
Fast Message Franking:

From Invisible Salamanders to Encryptment∗

Yevgeniy Dodis1, Paul Grubbs2,†, Thomas Ristenpart2, Joanne Woodage3,†

1 New York University 2 Cornell Tech

3 Royal Holloway, University of London

Abstract

Message franking enables cryptographically verifiable reporting of abusive content in end-to-
end encrypted messaging. Grubbs, Lu, and Ristenpart recently formalized the needed underlying
primitive, what they call compactly committing authenticated encryption (AE), and analyzed
the security of a number of approaches. But all known secure schemes are still slow compared
to the fastest standard AE schemes. For this reason Facebook Messenger uses AES-GCM for
franking of attachments such as images or videos.

We show how to break Facebook’s attachment franking scheme: a malicious user can send
an objectionable image to a recipient but that recipient cannot report it as abuse. The core
problem stems from use of fast but non-committing AE, and so we build the fastest compactly
committing AE schemes to date. To do so we introduce a new primitive, called encryptment,
which captures the essential properties needed. We prove that, unfortunately, schemes with
performance profile similar to AES-GCM won’t work. Instead, we show how to efficiently
transform Merkle-Damgärd-style hash functions into secure encryptments, and how to efficiently
build compactly committing AE from encryptment. Ultimately our main construction allows
franking using just a single computation of SHA-256 or SHA-3. Encryptment proves useful for
a variety of other applications, such as remotely keyed AE and concealments, and our results
imply the first single-pass schemes in these settings as well.

1 Introduction

End-to-end encrypted messaging systems including WhatsApp [48], Signal [45], and Facebook Mes-
senger [15] have increased in popularity — billions of people now rely on them for security. In these
systems, intermediaries including the messaging service provider should not be able to read or
modify messages. Providers simultaneously want to support abuse reporting: should one user send
another a harmful message, image, or video, the recipient should be able to report the content to
the provider. End-to-end encryption would seem to prevent the provider from verifying that the
reported message was the one sent.

Facebook suggested a way to navigate this tension in the form of message franking [16, 35].
The idea is to enable the recipient to cryptographically prove to the service provider that the
reported message was the one sent. Grubbs, Lu, and Ristenpart (GLR) [19] provided the first
formal treatment of the problem, and introduced compactly committing authenticated encryption

∗A preliminary version of this paper appeared at CRYPTO 2018. This is the full version.
†Contact authors.

1

with associated data (ccAEAD) as the key primitive. A secure ccAEAD scheme is symmetric
encryption for which a short portion of the ciphertext serves as a cryptographic commitment to the
underlying message (and associated data). GLR detailed appropriate security notions, and proved
the main Facebook message franking approach achieves them. They also introduced a faster custom
ccAEAD scheme called Committing Encrypt-and-PRF (CEP).

The Facebook scheme composes HMAC (serving the role of a commitment) with a standard
encrypt-then-MAC AEAD scheme. Their scheme therefore requires a full three cryptographic
passes over messages. The CEP construction gets this down to two. But even that does not match
the fastest standard AE schemes such as AES-GCM [32] and OCB [39]. These require at most one
blockcipher call (on the same key) per block of message and some arithmetic operations in GF(2n),
which are faster than a blockcipher invocation. As observed by GLR, however, these schemes are
not compactly committing: one can find two distinct messages and two encryption keys that lead to
the same tag. This violates what they call receiver binding, and could in theory allow a malicious
recipient to report a message that was never sent.

Existing ccAEAD schemes are not considered fast enough for all applications of message franking
by practitioners [35]. Facebook Messenger does not use the ccAEAD scheme mentioned above to
directly encrypt attachments, rather using a kind of hybrid encryption combining ccAEAD of a
symmetric key that is in turn used with AES-GCM to encrypt the attachment. Use of AES-GCM
does not necessarily seem problematic despite the GLR results; the latter do not imply any concrete
attack on Facebook’s system.

Breaking Facebook’s attachment franking. Our first contribution is to show an attack against
Facebook’s attachment franking scheme. The attack enables a malicious sender to transmit an
abusive attachment (e.g., an objectionable image or video) to a receiver so that: (1) the recipient
receives the attachment (it decrypts correctly), yet (2) reporting the abusive message fails —
Facebook’s systems essentially “lose” the abusive image, rendering them invisible from the abuse
handling team. Instead what gets reported to Facebook is a different, innocuous image. See
Figure 3.

Perhaps confusingly, our attack does not violate the primary reason for requiring receiver binding
in committing AE, namely preventing a malicious recipient from framing a user as having sent a
message they didn’t send. Facebook’s attachment franking appears to prevent this. Instead, the
attack violates what GLR call sender binding security: a malicious sender should not be able to
force an abusive message to be received by the recipient, yet that recipient can’t report it properly.
Nevertheless, the root cause of this vulnerability in Facebook’s case is the use of an AE scheme that
is not a binding commitment to its message or, equivalently in this context, that is not a robust
encryption scheme [1,17,18].

Briefly, Facebook uses a cryptographic hash of the AES-GCM ciphertext, along with a randomly-
generated value, as an identifier for the attachment. For a given abusive message, our attack
efficiently finds two keys and a ciphertext, such that the first key decrypts the ciphertext to the
abusive attachment while the other key successfully decrypts the same ciphertext, but to another
innocuous attachment. The malicious sender transmits two messages with the different keys but
the same attachment ciphertext. Facebook’s systems deduplicate the two attachments, and the
report will only include the non-abusive image.

We responsibly disclosed this vulnerability to Facebook, and in fact they helped us understand
how our attack works against their systems (much of the abuse handling code is server-side and
closed source). The severity of the issue led them to patch their (server-side) systems and to award
us a bug bounty. Their fix is ad hoc and involves deduplicating more carefully. But the vulnerability
would have been avoided in the first place by using a fast ccAEAD scheme that provided the binding

2

security properties implicitly assumed of, but not actually provided by, AES-GCM.

Towards faster ccAEAD schemes: encryptment. This message franking failure motivates
the need for faster schemes. As mentioned, the best known secure ccAEAD scheme from GLR is
two pass, requiring computing both HMAC and AES-CTR mode (or similar) over the message.
The fastest standard AE schemes [25,32,39], however, require just a single pass using a blockcipher
with a single key. Can we build ccAEAD schemes that match this performance?

To tackle this question we first abstract out the core technical challenge underlying ccAEAD:
building a one-time encryption mechanism that simultaneously encrypts and compactly commits
to the message. We formalize this in a new primitive that we call encryptment. An encryptment
of a message using a key KEC is a pair (CEC, BEC) where CEC is a ciphertext and BEC is a binding
tag. By compactness we require that |BEC| is independent of the length of the message. Decryption
takes as input KEC, CEC, BEC and returns a message (or ⊥). Finally, there is a verification algorithm
that takes a key, a message, and a binding tag, and determines whether the tag is a commitment
to the message. Encryptment supports associated data also, but we defer the details to the body.

We introduce security notions for encryptment. These include a real-or-random style con-
fidentiality goal in which the adversary must distinguish between a single encryptment and an
appropriate-length sequence of random bits. Additionally we require sender binding and receiver
binding notions like those from GLR (but adapted to the encryptment syntax), and finally a strong
correctness property that is easy to meet. Comparatively, GLR require many-time confidentiality
and integrity notions in addition to various binding notions.

Therefore encryptment is substantially simpler than ccAEAD, making analyses easier and,
we think, design of constructions more intuitive. At the same time, we will be able to build
ccAEAD from encryptment using simple, efficient transforms. In the other direction, we show
that one can also build encryptment from ccAEAD, making the two primitives equivalent from a
theoretical perspective. Encryptment also turns out to be the “right” primitive for a number of
other applications: robust authenticated encryption [1, 17, 18], concealments [14], remotely keyed
authenticated encryption [14], and perhaps even more.

Fast encryptment from fixed-key blockciphers? Given a simpler formulation in hand, we
turn to building fast schemes. First, we show a negative result: encryptment schemes cannot match
the efficiency profile of OCB or AES-GCM. In fact we rule out any scheme that uses just a single
blockcipher invocation for each block of message, with some fixed small set of keys.

The negative result makes use of a connection between encryptment and collision-resistant (CR)
hashing. Because encryptment schemes are deterministic, we can think of the computation of a
binding tag BEC as a deterministic function F (KEC,M) applied to the key and message; verification
simply checks that F (KEC,M) = BEC. Then, receiver binding is achieved if and only if F is CR: the
adversary shouldn’t be able to find (KEC,M) ̸= (K ′EC,M

′) such that F (KEC,M) = F (K ′EC,M
′).

Given this connection, we can exploit previous work on ruling out fixed-key blockcipher-based
CR hashing [41,42,44]. A simple corollary of [42, Thm. 1] is that one cannot prove receiver binding
security for any rate-1 fixed-key blockcipher-based encryptment. (Rate-1 meaning one blockcipher
call per block of message.) Since OCB and AES-GCM fall into this category of rate-1, they don’t
work, but neither do other similar blockcipher-based schemes. Our negative result also rules out
rate-1 ccAEAD, due to our aforementioned result that (fast) ccAEAD implies (fast) encryptment.

One-pass encryptment from hashing. Given the connection just mentioned, it is natural to
turn to CR hashing as a starting point for building as-fast-as-possible encryptment. We do so and
show how to achieve secure encryptment using just a single pass of a secure cryptographic hash func-

3

tion. The encryptment can be viewed as a mode of operation of a fixed-input-length compression
function, such as the one underlying SHA-256 or other Merkle-Damgärd style constructions.

Let f(x, y) be a compression function on two n-bit inputs and with output an n-bit string.
Then our HFC (hash function chaining) encryptment works as shown in Figure 9. Basically one
hashes KEC ∥ (M1⊕KEC) ∥ · · · ∥ (M2⊕KEC) using a standard iteration of f . But, additionally, one
uses the intermediate chaining values as pads to encrypt the message blocks. Decryption simply
computes the hash, recovering message blocks as it goes.

We prove that our HFC scheme is a secure encryptment. Binding is inherited from the CR of
the underlying hash function. We show confidentiality assuming f(x, y ⊕ KEC) is a related-key-
attack-secure pseudorandom function (RKA-PRF) [4] when keyed by KEC. For standard designs,
such as the Davies-Meyer construction f(x, y ⊕KEC) = E(y ⊕KEC, x) ⊕ x, we can reduce RKA-
PRF security to RKA-PRP security of the underlying blockcipher E. This property is already an
active target of cryptographic analysis for standard E (such as AES), giving us confidence in the
assumption. Because SHA-256 uses a DM-style compression function, this also gives confidence for
using SHA-256 (or SHA-384, SHA-512).

From a theoretical perspective, one might want to avoid relying on RKA security (compared
to standard PRF security). We discuss approaches for doing so in the body, but the resulting
constructions are not as fast or elegant as HFC.

HFC has some features in common with the Duplex authenticated-encryption mode [8] using
Keccak (SHA-3) [7]. In fact the Duplex mode gives rise to a secure encryptment scheme as well;
see Appendix F for a discussion. The way we key in HFC is also similar to the Halevi-Krawczyk
construction for reducing the assumptions needed on hash functions in digital signature settings [22],
but the keying serves a different role here and their analysis techniques are not applicable.

From encryptment to ccAEAD. We show two efficient transforms for building a ccAEAD
scheme given a secure encryptment. First consider doing so given also a secure (standard) AE
scheme. To encrypt a message M , first generate a random key KEC and then compute an encrypt-
ment (CEC, BEC) for KEC,M . Encrypt KEC under the long-lived AE key K using as associated data
the binding tag BEC. The resulting ciphertext is the AE ciphertext (including its authentication
tag) along with CEC, BEC. We prove that this transformation provides the multi-opening confiden-
tiality and integrity goals for ccAEAD of GLR, assuming the standard security of the AE scheme
and the aforementioned security goals are met for the encryptment scheme.

