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ABSTRACT: Food security can be threatened by extreme natural hazard events for households of all
social classes within a community. To address food security issues following a natural disaster, the
recovery of several elements of the built environment within a community, including its building
portfolio, must be considered. Building portfolio restoration is one of the most challenging elements of
recovery owing to the complexity and dimensionality of the problem. This study introduces a stochastic
scheduling algorithm for the identification of optimal building portfolio recovery strategies. The
proposed approach provides a computationally tractable formulation to manage multi-state, large-scale
infrastructure systems. A testbed community modeled after Gilroy, California, is used to illustrate how
the proposed approach can be implemented efficiently and accurately to find the near-optimal decisions
related to building recovery following a severe earthquake.

One of the principal objectives of the United
Nations (UN) Sustainable Development Goals is
achieving food security. The Food and Agriculture
Organization (FAO) describes food security as: "a
situation that exists when all people, at all times,
have physical, social and economic access to suffi-
cient, safe and nutritious food that meets their di-

etary needs and food preferences for an active and

healthy life" (FAO (2001)). Securing an adequate
food supply to all community inhabitants requires
a food distribution system that is resilient to natu-
ral and man-made hazards. The growth of popu-
lation in hazard-prone regions and climate change
pose numerous challenges to achieving a resilient
food system around the world. The resiliency con-
cept applied to food distribution systems can be
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evaluated with respect to two different time-frames,
namely in "normal" times (i.e., prior to disasters)
and in the aftermath of hazards. Several studies
have investigated different approaches to enhance
the resilience of agri-food systems (Seekell et al.
(2017)). These studies have focused on resilience in
terms of biophysical capacity to increase food pro-
duction, diversity of modern domestic food produc-
tion, and the role played by social status and income
in the impact of food deficits. To mitigate food se-
curity issues, the United States Department of Agri-
culture (USDA) Food and Nutrition Service (FNS)
supplies 15 domestic food and nutrition assistance
programs. The three largest are the Supplemental
Nutrition Assistance Program (SNAP - formerly the
Food Stamp Program), the National School Lunch
Program, and the Special Supplemental Nutrition
Program for Women, Infants, and Children (WIC)
(Oliveira (2017)). However, household food se-
curity following extreme natural hazard events is
also contingent on interdependent critical infras-
tructure systems, such as transportation, energy,
water, household units, and retailer availability.

This study focuses on the connection between
failures in food distribution and food retail in-
frastructure and disruption in civil infrastructure
and structures. Household food security issues
are considerably worsened following natural dis-
asters. For example, Hurricanes Rita, Wilma, and
Katrina, which occurred in 2005, caused disaster-
related food programs to serve 2.4 million house-
holds and distributed $928 million in benefits to
households (Research and Center (2017)). Three
dimensions of food security - accessibility, avail-
ability, and affordability - are particularly relevant
for the nexus between infrastructure and household
food security. Affordability captures the ability of
households to buy food from food retailers, and is
a function of household income, assets, credit, and
perhaps even participation in food assistance pro-
grams. Accessibility is concerned with the house-
holds’ physical access to food retail outlets. Be-
cause at least one functional route must be available
between a household unit and a functioning food
retailer, transportation networks are a major factor
in accessibility. Availability is concerned with the
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functionality of the food distribution infrastructure,
beginning with wholesalers, extending to retailers,
and ultimately ending with the household as the pri-
mary consumer. The functionality of food retailers
and household units depends not only on the func-
tionality of their facilities but also the availability
of electricity and water. Therefore, the electrical
power network (EPN), water network (WN), and
the buildings housing retailers and household units
must be considered simultaneously to address avail-
ability.

As is evident from the preceding discussion,
food security relies on a complex supply-chain sys-
tem. If such a system is disrupted, community re-
silience and the food security will be threatened
(Paci-Green and Berardi (2015)). In this paper,
we focus only on household unit structures, which
forms the largest entity in community restoration.
In this paper, we focus on household unit build-
ings, which usually form the largest element of the
built environment in community restoration. A lit-
erature review (Lin and Wang (2017)) shows that
the recovery of building portfolios has been stud-
ied far less than the recovery of other infrastruc-
ture systems. Building portfolio restoration is an
essential element of availability and plays a ma-
jor role towards addressing food security issues.
Effective emergency logistics demand a compre-
hensive decision-making framework that addresses
and supports policymakers’ preferences by provid-
ing efficient recovery plans. In this study, we em-
ploy Markov decision processes (MDPs) along with
an approximate dynamic programming (ADP) tech-
nique to provide a practical framework for rep-
resentation and solution of stochastic large-scale
decision-making problems. The scale and com-
plexity of building portfolio restoration is captured
by the proposed simulation-based representation
and solution of the MDP. The near-optimal solu-
tions are illustrated for the building portfolio of a
testbed community modeled after Gilroy, Califor-
nia, United States.

