 3: Number of people with inhabitable houses a)

following the earthquake b) after 100 days c) after 600

days.

5. CONCLUSION AND FUTURE WORK
The building portfolio restoration is one of the most

challenging ingredients to address food security is-

sues in the aftermath of disasters. Our stochas-

tic dynamic optimization approach, based on the

method of rollout, successfully plans a near-optimal

building portfolio recovery following a hazard. Our

approach shows how to overcome the curse of

dimensionality in optimizing large-scale building

portfolio recovery post-diaster. For future work,

we consider several aspects of a community from

infrastructure systems to social systems along with

their interdependencies. We will also explore how

to fuse meta-heuristics to our solution to super-

vise the stochastic search that determines the most

promising actions (Nozhati et al. (2018)).
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