One can instead use just two additional PRF calls to securely convert an encryptment scheme
to a ccAEAD scheme. One can, for example, instantiate the PRF with the SHA-256 compression
function, to have a total cost of at most m+ 4 SHA-256 compression function calls for a message
that can be parsed into m blocks of 256 bits. See Section 7.3.

Our approach of hashing-based ccAEAD has a number of attractive features. HFC works
with any hash function that iterates a secure compression function, giving us a wide variety of
options for instantiation. Because of our simplified formalization via encryptment, the security
proofs are modular and conceptually straightforward. As already mentioned it is fast in terms of
the number of underlying primitive calls. If instantiated using SHA-256, one can use the SHA
hardware instructions [20] now supported on some AMD and ARM processors, and that are likely
to be incorporated in future Intel processors. Finally, HFC-based ccAEAD is simple to implement.

Other applications. Encryptment proves a useful abstraction for other applications as well.
In Section 8, we show how it suffices for building concealments [14] (a conceptually similar, but
distinct, primitive) which, in turn, can be used to build remotely keyed AE [14]. Previous con-
structions of these required two passes over the message. Our new encryptment-based approach
gives the first single-pass concealments and remotely keyed AE. Finally, encryptment schemes give

4

rise to robust AE [17] via some of our transforms mentioned above. We expect that encryptment
will find further applications in the future.

2 Definitions and Preliminaries

Preliminaries. For an alphabet Σ, we let Σ∗ denote the set of all strings of symbols from that
alphabet, and let Σn denote the set of all such strings of length n. For a string x ∈ Σ∗, we write
|x| to denote the length of x. We let ε denote the empty string, and ⊥ denote a distinguished error
symbol. We write x←$ X to denote choosing a uniformly random element from the set X .

We define the XOR of two strings of different lengths to return the XOR of the shorter string
and the truncation of the longer string to the length of the shorter string. Our proofs assume a
RAM model of computation where most operations are unit cost. We use big-O notation O(·) to
hide small constants related to data structures (e.g., tables of queries) used by reductions.

For a deterministic algorithm A, we write y ← A(x1, . . .) to denote running A on inputs x1, . . .
to produce output y. For a probabilistic algorithm A with coin space C, we write y←$ A(x1, . . .)
to denote choosing coins c←$ C and returning y ← A(x1, . . . ; c), where y ← A(x1, . . . ; c) denotes
running A on the given inputs with coins c fixed, to deterministically produce output y.

Collision-resistant functions. Let H : Dom→ {0, 1}n be a function on domain Dom ⊂ {0, 1}∗.
The collision resistance game CR has A run and output a pair of messages X,X ′. If analysis is
with respect to an ideal primitive such as an ideal cipher, then A is given oracle access to this
primitive also. The game outputs true if H(X) = H(X ′) and X ̸= X ′. The CR advantage of an
adversary A against H is defined Advcr

H(A) = Pr
[
CRAH ⇒ true

]
, where the probability is over the

coins of A and those of any ideal primitive. We measure the efficiency of the attacker in terms of
their resources, e.g., run time or number of queries made to some underlying primitive.

Authenticated encryption. A nonce-based authenticated encryption scheme with associated
data (AEAD) scheme is a tuple of algorithms SE = (kg, enc, dec), with associated key space K ⊆ Σ∗,
nonce space N ⊆ Σ∗, header space H ⊆ Σ∗, message spaceM⊆ Σ∗, and ciphertext space C ⊆ Σ∗,
defined as follows. The key generation algorithm takes random coins as input, and outputs a secret
key K ∈ K. We typically have kg choose K←$K and return K. Encryption enc is a deterministic
algorithm which takes as input a key K ∈ Σ∗, a nonce N ∈ Σ∗, a header H ∈ Σ∗, and a message
M ∈ Σ∗, and outputs either a ciphertext C ∈ C or the error symbol ⊥. We require that for all tuples
(K,N,H,M) ∈ K×N×H×M it holds that enc(K,N,H,M) ̸= ⊥. Decryption dec is a deterministic
algorithm which takes as input a keyK ∈ Σ∗, headerH ∈ Σ∗, and a ciphertext C ∈ Σ∗, and outputs
either a message M or the error symbol ⊥. We say that an AEAD scheme is perfectly correct if for
all (K,N,H,M) ∈ K ×N ×H×M it holds that dec(K,N,H, enc(K,N,H,M)) = M .

A randomized AEAD scheme is defined analogously to the definition of a nonce-based AEAD
scheme above, except all references to use of a nonce are removed, and instead enc takes as input
random coins R sampled from the coin space R ⊆ Σ∗ associated to the scheme. We say that a
randomized AEAD scheme is perfectly correct if for all (K,R,H,M) ∈ K × R × H ×M it holds
that dec(K,H, enc(K,H,M,R)) = M .

Commitment schemes. A commitment scheme with verification CS = (Com,VerC) is a pair of
algorithms. Associated to any such scheme is a message spaceM⊆ Σ∗, an opening space D ⊆ Σ∗,
and a commitment space C ⊆ Σ∗. The randomized algorithm Com takes as input a message
M ∈M and outputs a pair (c, d) ∈ C×D. The deterministic algorithm VerC takes as input a tuple
(c, d,M) ∈ C×D×M and outputs a bit. We assume that VerC returns 0 if (c, d,M) /∈ C×D×M. We

5

require that the commitments c returned by CS are of some fixed length t. A commitment scheme
is correct if for all M ∈ M it holds that Pr[VerC(Com(M),M) = 1] = 1, where the probability is
over the coins of Com. One can formalize the binding security of a commitment scheme as a game.
Game vBINDACS runs the adversary A, who outputs a tuple ((d,M), (d′,M ′), c). The game then
runs b ← VerC(c, d,M) and b′ ← VerC(c, d′,M ′). Finally, the game outputs true if M ̸= M ′ and
b = b′ = 1, and false otherwise. To a commitment scheme CS and adversary A we associate the
vBIND advantage

Advv-bind
CS (A) = Pr

[
vBINDACS ⇒ true

]
,

where the probability is over the coins of A and Com.

3 Invisible Salamanders: Breaking Facebook’s Franking

In this section we demonstrate an attack against Facebook’s message franking. Facebook uses
AES-GCM to encrypt attachments sent via Secret Conversations [16], the end-to-end encryption
feature in Messenger. The attack creates a “colliding” GCM ciphertext which decrypts to an
abusive attachment via one key and an innocuous attachment via another. This combined with
the behavior of Facebook’s server-side abuse report generation code prevents abusive messages
from being reported to Facebook. Since messages in Secret Conversations are called “salamanders”
by Facebook (perhaps inspired by the Axolotl ratchet used in Signal, named for an endangered
salamander), ensuring Facebook does not see a message essentially makes it an invisible salamander.
We responsibly disclosed the vulnerability to Facebook. They have remediated it and have given
us a bug bounty for reporting the issue.

Facebook’s attachment franking. A diagram of Facebook’s franking protocol for attachments
(e.g., images and videos) is in Figure 1. The protocol uses Facebook’s ccAEAD scheme for chat
messages described in [16, 35] and analyzed in [19] (there called CtE2) as a subroutine. (Readers
interested in the specifics of CtE2 should consult GLR [19]; the only salient detail is that it is
secure as a ccAEAD scheme.) Some encryption and HMAC keys, as well as some other details like
headers and associated data not important to the presentation of the protocol or our attack, have
been removed for simplicity in the diagram and prose below. Consult [16,19] for additional details.
For ease of exposition we divide the protocol into three phases: the sending phase involving the
sender Alice and Facebook, the receiving phase involving the receiver Bob and Facebook, and the
reporting phase between Bob and Facebook.

Sending phase: Alice begins the sending phase with an attachment Ma to send to Bob. In
the first part of the sending phase, Alice generates a key Ka and nonce Na and encrypts Ma using
AES-GCM (described in pseudocode in Figure 2) to obtain a ciphertext Ca. The sender computes
the SHA-256 digest Da of Na ∥ Ca and sends Facebook Na ∥ Ca for storage. Facebook generates
a random identifier id and puts Na ∥ Ca in a key-value data structure with key id. Facebook then
sends id to Alice. In the second part of the sending phase, Alice encrypts the message id ∥Ka ∥Da

using CtE2 to obtain the ccAEAD ciphertext C,CB. Below, we will call a message containing an
identifier, key and digest an attachment metadata message. Alice sends C,CB to Facebook, which
runs FBTag on CB (this amounts to HMAC-SHA256 with an internal Facebook key and some
metadata) as in the standard message franking protocol [16, 19] to obtain tFB. Facebook sends
C,CB, tFB to the receiver.

Receiving phase: Upon receiving a message C,CB, tFB from Alice (via Facebook), Bob runs
CtE2-Dec on C,CB to obtain id∥Ka∥Da. Bob then sends id to Facebook, which gets the valueNa∥Ca

associated with id in its key-value store and sends it to Bob. Bob verifies thatDa = SHA-256(Na∥Ca)

6

(Report)

Alice Facebook Bob
Ka←$K ;Na←$N
Ca ← GCM-Enc(Ka, Na,Ma)

Da ← SHA-256(Na ∥ Ca)

C,CB ←$ CtE2-Enc(id ∥Ka ∥Da)

id←$ {0, 1}n

Put(id, Na ∥ Ca)

Na ∥ Ca

id

C,CB
tFB ← FBTag(CB)

C,CB, tFB (1)

id ∥Ka ∥Da ← CtE2-Dec(C,CB)

Na ∥ Ca ← Get(id)

id

Na ∥ Ca

Verify Da = SHA-256(Na ∥ Ca)

Ma ← GCM-Dec(Ka, Na, Ca) (2)

Open ℓ attachments{idi,Ki
a, D

i
a}ℓi=1

For i = 1 to ℓ do:

CtE2-Ver(idi,Ki
a, D

i
a)

Na ∥ Ca ← Get(id)

Verify Da = SHA-256(Na ∥ Ca)

Ma ← GCM-Dec(Ka, Na, Ca)

If R[idi] = ⊥ then

R[idi]←Ma

Figure 1: Facebook’s attachment franking protocol [34, 35]. The sending phase consists of everything from
the upper-left corner to the message marked (1). The receiving phase consists of everything strictly after
(1) and before (2). The reporting phase is below the dashed line. The descriptions of Facebook’s behavior
during the reporting phase were paraphrased (with permission) from conversations with Jon Millican, whom
the authors thank profusely.

and decrypts Ca to obtain the attachment content Ma.
Reporting phase: Bob sends all recent messages to Facebook along with their commitment

openings and tFB values (not pictured in the diagram). For each message, Facebook verifies the
commitment using CtE2-Ver and the authentication tag tFB using its internal HMAC key. Then, if
the commitment verifies correctly and the message contains attachment metadata, Facebook gets
the attachment ciphertext and nonceNa∥Ca from its key-value store using its identifier id. Facebook
verifies that Da = SHA-256(Na ∥ Ca) and decrypts Ca with Ka and Na to obtain the attachment
content Ma. If no other attachment metadata message containing identifier id has already been
seen, the plaintext Ma is added to the abuse report R. (Looking ahead, this is the application-level
behavior that enables the attack, which will violate the one-to-one correspondence between id and
plaintext that is assumed here.)

Attack intuition. The threat model of this attack is a malicious Alice who wants to send an
abusive attachment to Bob, but prevent Bob from reporting it to Facebook. The attachment can
be an offensive image (e.g., a picture of abusive text or of a gun) or video. We focus our discussion
below on images.