1. TESTBED CASE STUDY

As an illustration, this study considers the building
portfolio of Gilroy, California, USA. The City of
Gilroy is a moderately sized growing city in south-
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ern Santa Clara County, California, with a popula-
tion of 48,821 at the time of the 2010 census. The
study area is divided into 36 rectangular regions
organized as a grid to define the properties of the
community with an area of 42 km” and a popula-
tion of 47,905. Household units are growing at a
faster pace in Gilroy than in Santa Clara County
and the State of California (Harnish (2014)). The
average number of people per household in Gilroy
in 2010 was 3.4, greater than the state and county
average. Approximately 95% of Gilroy’s housing
units are occupied. A heat map of household units
in the grid is shown in Figure 1. Age distribution of
Gilroy is tabulated in Table 1.

Figure 1: Housing units over the defined grids.

Table 1: Age distribution of Gilroy (Harnish (2014)).

Age Group Percent
Children (0-17 years) 30.60
Adults (18-64 years) 61

Senior Citizen (65+ years) | 8.40

2. SEISMIC HAZARD AND DAMAGE AS-
SESSMENT
The seismic hazard is a dominant hazard of Cali-
fornia. Hence, we consider a seismic event of mo-
ment magnitude M,, = 6.9 that occurs at one of the
closest points on the San Andreas Fault to down-
town Gilroy with an epicentral distance of approx-
imately 12 km. We used the Abrahamson et al.
(2013) ground motion prediction equation (GMPE)
to evaluate the Intensity Measures (IM) and associ-
ated uncertainties, including the intra-event (within
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event) and inter-event (event-to-event) uncertain-
ties, at the sites of each of the 14,702 buildings
in Gilroy. We assessed the damage to household
units and food retailers with the seismic fragility
curves presented in HAZUS-MH (FEMA (2003)).
We considered repair vehicles, crews, and tools as
available resource units (RUs) to restore the build-
ings following the hazard. One RU is required to
repair each damaged building (Masoomi (2018)).
We adopted the synthesized restoration time from
HAZUS-MH.

3. MARKOV DECISION

FRAMEWORK
We provide a brief description of MDPs; additional
details of MDPs are available elsewhere (Puter-
man (2014)). A MDP is defined by the five-tuple
(X,A,P,R,y), where X denotes the state space, A
denotes the action space, P(y|x,a) is the probabil-
ity of transitioning from state x € X to state y € ¥
when action a is taken, , R(x,a) is the reward ob-
tained when action a is taken in state x € X, and
Y is the discount factor. A policy 7: X — A is a
mapping from states to actions, and II be the set of
policies (7). The objective is then to find the opti-
mal policy, denoted by 7*, that maximizes the total
reward (or minimizes the total cost) over the time
horizon, i.e.,

PROCESS

¥ = arg sup V" (x), (1)
nell
where
V¥(x):=E Zth(xt,ﬂ(xt)ﬂxo =x|, (2

t=0

V7 (x) is called the value function for a fixed pol-
icy m, and 0 < y < 1 is the discount factor (Puter-
man (2014)). The optimal value function for a given
state x € X is connoted as V™ (x) : X — R given
by

V® (x) := sup V*(x). 3)
nell
Bellman’s optimality principle (Bertsekas

(2005)) is useful for defining Q-value function.
Q-value function plays a pivotal role in the descrip-
tion of the rollout algorithm. Bellman’s optimality
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principle states that V™ (x) satisfies

VF (x):= sup |R(x,a)+7Y P(ylx,a)V™ (y)] :

acA(x) yeX
4)

The Q-value function associated with the optimal
policy 7* is defined as

O™ (x,a) :=R(x,a)+7Y Z POlx,a)VF (), (5)
yeX

which is the inner-term on the R.H.S. in Eq. (4).