The attack has two main steps: (1) generating the colliding ciphertext and (2) sending it twice
to Bob. In step (1), Alice creates two GCM keys and a single GCM ciphertext which decrypts
(correctly) to the abusive attachment under one key and to a different attachment under the other
key. In step (2), Alice sends the ciphertext to Facebook and gets an identifier back. Alice then
sends the identifier to Bob twice, once with each key.

7

On receiving the two messages, Bob decrypts the image twice and sees both the abusive at-
tachment and the other one. When Bob reports the conversation to Facebook, its server-side
code verifies both decryptions of the image ciphertext but only inserts the other decryption into
the abuse report—the human making the abusive-or-not judgment will have no idea Bob saw the
abusive attachment.

We will describe two variants of the attack. We will begin with the case where the second
decryption of the colliding ciphertext is junk bytes with no particular structure. This variant is
simple but easily detectable, since the junk bytes will not display correctly. Then we give a more
advanced variant where the second decryption correctly displays an innocuous attachment, like a
picture of a kitten. Before describing the attack variants, we will explain GCM at a high level for
unfamiliar readers.

An Overview of GCM. For completeness, we will briefly describe GCM. Pseudocode for GCM
encryption and decryption can be found in Figure 2. GCM is a mode of operation that builds a
randomized authenticated encryption scheme from a block cipher E on n-bit inputs and outputs [32,
33]. Call the block cipher key K. GCM is an encrypt-then-MAC (EtM) composition [5] of counter
mode and a Carter-Wegman (CW) MAC [47]. GCM’s MAC is based on arithmetic in the finite
field GF(2n). The MAC is computed by taking the associated data and ciphertext blocks (as well
as a block encoding the input length) to be the coefficients of a polynomial over GF(2n), then
evaluating the polynomial at the point EK(0n). In the left two algorithms of Figure 2, counter
mode encryption/decryption happens in the lines assigning C[i] and M [i], respectively. The MAC
computation corresponds to the lines assigning the tag T . GCM is not a robust encryption scheme
in the sense of [18]—it is possible to construct ciphertexts that decrypt correctly under two distinct
keys.

3.1 A Simple Attack

Alice begins the attack with an abusive attachment Mab
a . Alice chooses two distinct 128-bit GCM

keys K1 and K2 and a nonce Na, then computes a ciphertext Ca via CTR-Enc(K1, Na + 2,Mab
a),

where CTR-Enc denotes CTR-mode encryption with the given key and nonce. The nonce is Na+2
to match GCM, see Figure 2. In Facebook’s scheme Alice can choose the keys and the nonce, but
this is not necessary—any combination of two keys and a nonce will work.

The ciphertext Ca is almost, but not quite, the ciphertext Alice will use in the attack. To ensure
GCM decryption is correct for both keys, Alice generates the colliding GCM tag and final ciphertext
block using Collide-GCM(K1,K2, Na, Ca) (described in Figure 2). The function Collide-GCM works
by computing the tags for the two keys then solving a linear equation to find the value of the last
ciphertext block. We use the final ciphertext block as the variable, but a different ciphertext block
or a block of associated data could be used instead. The output Na ∥ Ca ∥ T correctly decrypts to
Mab

a under K1 and to another plaintext Mj under K2. However, the plaintext Mj will be random
bytes with no structure. The advanced variant of our attack (in Section 3.2) will ensure Mj is a
correctly-formatted plaintext.

Sending the colliding ciphertext. Alice continues the sending phase with Facebook, obtaining
an identifier id for the ciphertext Na ∥ Ca. Alice then creates two attachment metadata messages:
MD1 = id ∥ K2 ∥ Da and MD2 = id ∥ K1 ∥ Da. Alice completes the remainder of the sending
phase twice, first with MD1 and then with MD2. (The first message sent is associated to the junk
message.) After finishing the receiving phase for MD1, Bob will decrypt Ca with K2, giving Mj.
After finishing the receiving phase with MD2, Bob will decrypt Ca with K1 and see Mab

a . We
emphasize that both attachment metadata messages are valid, and no security properties of CtE2

8

GCM-Enc(K,N,AD,M):

H ← EK(0128)

P ← EK(N + 1)

lens← encode64(|AD|)∥encode64(|M |)
T ← lens×GF H ⊕ P

mlen← |M |/128
adlen← |AD|/128
blen← mlen+ adlen

For i = 1 to adlen:

T ← T ⊕AD[i]×GF Hblen+2−i

For i = 1 to mlen:

C[i]← EK(N + 1 + i)⊕M [i]

T ← T ⊕ Ci ×GF Hblen+2−i−adlen

Return N ∥ C ∥ T

GCM-Dec(K,AD, N ∥ C ∥ T ′):

H ← EK(0128)

P ← EK(N + 1)

lens← encode64(|AD|)∥encode64(|M |)
T ← lens×GF H ⊕ P

mlen← |C|/128
adlen← |AD|/128
blen← mlen+ adlen

For i = 1 to adlen:

T ← T ⊕AD[i]×GF Hblen+2−i

For i = 1 to mlen:

M [i]← EK(N + 1 + i)⊕ C[i]

T ← T ⊕ Ci ×GF Hblen+2−i−adlen

If T ̸= T ′ then Return ⊥
Return M

Collide-GCM(K1,K2, Na, C):

H1 ← EK1
(0128) ;H2 ← EK2

(0128)

P1 ← EK1
(Na + 1) ; P2 ← EK2

(Na + 1)

mlen← |C|/128 + 1

lens← encode64(0) ∥ encode64(|C|+ 128)

acc← lens×GF (H1 ⊕H2)⊕ P1 ⊕ P2

For i = 1 to mlen− 1:

Hi ← Hmlen+2−i
1 ⊕Hmlen+2−i

2

acc← acc⊕ C[i]×GF Hi

inv← (H2
1 ⊕H2

2)
−1

Cmlen ← acc×GF inv

Ca ← C ∥ Cmlen

T ← GHASH(H1, Ca)⊕ P1

Return Na ∥ Ca ∥ T

Figure 2: (Left) The Galois/Counter block cipher mode (GCM) encryption algorithm. (Middle) The
GCM decryption algorithm. (Right) The Collide-GCM algorithm, which takes a partial ciphertext C, a
nonce Na, and two keys K1 and K2 and computes a tag T and final ciphertext block so that the output
nonce-ciphertext-tag triple Na ∥Ca ∥ T decrypts correctly under both keys. Array indexing is done in terms
of 128-bit blocks. We assume all input bit lengths are multiples of 128 for simplicity, and that the input
Ma to Collide-GCM is at least two blocks in length. The function GHASH is the standard GCM polynomial
hash (the lines which assign to T on the left). The function encode64(·) returns a 64-bit representation of
its input. Arithmetic (addition and multiplication) in GF(2128) is denoted ⊕ and ×GF , respectively. The
function Collide-GCM can take arbitrary headers, but we elide them for simplicity.

are violated.
When Bob reports the recent messages, Facebook will verify both MD1 and MD2 and check

the digest Da matches the value Na ∥ Ca stored with identifier id. However, it will only insert
the first decryption, the plaintext Mj, into the abuse report. The system sees the second
ciphertext has the same SHA-256 hash and identifier, and assumes it’s a duplicate: the report
contains no trace of the message Mab

a .

3.2 Advanced Variant and Proof of Concept

Next we will describe the advanced variant of the attack (in which both decryptions correctly
display as attachments) and our proof-of-concept implementation. Ensuring both decryptions are
valid attachments is important because the simple variant (where one decryption is random bytes)
may not have sufficed for a practical exploit if Facebook only inserted valid images into their
abuse reports. We implemented the advanced variant and crafted a colliding ciphertext for which
the “abusive” decryption Mab

a is the image of an Axolotl salamander in Figure 3. The innocuous
decryption Mj is the image of a kitten in that figure. We verified both display correctly in Facebook
Messenger’s browser client. Code for our proof of concept is available on request.

The only difference between the advanced variant and the one described above is the way Alice
generates the ciphertext Ca which is input to Collide-GCM. Instead of simply encrypting the abusive
attachment Mab

a , Alice first merges Mab
a and another innocuous attachment Mj using an algorithm

Att-Merge(K1,K2,M
ab
a ,Mj) which takes the two keys and attachments and outputs a nonce Na

and Ca so that CTR-Dec(K1, Na + 2, Ca) displays M
ab
a and CTR-Dec(K2, Na + 2, Ca) displays Mj.

The exact implementation of Att-Merge is file-format-specific, but for most formats Att-Merge
has two main steps: (1) a nonce search yielding a nonce which preserves certain file structures in

9

Figure 3: Two images with the same GCM ciphertext Ca ∥ T when encrypted using 16-byte key K1 =
(03)16 or K2 = (02)16, nonce Na = 10606665379, and associated data H = (ad)32 (all given in hex where
exponentiation indicates repetition). (Left) The titular invisible salamander, which is delivered to the
recipient but not inserted into the abuse report. (Right) An image of a kitten that is put in the recipient’s
abuse report instead of the salamander.

the plaintexts, and (2) a plaintext restructuring that expands the plaintexts with random bytes in
locations that are ignored by parsers for their respective file formats. We implemented Att-Merge
for JPEG and BMP images (the salamander image and the kitten image, respectively), so our
discussion will focus on these formats.

Before discussing our implementation of Att-Merge we will briefly describe the JPEG and BMP
file formats. JPEG files are of the form ff ∥ d8 ∥ JPEG data ∥ ff ∥ d9. The two-byte sequence ffd8
must be the first two bytes, and the two-byte sequence ffd9 must be the final two bytes. There
is no file length block in JPEG files—internal data structures have length fields but the total size
of the file can be determined only after parsing. JPEG files can also contain comments of up to
216 bytes that are ignored by JPEG parsers. JPEG Comments are indicated with the two-byte
sequence fffe followed by a big-endian two-byte encoding of the comment length. BMP files are of
the form 42 ∥ 4d ∥ <length> ∥ BMP data. BMP files must begin with 424d, and the next four bytes
must be the length block. The length block in a BMP file is a four-byte (little-endian) encoding of
the file length. All the BMP parsers we used only read the number of bytes indicated in the header
and ignore trailing bytes.

Some intuition. At a high level, our Att-Merge proof-of-concept will craft the colliding ciphertext
Ca by putting the encryption of BMP under K2 and the encryption of the JPEG under K1 at
different byte offsets in Ca. This will, of course, result in some portions of both plaintexts being
randomized, but we use several features of the JPEG and BMP file formats which will ensure these
random-looking bytes do not prevent the image from being correctly parsed and displayed (see
Figure 4).

Nonce search. Because the actual image data occurs at different offsets in the two plaintexts the
nonce search need only find a “true” collision for those bytes of the ciphertext that are semantically
meaningful in both plaintext files. JPEG and BMP files must begin with different fixed two-byte
sequences, so the keystreams XORed with those sequences must result in a collision for the first

10

ff d8 ff fe ℓc1 ℓc0 Junk bytes JPEG ptxt suffix End comment∗ ff d9

C0 C1 C2 C3 C4 C5 BMP ctxt suffix Padding JPEG ctxt suffix

42 4d ℓ0 ℓ1 00 00 BMP ptxt suffix Junk bytes

ℓc = 256 · ℓc1 + ℓc0 bytes,

JPEG parser ignores

comment header

& comment length

ℓMj
= 256 · ℓ1 + ℓ0 bytes BMP parser ignores

Decrypt

with K2

Decrypt

with K1

Randomized by Collide-GCM,

JPEG parser ignores

Figure 4: Diagram of the JPEG Mab
a (top) and BMP Mj (bottom) plaintexts output by the plaintext

restructuring step, and their ciphertext (middle). The leftmost block of each file is the first byte. The
“BMP ptxt suffix” is the suffix of the original BMP starting at byte 6. The “JPEG ptxt suffix” is the bytes
of the original JPEG starting at byte 2 and ending before the final two bytes. The fifth and sixth bytes of
the JPEG (marked ℓc1 and ℓc0) are randomized during nonce search. (*) The region marked “End comment”
begins with the comment header and comment length bytes (which are not randomized by Collide-GCM),
but we do not depict them for simplicity.

two bytes. The plaintext restructuring step will need the JPEG to have a comment header in
the next two bytes, which in the BMP plaintext contain the file length. Thus, the nonce output
by Att-Merge must produce keystreams (under K1 and K2) so the encryptions of the first four
bytes (marked C0 through C4 in Figure 4) of either file result in the same value. This happens for
about one in 232 nonces. We wrote a simple Python script to search through nonces until we found
10606665379, which produces the required collision. Finding that nonce took roughly three hours
on a 3.4GHz quad-core Intel i7. Though very fast, fixing the keys and searching through nonces is
not the fastest way to find a collision. Since the keys can be chosen arbitrarily, fixing a nonce and
doing a birthday attack on keys would produce a collision after only about 217 encryptions.

Plaintext restructuring. After the nonce search, the two plaintexts can be restructured. For
JPEG and BMP images Att-Merge performs the following steps: (1) inserting the decryption
(under K1) of the BMP ciphertext into a comment region at the beginning of the JPEG, (2)
inserting an additional comment at the end of the JPEG so the bytes randomized by Collide-GCM
are ignored by the JPEG parser, and (3) appending the decryption (under K2) of the JPEG
ciphertext to the end of the BMP plaintext. See Figure 4 for a diagram of the JPEG and BMP
plaintexts after restructuring.

To put the decryption of the BMP ciphertext in a JPEG comment (step (1)), we first insert the
comment region in between the two-byte header ffd8 and the rest of the JPEG data by placing
the two-byte comment sequence fffe after ffd8. These are the first four bytes of the JPEG
file in Figure 4. The four-byte collision in the keystream ensures the ciphertext of these four bytes
(denoted C0 through C3 in Figure 4) will be the same as the first four bytes of the BMP ciphertext.

The next two bytes of the modified JPEG are the comment’s length ℓc1 ∥ ℓc0 (the fifth and sixth
bytes of the JPEG file in Figure 4). To ensure the BMP parses correctly, these bytes must be fixed
as the XOR of the fifth and sixth JPEG keystream bytes and the fifth and sixth BMP keystream
bytes. If we let PK2 be the keystream for the BMP key and PK1 be the keystream for the JPEG
key (indexing from zero), ℓc1 = PK2 [4] ⊕ PK1 [4] and ℓc0 = PK2 [5] ⊕ PK1 [5]. This is because bytes

11

five and six of the ciphertext must be the fifth and sixth BMP keystream bytes to ensure the BMP
plaintext has the correct length—the fifth and sixth bytes of a BMP file are the high-order bytes
of the file length and must both be zero for the BMP plaintext Mj (see Figure 4).

Once we know the length of the comment, we can make the next bytes the “decryption” of the
BMP data’s ciphertext under the JPEG key K1. To write this more formally, first define b[a · · · c]
to be the bytes of b from index a to c, inclusive. Then if we let Msuff

j be everything but the first six

bytes of the BMP Mj and ℓMj
= |Mj|, the next bytes of the JPEG will be Msuff

j ⊕ PK2 [6 · · · ℓMj
] ⊕

PK1 [6 · · · ℓMj
]. If the BMP data is too short, we append ℓc − ℓMj

random bytes. The comment
will be random-looking bytes, but the JPEG parser will ignore it and jump to the byte after the
comment.

Before discussing step (2), we will make a few observations. First, we place essentially the entire
BMP file in a JPEG comment. This means the file cannot be longer than the maximum length of
a JPEG comment. Second, without additional brute-forcing we cannot choose the comment length
ℓc = 256 · ℓc1 + ℓc0 — it is a random number in the range [0, . . . , 216 − 1] and is fixed by the choice
of the nonce and the two keys. Thus, smaller BMP files are better than large ones: if the length of
the BMP file is ℓMj

and we model AES as an ideal cipher, each nonce with the four-byte collision
we need gives Pr

[
ℓc ≥ ℓMj

− 6
]
≈ (216 − (ℓMj

− 6))/216 (where the probability is taken over the
choice of random permutation for the two keys). In words, the probability of the comment length
being greater than or equal to the file length is inversely proportional to the file length. The byte
length of a BMP file is directly related to the number of pixels in the image, so the chosen BMP
files should be fairly small in dimension to reduce the work required to find a nonce because a nonce
resulting in a too-short comment must be discarded. For example, the kitten image in Figure 3 is
about one hundred pixels by eighty pixels and is in grayscale so that the number of bytes needed
to describe each pixel is minimized. The kitten BMP file is ℓMj

= 9502 bytes, and one of the two
nonces we found during our search did not result in ℓc ≥ ℓMj

− 6.
Our third observation is that nothing in step (1) has depended on the contents of either image,

only on the length of the BMP. Thus, the nonce output by the nonce search phase can be re-used:
for K2, K1 and Na a colliding ciphertext for any valid JPEG and any BMP of the same length as
Mj can be created.

In step (2) we again expand the JPEG with an additional comment region. This comment
region is placed immediately before the end-of-file indicator ffd9. The comment region’s length is
44 bytes. With the comment header and length bytes we add 48 total bytes to the end of the JPEG.
This ensures the second-to-last sixteen-byte block of the JPEG is always ignored by the parser.
This is the block of ciphertext we will use to ensure a tag collision in Collide-GCM. We could have
used a block of associated data and dispensed with the second JPEG comment entirely. Using a
block of ciphertext makes our proof-of-concept more realistic, since Facebook’s GCM ciphertexts
all have fixed associated data that cannot be modified. Define the modified JPEG file resulting
from steps (1) and (2) to be M ′a.

In step (3) we append the “decryption” under K2 of the suffix of CTR-Enc(K1, Na + 2,M ′a)
beginning at byte ℓc + 6 to the BMP plaintext Mj. This step is straightforward—BMP parsers
ignore trailing bytes, so our BMP image will still display correctly even when random-looking bytes
are appended.

Implementing Collide-GCM. We implemented Collide-GCM in Python 2.7 and verified that
colliding ciphertexts can be generated in roughly 45 seconds using an unoptimized implementation
of GF(2128) arithmetic. We checked decryption correctness using cryptography.io, a Python cryp-
tography library which uses OpenSSL’s GCM implementation. This sufficed as a proof-of-concept
exploit for Facebook’s engineering team.

12

3.3 Discussion And Mitigation

We chose JPEG and BMP files for our Att-Merge proof of concept because their formats can
tolerate random bytes in different regions of the file (the beginning and the end, respectively). We
did not try to extend the Att-Merge to other common image formats (like PNG, TIFF or GIF)
but file format tricks similar to the ones described above can be used to craft ciphertexts that
decrypt to images in those formats. As an example, we will sketch a variant of the attack for which
the colliding plaintexts are both JPEG files. It is similar to the JPEG/BMP collision described
above except for two differences. First, the JPEG taking the place of the BMP (i.e., the one put in
the beginning comment of the other JPEG) must end in another comment instead of ffd9, which
ensures the JPEG parser will ignore the trailing random bytes. Second, a two-byte collision must
be found in the final two bytes of the keystream so both JPEGs end in ffd9. A birthday attack
on keys should find keystreams with the correct structure (i.e., the first four bytes and the last two
are the same) in roughly 225 encryptions. We did not try to implement Att-Merge for video file
formats. Such formats are more complex than image formats, but we conjecture it is possible to
extend the attack to video files.

Relation to GLR. In [19] GLR proved CtE2 is a ccAEAD scheme. Their proof only applies
to CtE2 itself, not to the composition of CtE2 and GCM. Concretely, GLR analyzed CtE2 as it
is used for text chat messages in Messenger, but did not analyze how it is used for attachments.
The Collide-GCM algorithm in Figure 2 is related to the r-BIND attack against GCM given by
GLR [19]. However, their attack is insufficient to exploit Facebook’s attachment franking—it only
creates ciphertexts with colliding tags, but not the same ciphertext. Thus using it against Facebook
wouldn’t work, because the SHA-256 hashes of the two images would not collide. The Collide-GCM
algorithm works even if the entire ciphertext, including any headers and the nonce, act as the
commitment and the only opening is the encryption key.

If Facebook’s attachment franking protocol is viewed as a ccAEAD by taking the CtE2 binding
tag (i.e., the value CB output by running CtE2-Enc(id ∥Ka ∥Da) during the sending phase) to be
the compact commitment to the attachment plaintext, the resulting scheme is not vulnerable to
GLR’s r-BIND attack. This is because CB commits both to the hash Da of the nonce/ciphertext
pair and to the GCM key Ka.

Mitigating the attack. There are two main ways this attack can be mitigated. The first is a
server-software-only patch that ensures abuse reports containing attachments are not deduplicated
by attachment identifier. The second is changing the Messenger clients to use a ccAEAD scheme
instead of GCM to encrypt attachments. In response to our bug report, Facebook deployed the first
mitigation, for two main reasons: (1) it did not require patching the Messenger clients (an expensive
and time-consuming process) and (2) changing the client-side crypto while maintaining backwards
compatibility with old clients is difficult. Despite requiring less engineering effort, we believe this
mitigation has some important drawbacks. Most notably, it leaves the underlying cryptographic
issue intact: attachments are still encrypted using GCM. This means future changes to either the
Messenger client or Facebook’s server-side code could re-expose the vulnerability. Using a ccAEAD
in place of GCM for attachment encryption would immediately prevent any deduplication behavior
from being exploited, since the binding security of ccAEAD implies attachment identifiers uniquely
identify the attachment plaintexts.

13

4 A New Primitive: Encryptment

In this section, we introduce a new primitive called an encryptment scheme. Encryptment schemes
allow both encryption of, and commitment to, a message. (See Section 2 for the exact definition
of commitment we will use below.) Moreover, the schemes which we target and ultimately build
achieve both security goals with only a single pass over the underlying data.

While the syntax of encryptment schemes is similar to that of the ccAEAD schemes we ulti-
mately look to build, the key difference is that we expect far more minimal security notions from
encryptment schemes (see Section 7 for a more detailed discussion). Looking ahead, we shall see
that a secure encryptment scheme is the key building block for more complex primitives such as
ccAEAD schemes, robust encryption [1, 17, 18], cryptographic concealments [14], and domain ex-
tension for authenticated encryption and remotely keyed AE [14], facilitating the construction of
very efficient instantiations of these primitives. In Section 7.3 we show how to build ccAEAD from
encryptment, and discuss the other primitives in Section 8.

Encryptment schemes. Applying the encryptment algorithm to a given key, header and mes-
sage tuple (KEC, H,M) returns a pair (CEC, BEC) which we call an encryptment. We refer to
encryptment component CEC as the ciphertext, and to BEC as the binding tag. Together the ci-
phertext / binding tag pair (CEC, BEC) function as an encryption of M under key KEC, so that
given (KEC, H,CEC, BEC), the opening algorithm DO can recover the underlying message M . The
binding tag BEC simultaneously acts as a commitment to the underlying header and message, with
opening KEC; the validity of this commitment to a given pair (H,M) is checked by the verification
algorithm EVer. Looking ahead, we will actually require that BEC acts as a commitment to the
opening KEC also, in that it should be infeasible to find KEC ̸= K ′EC which verify the same BEC.

Formally an encryptment scheme is a tuple EC = (EKg,EC,DO,EVer) defined as follows. Asso-
ciated to the scheme is a key space KEC ⊆ Σ∗, header space HEC ⊆ Σ∗, message spaceMEC ⊆ Σ∗,
ciphertext space CEC ⊆ Σ∗, and binding tag space TEC ⊆ Σ∗.