Theoretically, ©* can be computed with lin-
ear programming or dynamic programming (DP).
However, exact methods are not feasible for real-
world problems that have large state and ac-
tion spaces, like the community-level optimization
problem considered herein, owing to the curse of
dimensionality; thus, an approximation technique
is essential to obtain the solution. In the realm
of approximate dynamic programming (ADP) tech-
niques, a model-based, direct simulation approach
for policy evaluation is used (Sarkale et al. (2018)).
This approach is called “rollout.” Briefly, an esti-
mate Q% (x,a) of the Q-value function is calculated
by Monte Carlo simulations (MSC) in the rollout
algorithm as follows: we first simulate Ny;c num-
ber of trajectories, where each trajectory is gener-
ated using the policy & (called the base policy),
has length K, and starts from the pair (x,a); then,
Q™ (x,a) is the average of the sample functions
along these trajectories:

Nuc

R 1
Q" (x,a) = NTM):"O:I
(6)
For each trajectory iy, we fix the first state-action
pair to (x,a); the next state x;, ; is calculated when
the current action a in state x is completed. There-
after, we choose actions using the base policy. A
more complete description of the rollout algorithm
can be found in (Bertsekas (2005); Nozhati et al.
(2019)).

4. BUILDING PORTFOLIO RECOVERY

Each household unit and retailer building remains
undamaged or exhibits one of the damage states
(i.e., Minor, Moderate, Major, and Collapse) based
on the level of intensity measure and the seismic

[R(xaa7xi0,1) + Zszl //{R('xi().h ”(-xi().erxl'oj‘ﬂ ))] .
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fragility curves. There is a limited number of RUs
(defined earlier) available to the decision maker for
the repair of the buildings in the community. In this
study, we also limit the number of RUs for each ur-
ban grid so that the number of available RUs for
each grid RU, is 20 percent of the number of dam-
aged buildings in each region of the grid. There-
fore, the number of RUs varies over the community
in proportion to the density of the damaged build-
ings.

Let x; be the state of the damaged structures of
the building portfolio at time ¢; x; is a vector, where
each element represents the damage state of each
building in the portfolio based on the level of in-
tensity measure and the seismic fragility curves.
Let ¢ denote the repair action to be carried out
on the damaged structures in the g’ region of the
grid at time ¢; each element of af 1s either zero or a
one, where zero means do not repair and one means
carry out repair. Note that the sum of elements of
af is equal to RU,. The repair action for the entire
community at time ¢, a;, is the stack of the repair
action a;. The assignment of RUs to damaged lo-
cations is non — preemptive in the sense that the
decision maker cannot preempt the assigned RUs
from completing their work and reassign them to
different locations at every decision epoch ¢. This
type of scheduling is more suitable when the deci-
sion maker deals with non-central stakeholders and
private owners, which is the case for a typical build-
ing portfolio. We wish to plan decisions optimally
so that a maximum number of inhabitants have safe
household unit structures per unit of time (day in
our case). Therefore, the reward function embeds
two objectives as follows:

.
R(x;,a;,%41) = —
rep

(7)

where r is the number of people benefited from
household units after the completion of a;, and t,.),
is the total repair time to reach x;| from any initial
state xo. Note that the reward function is stochastic
because the outcome of the repair action is stochas-
tic. In this study, we set the discount factor to
be 0.99, implying that the decision maker is “far-
sighted” in the consideration of the future rewards.

We simulated Nj;c number of trajectories to
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reach a low (0.1 in this study) dispersion in Eq. (6).
As Eq. (6) shows, we addressed the mean-based
optimization that is suited to risk-neutral decision-
makers. However, this approach can easily address
different risk aversion behaviors. Figure 2 shows
the total number of people with inhabitable struc-
tures (undamaged or repaired) over the commu-
nity. We also computed the different numbers of
children, adults, and senior citizens that have safe
buildings over the recovery. Different age groups
have different levels of vulnerability to food inse-
curity; for example, children are a vulnerable group
and must be paid more attention during the recov-
ery process.
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Figure 2: Different numbers of people based on age
with inhabitable structures.

Figure 3 depicts the spatio-temporal evolution
of the community for people with inhabitable
structurally-safe household units. This figure shows
that for urban grids with a high density of damaged
structures, complete recovery is prolonged despite
availability of additional RUs. The spatio-temporal
analysis of the community is informative for policy
makers whereby they can identify the vulnerable ar-
eas of the community across time.
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Figure 3: Number of people with inhabitable houses a)

following the earthquake b) after 100 days c) after 600
days.
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5. CONCLUSION AND FUTURE WORK
The building portfolio restoration is one of the most

challenging ingredients to address food security is-
sues in the aftermath of disasters. Our stochas-
tic dynamic optimization approach, based on the
method of rollout, successfully plans a near-optimal
building portfolio recovery following a hazard. Our
approach shows how to overcome the curse of
dimensionality in optimizing large-scale building
portfolio recovery post-diaster. For future work,
we consider several aspects of a community from
infrastructure systems to social systems along with
their interdependencies. We will also explore how
to fuse meta-heuristics to our solution to super-
vise the stochastic search that determines the most
promising actions (Nozhati et al. (2018)).
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