• The randomized key generation EKg algorithm takes no input, and outputs a key KEC ∈ KEC.

• The encryptment algorithm EC is a deterministic algorithm which takes as input a key KEC ∈
KEC, a header H ∈ HEC, and a message M ∈MEC, and outputs an encryptment (CEC, BEC) ∈
CEC × TEC.

• The decryptment algorithm DO is a deterministic algorithm which takes as input a key KEC ∈
KEC, a header H ∈ HEC, and an encryptment (CEC, BEC) ∈ CEC × TEC, and outputs a message
M ∈MEC or the error symbol ⊥. We assume that if (KEC, H,CEC, BEC) /∈ KEC×HEC×CEC×
TEC, then ⊥← DO(KEC, H,CEC, BEC).

• The verification algorithm EVer is a deterministic algorithm which takes as input a header H ∈
HEC, a message M ∈MEC, a key KEC ∈ KEC, and a binding tag BEC ∈ TEC, and returns a bit b.
We assume that if (H,M,KEC, BEC) /∈ HEC×MEC×KEC×TEC then 0← EVer(H,M,KEC, BEC).

Length regularity and compactness. We impose two requirements on the lengths of the
encryptments output by encryptment schemes. First, we require compactness: that the binding
tags BEC output by an encryptment scheme are of constant length btlen regardless of the length
of the underlying message, and that btlen is linear in the key size. Second, we require length
regularity : that the length of ciphertexts CEC depend only on the length of the underlying message.
Formally, we require there exists a function clen : N → N such that for all (H,M) ∈ HEC ×MEC

it holds that |CEC| = clen(|M |) with probability one for the sequence of algorithm executions:
KEC←$ EKg ; (CEC, BEC)← EC(KEC, H,M).

14

otROR0AEC:

KEC←$ EKg

query-made← false

b←$Aenc(·,·)

Return b

enc(H,M):

If query-made = true then

Return ⊥
query-made← true

(CEC, BEC)← EC(KEC, H,M)

Return (CEC, BEC)

sr-BINDA
CE:

(V1, V2, BEC)←$A
(H,M,KEC)← V1

(H′,M ′,K′
EC)← V2

b← EVer(H,M,KEC, BEC)

b′ ← EVer(H′,M ′,K′
EC, BEC)

If V1 = V2 then

Return false

Return (b = b′ = 1)

otROR1AEC:

query-made← false

b←A(·,·)

Return b

$(H,M):

If query-made = true then

Return ⊥
query-made← true

CEC←$ {0, 1}clen(|M|)

BEC←$ {0, 1}btlen

Return (CEC, BEC)

s-BINDA
CE:

(KEC, H,CEC, BEC)←$A
M ′ ← DO(KEC, H,CEC, BEC)

If M ′ = ⊥ then Return false

b← EVer(H,M ′,KEC, BEC)

If b = 0 then

Return true

Return false

SCUA
EC:

KEC←$ EKg

win← false

query-made← false

ε←$Aenc(·,·),dec(·,·)

Return win

enc(H,M)

If query-made = true then

Return ⊥
query-made← true

(CEC, BEC)← EC(KEC, H,M)

Return ((CEC, BEC),KEC)

dec(H′, C′
EC)

If query-made = false then

Return ⊥
If (H′, C′

EC) = (H,CEC) then

Return ⊥
M ′ ← DO(KEC, H

′, C′
EC, BEC)

If M ′ ̸= ⊥ then win← true

Return M ′

Figure 6: One-time real-or-random (otROR), second-ciphertext unforgeability (SCU), and binding notions
for an encryptment scheme EC = (EKg,EC,DO,EVer).

COREC(H,M):

KEC←$ EKg

(CEC, BEC)← EC(KEC, H,M)

M ′ ← DO(KEC, H,CEC, BEC)

b← EVer(H,M ′,KEC, BEC)

Return (M = M ′ ∧ b = 1)

S-COREC(KEC, H,CEC, BEC):

M ← DO(KEC, H,CEC, BEC)

(C′
EC, B

′
EC)← EC(KEC, H,M)

Return ((CEC, BEC) = (C′
EC, B

′
EC))

Figure 5: Correctness games
for an encryptment scheme
EC = (EKg,EC,DO,EVer).

Correctness. We define two correctness notions for encrypt-
ment schemes, which we formalize via the games COR and
S-COR shown in Figure 5. We require that all encrypt-
ment schemes satisfy our all-in-one correctness notion, which
requires that honestly generated encryptments both decrypt
to the correct underlying message, and successfully verify,
with probability one. Formally, we say that an encrypt-
ment scheme EC = (EKg,EC,DO,EVer) is correct if for all
header / message pairs (H,M) ∈ HEC ×MEC, it holds that
Pr [COREC(H,M)⇒ 1] = 1, where the probability is over the
coins of EKg.

We additionally define strong correctness, which requires
that for each tuple (KEC, H,M) ∈ KEC × HEC × MEC

there is a unique encryptment (CEC, BEC) such that M ←
DO(KEC, H,CEC, BEC). We formalize this in game S-COR, and say that an encryptment scheme
EC = (EKg,EC,DO,EVer) is strongly correct if for all tuples (KEC, H,CEC, BEC) ∈ KEC × HEC ×
CEC × TEC, it holds that Pr [S-COREC(KEC, H,CEC, BEC)⇒ 1] = 1. While we only require that
encryptment schemes satisfy correctness, the schemes we build will also possess the stronger prop-
erty (which simplifies their security proofs). We note that strong correctness can be added to any
encryptment scheme by making DO recompute an encryptment after decrypting, and returning ⊥
if the two do not match; however for efficiency we target schemes which achieve strong correctness
without this.

15

4.1 Security Goals for Encryptment

We require encryptment schemes to satisfy both one-time real-or-random (otROR) security, and
a variant of one-time ciphertext integrity (SCU) which requires forging a ciphertext for a given
binding tag with a known key; we motivate this variant below. The security games for both notions
are shown in Figure 6.

Confidentiality. We define otROR security for an encryptment scheme EC = (EKg,EC,DO,EVer)
in terms of games otROR0 and otROR1. Each game allows an attacker A to make one query of the
form (H,M) to his real-or-random encryption oracle; in game otROR0 he receives back the real
encryptment (CEC, BEC) encrypting the input under a secret key, and in game otROR1 he receives
back random bit strings. For an encryptment scheme EC and adversary A, we define the otROR
advantage of A against EC as

Advot-ror
EC (A) =

⏐⏐⏐⏐Pr [otROR0AEC ⇒ 1
]
− Pr

[
otROR1AEC ⇒ 1

] ⏐⏐⏐⏐ ,
where the probability is over the coins of EKg and A.

Second-ciphertext unforgeability. We also ask that encryptment schemes meet an unforge-
ability goal that we call second-ciphertext unforgeability (SCU). In this game, the attacker first
learns an encryptment (CEC, BEC) corresponding to a chosen header / message pair (H,M) un-
der key KEC. We then require that the attacker shouldn’t be able to find a distinct header and
ciphertext pair (H ′, C ′EC) ̸= (H,CEC) such that DO(KEC, H

′, C ′EC, BEC) does not return an error.
This should hold even if the attacker knows KEC. Looking ahead, this is a necessary and sufficient
condition needed from encryptment when using it to build ccAEAD schemes from fixed domain
authenticated encryption.

Formally, the game SCU is shown in Figure 6. To an encryptment scheme EC and adver-
sary A, we define the second-ciphertext unforgeability (SCU) advantage to be Advscu

EC (A) =
Pr

[
SCUAEC ⇒ true

]
, where the probability is again over the coins of EKg and A.

Binding security. We finally require that encryptment schemes satisfy certain binding notions.
We start by generalizing the receiver binding notion r-BIND for ccAEAD schemes from [19], and
adapting the syntax to the encryptment setting. r-BIND security requires that no computationally
efficient adversary can find two keys, message, header triples (KEC, H,M),(K ′EC, H

′,M ′) and a bind-
ing tag BEC such that (H,M) ̸= (H ′,M ′) and EVer(H,M,KEC, BEC) = EVer(H ′,M ′,K ′EC, BEC) =
1. A simple strengthening of this notion — which we denote sr-BIND (for strong receiver binding)
— allows the adversary to instead win if (H,M,KEC) ̸= (H ′,M ′,K ′EC). The pseudocode game
sr-BIND is shown in Figure 6, where we define the sr-BIND advantage of an adversary A against
EC as Advsr-bind

EC (A) = Pr
[
sr-BINDAEC ⇒ true

]
. The corresponding game and advantage term for

r-BIND security are defined analogously. The stronger receiver binding notion implies the prior no-
tion, and indeed is strictly stronger, as we detail in Appendix A. For our purposes, it will simplify
our negative results about rate-1 blockcipher-based encryptment.

We additionally define the notion of sender binding. It ensures that a sender must itself commit
to the message underlying an encryptment, by requiring that it is infeasible to find an encryptment
which decrypts correctly but for which verification fails. Without this requirement, a malicious
sender may be able to send an abusive message to a receiver with a faulty commitment such that
a receiver is unable to report it. We define sender binding security formally via the game s-BIND
in Figure 6. We define the s-BIND advantage of an adversary A against an encryptment scheme
EC as Advs-bind

EC (A) = Pr
[
s-BINDAEC ⇒ true

]
.

16

otCTXTA
EC:

KEC←$ EKg

win← false

query-made← false

ε←$Aenc(·,·),dec(·,·,·)

Return win

enc(H,M)

If query-made = true then

Return ⊥
query-made← true

(CEC, BEC)← EC(KEC, H,M)

H← H ;CEC ← CEC ;BEC ← BEC

Return (CEC, BEC)

dec(H′, C′
EC, B

′
EC)

If query-made = false then

Return ⊥
b← (H′, C′

EC, B
′
EC) = (H,CEC,BEC)

If query-made = true ∧ b then

Return ⊥
M ′ ← DO(KEC, H

′, C′
EC, BEC)

If M ′ ̸= ⊥ then win← true

Return M ′

Figure 7: otCTXT game
for an encryptment scheme
EC = (EKg,EC,DO,EVer).

Integrity. We may also define a one-time notion of cipher-
text integrity for encryptment schemes. Here, the attacker
is challenged to output a fresh encryptment which decrypts
correctly given a single query to an encryptment oracle. The
game otCTXT in Figure 7 is defined identically to game SCU
in Figure 6, except for two changes: first, we do not return
the key KEC from enc. Second, we modify the specification
of oracle dec as follows. In game otCTXT, dec takes as input
a tuple (H,CEC, BEC), returns ⊥ if query-made = false, or if
query-made = true and (H,BEC, CEC) is equal to the encrypt-
ment returned in the query to enc. Otherwise, dec returns
the output of DO(KEC, H,CEC, BEC), and the attacker wins if
any dec query does not return ⊥. To an encryptment scheme
EC and adversary A, we define the otCTXT advantage to be
Advot−ctxt

EC (A) = Pr
[
otCTXTAEC ⇒ true

]
.

While we do not require that encryptment schemes satisfy
the notion of otCTXT security, looking ahead to Section 7,
those that do (when reframed in the ccAEAD syntax) consti-
tute a secure one-time ccAEAD scheme. By this, we mean a
ccAEAD scheme for which a fresh secret key is chosen for each
encryption. A one-time ccAEAD scheme is suitable for use in
applications such as Signal, where ratcheting ensures that each
encryption is essentially under a fresh key.

Relation to ccAEAD. Given the simpler security proper-
ties expected of them, building highly efficient secure encryptment schemes is a more straightfor-
ward task than constructing a ccAEAD scheme directly. However, as we shall see, encryptment
isolates the core complexity of building ccAEAD schemes with multi-opening security. In partic-
ular, in Section 7.3 we give a generic transform which allows one to build a multi-opening secure
ccAEAD schemes from a secure encryptment scheme and secure AEAD scheme. Armed with this
transform, in Section 6 we show how to construct a secure encryptment scheme from cryptographic
hash functions. Together, our results will yield the first single-pass, single-primitive constructions
of ccAEAD.

Binding and correctness imply second-ciphertext unforgeability. One reason we have
introduced encryptment as a standalone primitive (instead of directly working with the ccAEAD
formulation from GLR) is that it simplifies security analyses. A useful tool for these analyses is the
following lemma, which states that for any encryptment scheme EC that enjoys strong correctness,
the combination of r-BIND and s-BIND security suffice to prove SCU security.

Lemma 1 Let EC = (EKg, EC, DO, EVer) be a strongly correct encryptment scheme, and con-
sider an attacker A in the SCU game against EC. Then there exist attackers B and C such that
Advscu

EC (A) ≤ Advs-bind
EC (B)+Advr-bind

EC (C), and moreover B and C both run in the same time as A.

We give a proof sketch and defer the details to Appendix B. Let ((CEC, BEC),KEC) be the tuple
corresponding to A’s single encryption query (H,M) in the SCU game, and suppose that A wins
the game with decryption oracle query (H ′, C ′EC), meaning that DO(KEC, H

′, C ′EC, BEC) = M ′ ̸=⊥
and (H ′, C ′EC) ̸= (H,CEC). The proof first argues that if the scheme is s-BIND-secure, then any
ciphertext which decrypts correctly must also verify correctly. As such, it follows that if (H,M) ̸=
(H ′,M ′) for the winning query, then this can be used to construct a winning tuple for an attacker in

17

the r-BIND game against EC; we bound the probability that this occurs with a reduction to r-BIND
security. On the other hand, if (H,M) = (H ′,M ′), then it must be the case that CEC ̸= C ′EC —
but this in turn implies that we have found two distinct encryptments which decrypt to the same
header and message under KEC, violating strong correctness.

A simple encryptment construction. It is straightforward to construct an encryptment scheme
by composing a secure encryption scheme and a commitment scheme. One can just use a simple
adaptation of the CtE2 ccAEAD scheme from [19]. We defer the details to Appendix C. But such
generic compositions are inherently two pass and we seek faster schemes.

5 On Efficient Fixed-key Blockcipher-Based Encryptment

We are interested in building encryptment schemes — and ultimately, more complex primitives
such as ccAEAD schemes — from just a blockcipher used on a small number of keys and other
primitive arithmetic operations (XOR, finite field arithmetic, etc.). Beyond being an interesting
theoretical question, there is the practical motivation that the current fastest AEAD schemes, such
as OCB [39], fall into this category.

As a simple motivating example illustrating the challenging nature of this task, we note that
OCB does not satisfy r-BIND security (see Section 4) when reframed as an encryptment scheme
in the natural way. The high level reason for this (modulo a number of details), is that in OCB
the binding tag is computed as a function over the XOR of the message blocks. As such, it is
straightforward to construct two distinct messages such that the blocks XOR to the same value
(and thus produce the same binding tag), thereby violating r-BIND security. Full details of the
scheme and attack are given in Appendix E.

For the remainder of this section, we formally define high-rate encryptment schemes, and show
how prior results on the impossibility of high-rate CR functions can be used to rule out high-rate
encryptment schemes as well.

A connection between hashing and encryptment. Towards showing negative results, we
must first define more carefully what we mean by the rate of encryptment schemes. We are inspired
by (and will later exploit connections to) the definitions of rate from the blockcipher-based hash
function literature [11,41,42].

Consider a compression function H : {0, 1}mn → {0, 1}rn for m > r ≥ 1 and n ≥ 1, which uses
k ≥ 1 calls of a blockcipher E : {0, 1}κ × {0, 1}n → {0, 1}n (m, r, n, k, κ ∈ N). Then following [42],
we may write H as shown in Figure 8, where we let K1, . . . ,Kk be any fixed strings. Further, we let
fi : {0, 1}(m+(i−1))n → {0, 1}n (where i ∈ [1, . . . , k]) and g : {0, 1}(m+k)n → {0, 1}rn be functions.

H(V):

For i = 1 to k do

Xi ← fi(V, Y1, . . . , Yi−1)

Yi ← EKi
(Xi)

W ← g(V, Y1, . . . , Yk)

Return W

Figure 8: A blockcipher-based com-
pression function.

The rate of H is defined to be m/k; so a rate- 1β function H
makes β blockcipher calls per n-bits of input. For example, a
rate-1 H would achieve a single blockcipher call per n-bit block
of input. A consequence of the more general results of [42] (see
below) is that they rule out rate-1 functions achieving security
past 2n/4 queries to E by an adversary, when modeling E as
an ideal cipher. We would like to exploit their negative results
to similarly rule out rate-1 encryptment schemes.

We now focus attention on encryptment schemes that fall
into a certain form. Consider an encryptment scheme EC =
(EKg,EC,DO,EVer). Because EC is deterministic, we can view
computing the binding tag as a function F (KEC, H,M) defined by outputting the binding tag BEC

18

computed via (CEC, BEC) ← EC(KEC, H,M). The verification algorithm EVer(H,M,KEC, BEC)
checks that F (KEC, H,M) = BEC. (One can generalize this definition by allowing EC and EVer to
use different functions F ,F ′ to compute the binding tag; the lower bounds given in this section on
the rate of such functions readily extend to this case also.)

With this in place, we can define the rate of verification for encryptment analogously to defining
the rate of a hash function H, by saying that an encryptment scheme has rate- 1β if the associated
function F makes β blockcipher calls per n-bits of header and message data (or equivalently, can
process (H,M) of combined length mn-bits using βm blockcipher calls).

Now we can give a generic, essentially syntactic, transform from an encryptment scheme to a
hash function. For an encryptment scheme EC, let F be the associated binding tag computation
function as per above. Let H : {0, 1}∗ → {0, 1}n be the function defined as H(X) = F (KEC, ε,X)
for KEC an arbitrary, fixed bit string. Here we take H = ε, so that the number of block cipher
calls required to compute F is solely determined by the length of the input X. Note also that any
two X,X ′ ̸∈ M (where M is the domain of the encryptment scheme) will trivially collide under
H, since F (KEC, ε,X) = F (KEC, ε,X

′) = ⊥. We will therefore assume M = {0, 1}∗ below. With
this, the following theorem is simple to prove.

Theorem 1 Let EC be a encryptment scheme, and let H be defined as above. For any collision-
resistance adversary A, we give an r-BIND adversary B so that Advcr

H(A) ≤ Advr-bind
EC (B). The

adversary B runs in the same amount of time as A.

Theorem 1 allows us to apply known negative results about efficient CR-hashing. For example, we
have the following corollary of Theorem 1 and [42, Th. 1]:

Corollary 2 Fix m > r ≥ 1 and n > 0 (m, r, n ∈ N). Let N = 2n. Let EC be an encryptment
scheme for which (1) BEC is computed with an ideal cipher, (2) |BEC| = rn, and (3) that has
message space including strings of length mn. Then there is a runnable adversary A making
q = k(N1−(m−r)/k + 1) ideal cipher queries and achieving Advr-bind

EC (A) = 1, where k ∈ N denotes
the number of ideal cipher calls required to compute the binding tag for an mn-bit input.

This immediately rules out security of rate-1 schemes that achieve the efficiency of OCB, i.e.,
having k = m, m arbitrarily large, and r = 1. Consider the minimal case that m = 2 (two
block messages), then A only requires q = 2 queries to succeed. Stronger results ruling out rate-
1
2 verification can be similarly lifted from [42, Th. 2] under some technical conditions about the
verification function and the adversary.

One can modify our definitions so the key Ki for the ith cipher call can be picked from the set
{K1, . . . ,Kk} as a function of the current round and messages instead of being used in a fixed order;
Rogaway and Steinberger refer to this as the no-fixed order model (though it first appeared in [11]).
A negative result based on [11, Th. 5] would rule out encryptment using any rate-1 no-fixed order
verification algorithm.

The results above were cast in terms of r-BIND security, but extend to sr-BIND security because
the latter implies the former. We conjecture that these lower bounds can be extended to blockcipher-
based robust encryption schemes (in the sense of [18]); we leave this as an open problem for future
work.

Ultimately these negative results indicate that for an r-BIND-secure encryptment scheme, the
best we can hope for is either a rate-13 construction with a small set of keys, or to allow rekeying
with each block of message. We therefore turn to building as efficient-as-possible constructions.

In Appendix I, we will describe how the existence of an r-BIND-secure ccAEAD scheme of a
given rate implies the existence of an r-BIND-secure encryptment scheme of the same rate, and so
the results of this section exclude the existence of rate-1 or rate-12 ccAEAD schemes also.

19

...f
<latexit sha1_base64="pHWc9bjTpHFTpd1cpehINtMaEoo=">AAAB8nicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjboQi25cVjC22IYymU7aoZNJmDkRSyj4EO5EQdz6Hr6AG9/G6WWhrT8MfPz/Ocw5J0wF1+i631ZhYXFpeaW4aq+tb2xulbZ3bnWSKcp8mohENUKimeCS+chRsEaqGIlDweph/3KU1++Z0jyRNzhIWRCTruQRpwSNdddC9oA6yqNhu1R2K+5Yzjx4Uyiff9pnjwBQa5e+Wp2EZjGTSAXRuum5KQY5UcipYEO7lWmWEtonXdY0KEnMdJCPJx46B8bpOFGizJPojN3fHTmJtR7EoamMCfb0bDYy/8uaGUYnQc5lmiGTdPJRlAkHE2e0vtPhilEUAwOEKm5mdWiPKELRHMm2bXMGb3bpefCPKqcV99otVy9goiLswT4cggfHUIUrqIEPFCQ8wQu8Wpn1bL1Z75PSgjXt2YU/sj5+AA0VkvI=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit>

f
<latexit sha1_base64="pHWc9bjTpHFTpd1cpehINtMaEoo=">AAAB8nicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjboQi25cVjC22IYymU7aoZNJmDkRSyj4EO5EQdz6Hr6AG9/G6WWhrT8MfPz/Ocw5J0wF1+i631ZhYXFpeaW4aq+tb2xulbZ3bnWSKcp8mohENUKimeCS+chRsEaqGIlDweph/3KU1++Z0jyRNzhIWRCTruQRpwSNdddC9oA6yqNhu1R2K+5Yzjx4Uyiff9pnjwBQa5e+Wp2EZjGTSAXRuum5KQY5UcipYEO7lWmWEtonXdY0KEnMdJCPJx46B8bpOFGizJPojN3fHTmJtR7EoamMCfb0bDYy/8uaGUYnQc5lmiGTdPJRlAkHE2e0vtPhilEUAwOEKm5mdWiPKELRHMm2bXMGb3bpefCPKqcV99otVy9goiLswT4cggfHUIUrqIEPFCQ8wQu8Wpn1bL1Z75PSgjXt2YU/sj5+AA0VkvI=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit>

f
<latexit sha1_base64="pHWc9bjTpHFTpd1cpehINtMaEoo=">AAAB8nicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjboQi25cVjC22IYymU7aoZNJmDkRSyj4EO5EQdz6Hr6AG9/G6WWhrT8MfPz/Ocw5J0wF1+i631ZhYXFpeaW4aq+tb2xulbZ3bnWSKcp8mohENUKimeCS+chRsEaqGIlDweph/3KU1++Z0jyRNzhIWRCTruQRpwSNdddC9oA6yqNhu1R2K+5Yzjx4Uyiff9pnjwBQa5e+Wp2EZjGTSAXRuum5KQY5UcipYEO7lWmWEtonXdY0KEnMdJCPJx46B8bpOFGizJPojN3fHTmJtR7EoamMCfb0bDYy/8uaGUYnQc5lmiGTdPJRlAkHE2e0vtPhilEUAwOEKm5mdWiPKELRHMm2bXMGb3bpefCPKqcV99otVy9goiLswT4cggfHUIUrqIEPFCQ8wQu8Wpn1bL1Z75PSgjXt2YU/sj5+AA0VkvI=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit>

f
<latexit sha1_base64="pHWc9bjTpHFTpd1cpehINtMaEoo=">AAAB8nicbZDLSsNAFIZP6q3GW9Wlm2ARXJXEjboQi25cVjC22IYymU7aoZNJmDkRSyj4EO5EQdz6Hr6AG9/G6WWhrT8MfPz/Ocw5J0wF1+i631ZhYXFpeaW4aq+tb2xulbZ3bnWSKcp8mohENUKimeCS+chRsEaqGIlDweph/3KU1++Z0jyRNzhIWRCTruQRpwSNdddC9oA6yqNhu1R2K+5Yzjx4Uyiff9pnjwBQa5e+Wp2EZjGTSAXRuum5KQY5UcipYEO7lWmWEtonXdY0KEnMdJCPJx46B8bpOFGizJPojN3fHTmJtR7EoamMCfb0bDYy/8uaGUYnQc5lmiGTdPJRlAkHE2e0vtPhilEUAwOEKm5mdWiPKELRHMm2bXMGb3bpefCPKqcV99otVy9goiLswT4cggfHUIUrqIEPFCQ8wQu8Wpn1bL1Z75PSgjXt2YU/sj5+AA0VkvI=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit><latexit sha1_base64="1NDgoNakEdnkt3h4BM1NP8gzrvA=">AAAB8nicbZDLSsNAFIYnXmu8VV26CRbBVUncqAux6MZlBWOLbSiT6Uk7dDIJMydiCX0Ld6Ig3foevoAgvo3Ty0Jbfxj4+P9zmHNOmAqu0XW/rYXFpeWV1cKavb6xubVd3Nm900mmGPgsEYmqh1SD4BJ85CigniqgcSigFvauRnntAZTmibzFfgpBTDuSR5xRNNZ9E+ERdZRHg1ax5JbdsZx58KZQuviwz9Phl11tFT+b7YRlMUhkgmrd8NwUg5wq5EzAwG5mGlLKerQDDYOSxqCDfDzxwDk0TtuJEmWeRGfs/u7Iaax1Pw5NZUyxq2ezkflf1sgwOg1yLtMMQbLJR1EmHEyc0fpOmytgKPoGKFPczOqwLlWUoTmSbdvmDN7s0vPgH5fPyu6NW6pckokKZJ8ckCPikRNSIdekSnzCiCRP5IW8Wpn1bL1Zw0npgjXt2SN/ZL3/AAAYlGY=</latexit>

M1
<latexit sha1_base64="O1rSbfiUbNKWIeIk1gIUjLPlrSQ=">AAAB63icbVDLSgNBEOyNr7i+oh69DAbBU9gVQb0FvHgRIromkCxhdtKbDJmdXWZmhRDyCd5EQbz6Gf6BRy/+jZPHQRMLGoqqbrq7okxwbTzv2yksLa+srhXX3Y3Nre2d0u7evU5zxTBgqUhVI6IaBZcYGG4ENjKFNIkE1qP+5divP6DSPJV3ZpBhmNCu5DFn1Fjp9rrtt0tlr+JNQBaJPyPlavHzAyxq7dJXq5OyPEFpmKBaN30vM+GQKsOZwJHbyjVmlPVpF5uWSpqgDoeTU0fkyCodEqfKljRkov6eGNJE60ES2c6Emp6e98bif14zN/F5OOQyyw1KNl0U54KYlIz/Jh2ukBkxsIQyxe2thPWooszYdFzXtTH4808vkuCkclHxbmwcpzBFEQ7gEI7BhzOowhXUIAAGXXiEZ3hxpPPkvDpv09aCM5vZhz9w3n8AryGPJw==</latexit><latexit sha1_base64="aho+MbxO/ddKiTJ5HgU8rnYiXiE=">AAAB63icbVDLSsNAFL2prxhftS7dDC2Cq5KIoO4KunAjVDS20IYymU7aoZNJmJkIJfQT3ImCuNW/8A9cuvFvnD4W2nrgwuGce7n3njDlTGnX/bYKS8srq2v2urOxubW9U9wt3akkk4T6JOGJbIZYUc4E9TXTnDZTSXEcctoIB+djv3FPpWKJuNXDlAYx7gkWMYK1kW6uOl6nWHGr7gRokXgzUqnZnx+li/dyvVP8ancTksVUaMKxUi3PTXWQY6kZ4XTktDNFU0wGuEdbhgocUxXkk1NH6MAoXRQl0pTQaKL+nshxrNQwDk1njHVfzXtj8T+vlenoNMiZSDNNBZkuijKOdILGf6Muk5RoPjQEE8nMrYj0scREm3QcxzExePNPLxL/qHpWda9NHMcwhQ37UIZD8OAEanAJdfCBQA8e4AmeLWE9Wi/W67S1YM1m9uAPrLcfLreQRQ==</latexit><latexit sha1_base64="aho+MbxO/ddKiTJ5HgU8rnYiXiE=">AAAB63icbVDLSsNAFL2prxhftS7dDC2Cq5KIoO4KunAjVDS20IYymU7aoZNJmJkIJfQT3ImCuNW/8A9cuvFvnD4W2nrgwuGce7n3njDlTGnX/bYKS8srq2v2urOxubW9U9wt3akkk4T6JOGJbIZYUc4E9TXTnDZTSXEcctoIB+djv3FPpWKJuNXDlAYx7gkWMYK1kW6uOl6nWHGr7gRokXgzUqnZnx+li/dyvVP8ancTksVUaMKxUi3PTXWQY6kZ4XTktDNFU0wGuEdbhgocUxXkk1NH6MAoXRQl0pTQaKL+nshxrNQwDk1njHVfzXtj8T+vlenoNMiZSDNNBZkuijKOdILGf6Muk5RoPjQEE8nMrYj0scREm3QcxzExePNPLxL/qHpWda9NHMcwhQ37UIZD8OAEanAJdfCBQA8e4AmeLWE9Wi/W67S1YM1m9uAPrLcfLreQRQ==</latexit>

KEC
<latexit sha1_base64="8T2ZPgmzPt4c/3MO1fJrbAriPVM=">AAAB+XicbVBNS8NAEJ34WeNHox71ECyCp5KKoN4KRRC8VDC20Jay2W7apZtN2J2IJeaXeBMF8epf8eK/cftx0NYHA4/3ZpiZFySCa/S8b2tpeWV1bb2wYW9ube8Und29ex2nijKfxiJWzYBoJrhkPnIUrJkoRqJAsEYwrI39xgNTmsfyDkcJ60SkL3nIKUEjdZ3iTTdrI3tEHWZXtTzvOiWv7E3gLpLKjJSqh6GsAkC963y1ezFNIyaRCqJ1q+Il2MmIQk4Fy+12qllC6JD0WctQSSKmO9nk8Nw9NkrPDWNlSqI7UX9PZCTSehQFpjMiONDz3lj8z2ulGF50Mi6TFJmk00VhKlyM3XEKbo8rRlGMDCFUcXOrSwdEEYomK9u2TQyV+acXiX9avix7tyaOM5iiAAdwBCdQgXOowjXUwQcKKTzDK7xZT9aL9W59TFuXrNnMPvyB9fkDgTmUrg==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit>

KEC
<latexit sha1_base64="8T2ZPgmzPt4c/3MO1fJrbAriPVM=">AAAB+XicbVBNS8NAEJ34WeNHox71ECyCp5KKoN4KRRC8VDC20Jay2W7apZtN2J2IJeaXeBMF8epf8eK/cftx0NYHA4/3ZpiZFySCa/S8b2tpeWV1bb2wYW9ube8Und29ex2nijKfxiJWzYBoJrhkPnIUrJkoRqJAsEYwrI39xgNTmsfyDkcJ60SkL3nIKUEjdZ3iTTdrI3tEHWZXtTzvOiWv7E3gLpLKjJSqh6GsAkC963y1ezFNIyaRCqJ1q+Il2MmIQk4Fy+12qllC6JD0WctQSSKmO9nk8Nw9NkrPDWNlSqI7UX9PZCTSehQFpjMiONDz3lj8z2ulGF50Mi6TFJmk00VhKlyM3XEKbo8rRlGMDCFUcXOrSwdEEYomK9u2TQyV+acXiX9avix7tyaOM5iiAAdwBCdQgXOowjXUwQcKKTzDK7xZT9aL9W59TFuXrNnMPvyB9fkDgTmUrg==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit>

KEC
<latexit sha1_base64="8T2ZPgmzPt4c/3MO1fJrbAriPVM=">AAAB+XicbVBNS8NAEJ34WeNHox71ECyCp5KKoN4KRRC8VDC20Jay2W7apZtN2J2IJeaXeBMF8epf8eK/cftx0NYHA4/3ZpiZFySCa/S8b2tpeWV1bb2wYW9ube8Und29ex2nijKfxiJWzYBoJrhkPnIUrJkoRqJAsEYwrI39xgNTmsfyDkcJ60SkL3nIKUEjdZ3iTTdrI3tEHWZXtTzvOiWv7E3gLpLKjJSqh6GsAkC963y1ezFNIyaRCqJ1q+Il2MmIQk4Fy+12qllC6JD0WctQSSKmO9nk8Nw9NkrPDWNlSqI7UX9PZCTSehQFpjMiONDz3lj8z2ulGF50Mi6TFJmk00VhKlyM3XEKbo8rRlGMDCFUcXOrSwdEEYomK9u2TQyV+acXiX9avix7tyaOM5iiAAdwBCdQgXOowjXUwQcKKTzDK7xZT9aL9W59TFuXrNnMPvyB9fkDgTmUrg==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit>

H1
<latexit sha1_base64="weD8i7oe4pRKwE739CFfhTXzNPI=">AAAB63icbVDLSgNBEOyNr7i+oh69DAbBU9gVQb0FvOQY0TWBZAmzk0kyZHZ2mekVwpJP8CYK4tXP8A88evFvnDwOmljQUFR1090VpVIY9Lxvp7Cyura+Udx0t7Z3dvdK+wf3Jsk04wFLZKKbETVcCsUDFCh5M9WcxpHkjWh4PfEbD1wbkag7HKU8jGlfiZ5gFK10W+v4nVLZq3hTkGXiz0m5Wvz8AIt6p/TV7iYsi7lCJqkxLd9LMcypRsEkH7vtzPCUsiHt85alisbchPn01DE5sUqX9BJtSyGZqr8nchobM4oj2xlTHJhFbyL+57Uy7F2GuVBphlyx2aJeJgkmZPI36QrNGcqRJZRpYW8lbEA1ZWjTcV3XxuAvPr1MgrPKVcW7sXGcwwxFOIJjOAUfLqAKNahDAAz68AjP8OIo58l5dd5mrQVnPnMIf+C8/wCnfo8i</latexit><latexit sha1_base64="WoyJ5tWcNrGnf4seCndaQhiqv0I=">AAAB63icbVDLSsNAFL2prxpftS7dDC2Cq5KIoO4KuuiyorGFNpTJdNIOnUzCzEQIoZ/gThTErf6Ff+DSjX/j9LHQ1gMXDufcy733BAlnSjvOt1VYWV1b3yhu2lvbO7t7pf3ynYpTSahHYh7LdoAV5UxQTzPNaTuRFEcBp61gdDnxW/dUKhaLW50l1I/wQLCQEayNdNPoub1S1ak5U6Bl4s5JtV78/ChfvVeavdJXtx+TNKJCE46V6rhOov0cS80Ip2O7myqaYDLCA9oxVOCIKj+fnjpGR0bpozCWpoRGU/X3RI4jpbIoMJ0R1kO16E3E/7xOqsNzP2ciSTUVZLYoTDnSMZr8jfpMUqJ5ZggmkplbERliiYk26di2bWJwF59eJt5J7aLmXJs4TmGGIhxCBY7BhTOoQwOa4AGBATzAEzxbwnq0XqzXWWvBms8cwB9Ybz8nFJBA</latexit><latexit sha1_base64="WoyJ5tWcNrGnf4seCndaQhiqv0I=">AAAB63icbVDLSsNAFL2prxpftS7dDC2Cq5KIoO4KuuiyorGFNpTJdNIOnUzCzEQIoZ/gThTErf6Ff+DSjX/j9LHQ1gMXDufcy733BAlnSjvOt1VYWV1b3yhu2lvbO7t7pf3ynYpTSahHYh7LdoAV5UxQTzPNaTuRFEcBp61gdDnxW/dUKhaLW50l1I/wQLCQEayNdNPoub1S1ak5U6Bl4s5JtV78/ChfvVeavdJXtx+TNKJCE46V6rhOov0cS80Ip2O7myqaYDLCA9oxVOCIKj+fnjpGR0bpozCWpoRGU/X3RI4jpbIoMJ0R1kO16E3E/7xOqsNzP2ciSTUVZLYoTDnSMZr8jfpMUqJ5ZggmkplbERliiYk26di2bWJwF59eJt5J7aLmXJs4TmGGIhxCBY7BhTOoQwOa4AGBATzAEzxbwnq0XqzXWWvBms8cwB9Ybz8nFJBA</latexit>

KEC
<latexit sha1_base64="8T2ZPgmzPt4c/3MO1fJrbAriPVM=">AAAB+XicbVBNS8NAEJ34WeNHox71ECyCp5KKoN4KRRC8VDC20Jay2W7apZtN2J2IJeaXeBMF8epf8eK/cftx0NYHA4/3ZpiZFySCa/S8b2tpeWV1bb2wYW9ube8Und29ex2nijKfxiJWzYBoJrhkPnIUrJkoRqJAsEYwrI39xgNTmsfyDkcJ60SkL3nIKUEjdZ3iTTdrI3tEHWZXtTzvOiWv7E3gLpLKjJSqh6GsAkC963y1ezFNIyaRCqJ1q+Il2MmIQk4Fy+12qllC6JD0WctQSSKmO9nk8Nw9NkrPDWNlSqI7UX9PZCTSehQFpjMiONDz3lj8z2ulGF50Mi6TFJmk00VhKlyM3XEKbo8rRlGMDCFUcXOrSwdEEYomK9u2TQyV+acXiX9avix7tyaOM5iiAAdwBCdQgXOowjXUwQcKKTzDK7xZT9aL9W59TFuXrNnMPvyB9fkDgTmUrg==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit><latexit sha1_base64="nXuu1Sg2JihlkMaOSAlwwCcHVvE=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN4KRRC8VDC20Iaw2W7apZtN2J2IIeaXeBMF6dWrP8OL/8btx0FbHww83pthZl6QcKbAcb6NpeWV1bX10oa5ubW9U7Z29+5VnEpCXRLzWLYDrChngrrAgNN2IimOAk5bwbAx9lsPVCoWizvIEupFuC9YyAgGLflW+cbPu0AfQYX5VaMofKviVJ0J7EVSm5FK/TAUjVH22fStr24vJmlEBRCOlerUnAS8HEtghNPC7KaKJpgMcZ92NBU4osrLJ4cX9rFWenYYS10C7In6eyLHkVJZFOjOCMNAzXtj8T+vk0J44eVMJClQQaaLwpTbENvjFOwek5QAzzTBRDJ9q00GWGICOivTNHUMtfmnF4l7Wr2sOrc6jjM0RQkdoCN0gmroHNXRNWoiFxGUomf0it6MJ+PFeDdG09YlYzazj/7A+PgBByiWkA==</latexit>

IV
<latexit sha1_base64="DjrMWdTmjr++mBXHJLhI+kSG5bA=">AAAB6nicbZDLSgMxFIbP1Fsdb1WXboJFcFVmRFBXFtzororTFtqhZNJMG5pkhiQjlKFv4E4UihsXvoTv4ca3Mb0stPpD4OP/zyHnnCjlTBvP+3IKS8srq2vFdXdjc2t7p7S7V9dJpggNSMIT1YywppxJGhhmOG2mimIRcdqIBleTvPFAlWaJvDfDlIYC9ySLGcHGWnc39U6p7FW8qdBf8OdQvvwYj98AoNYpfba7CckElYZwrHXL91IT5lgZRjgdue1M0xSTAe7RlkWJBdVhPp10hI6s00VxouyTBk3dnx05FloPRWQrBTZ9vZhNzP+yVmbi8zBnMs0MlWT2UZxxZBI0WRt1maLE8KEFTBSzsyLSxwoTY4/juq49g7+49F8ITioXFe/WK1dPYaYiHMAhHIMPZ1CFa6hBAARieIRneHGE8+SMnddZacGZ9+zDLznv33x5j9g=</latexit><latexit sha1_base64="gO8rVst+hJnrh+E8S3w4EAP/1/s=">AAAB6nicbZDNSgMxFIXv1L86/lVdugkWwVWZiqCuLLjRXRWnLbRDyaSZNjTJDElGKEPfwJ0oVLe+hO/hxrcx03ah1QOBj3PuJffeMOFMG8/7cgpLyyura8V1d2Nza3untLvX0HGqCPVJzGPVCrGmnEnqG2Y4bSWKYhFy2gyHV3nefKBKs1jem1FCA4H7kkWMYGOtu5tGt1T2Kt5U6C9U51C+/Jjkeq13S5+dXkxSQaUhHGvdrnqJCTKsDCOcjt1OqmmCyRD3aduixILqIJtOOkZH1umhKFb2SYOm7s+ODAutRyK0lQKbgV7McvO/rJ2a6DzImExSQyWZfRSlHJkY5WujHlOUGD6ygIlidlZEBlhhYuxxXNe1Z6guLv0X/JPKRcW79cq1U5ipCAdwCMdQhTOowTXUwQcCETzCM7w4wnlyJs7brLTgzHv24Zec92/be5Gd</latexit><latexit sha1_base64="gO8rVst+hJnrh+E8S3w4EAP/1/s=">AAAB6nicbZDNSgMxFIXv1L86/lVdugkWwVWZiqCuLLjRXRWnLbRDyaSZNjTJDElGKEPfwJ0oVLe+hO/hxrcx03ah1QOBj3PuJffeMOFMG8/7cgpLyyura8V1d2Nza3untLvX0HGqCPVJzGPVCrGmnEnqG2Y4bSWKYhFy2gyHV3nefKBKs1jem1FCA4H7kkWMYGOtu5tGt1T2Kt5U6C9U51C+/Jjkeq13S5+dXkxSQaUhHGvdrnqJCTKsDCOcjt1OqmmCyRD3aduixILqIJtOOkZH1umhKFb2SYOm7s+ODAutRyK0lQKbgV7McvO/rJ2a6DzImExSQyWZfRSlHJkY5WujHlOUGD6ygIlidlZEBlhhYuxxXNe1Z6guLv0X/JPKRcW79cq1U5ipCAdwCMdQhTOowTXUwQcCETzCM7w4wnlyJs7brLTgzHv24Zec92/be5Gd</latexit>

M1
<latexit sha1_base64="O1rSbfiUbNKWIeIk1gIUjLPlrSQ=">AAAB63icbVDLSgNBEOyNr7i+oh69DAbBU9gVQb0FvHgRIromkCxhdtKbDJmdXWZmhRDyCd5EQbz6Gf6BRy/+jZPHQRMLGoqqbrq7okxwbTzv2yksLa+srhXX3Y3Nre2d0u7evU5zxTBgqUhVI6IaBZcYGG4ENjKFNIkE1qP+5divP6DSPJV3ZpBhmNCu5DFn1Fjp9rrtt0tlr+JNQBaJPyPlavHzAyxq7dJXq5OyPEFpmKBaN30vM+GQKsOZwJHbyjVmlPVpF5uWSpqgDoeTU0fkyCodEqfKljRkov6eGNJE60ES2c6Emp6e98bif14zN/F5OOQyyw1KNl0U54KYlIz/Jh2ukBkxsIQyxe2thPWooszYdFzXtTH4808vkuCkclHxbmwcpzBFEQ7gEI7BhzOowhXUIAAGXXiEZ3hxpPPkvDpv09aCM5vZhz9w3n8AryGPJw==</latexit><latexit sha1_base64="aho+MbxO/ddKiTJ5HgU8rnYiXiE=">AAAB63icbVDLSsNAFL2prxhftS7dDC2Cq5KIoO4KunAjVDS20IYymU7aoZNJmJkIJfQT3ImCuNW/8A9cuvFvnD4W2nrgwuGce7n3njDlTGnX/bYKS8srq2v2urOxubW9U9wt3akkk4T6JOGJbIZYUc4E9TXTnDZTSXEcctoIB+djv3FPpWKJuNXDlAYx7gkWMYK1kW6uOl6nWHGr7gRokXgzUqnZnx+li/dyvVP8ancTksVUaMKxUi3PTXWQY6kZ4XTktDNFU0wGuEdbhgocUxXkk1NH6MAoXRQl0pTQaKL+nshxrNQwDk1njHVfzXtj8T+vlenoNMiZSDNNBZkuijKOdILGf6Muk5RoPjQEE8nMrYj0scREm3QcxzExePNPLxL/qHpWda9NHMcwhQ37UIZD8OAEanAJdfCBQA8e4AmeLWE9Wi/W67S1YM1m9uAPrLcfLreQRQ==</latexit><latexit sha1_base64="aho+MbxO/ddKiTJ5HgU8rnYiXiE=">AAAB63icbVDLSsNAFL2prxhftS7dDC2Cq5KIoO4KunAjVDS20IYymU7aoZNJmJkIJfQT3ImCuNW/8A9cuvFvnD4W2nrgwuGce7n3njDlTGnX/bYKS8srq2v2urOxubW9U9wt3akkk4T6JOGJbIZYUc4E9TXTnDZTSXEcctoIB+djv3FPpWKJuNXDlAYx7gkWMYK1kW6uOl6nWHGr7gRokXgzUqnZnx+li/dyvVP8ancTksVUaMKxUi3PTXWQY6kZ4XTktDNFU0wGuEdbhgocUxXkk1NH6MAoXRQl0pTQaKL+nshxrNQwDk1njHVfzXtj8T+vlenoNMiZSDNNBZkuijKOdILGf6Muk5RoPjQEE8nMrYj0scREm3QcxzExePNPLxL/qHpWda9NHMcwhQ37UIZD8OAEanAJdfCBQA8e4AmeLWE9Wi/W67S1YM1m9uAPrLcfLreQRQ==</latexit>

C1
<latexit sha1_base64="I5ImODF6w67/KMEcsq+Z3LGLgbA=">AAAB63icbVDLSgNBEOyNr7i+oh69DAbBU9gVQb0FcvEY0TWBZAmzk04yZHZ2mZkVwpJP8CYK4tXP8A88evFvnDwOmljQUFR1090VpYJr43nfTmFldW19o7jpbm3v7O6V9g/udZIphgFLRKKaEdUouMTAcCOwmSqkcSSwEQ1rE7/xgErzRN6ZUYphTPuS9zijxkq3tY7fKZW9ijcFWSb+nJSrxc8PsKh3Sl/tbsKyGKVhgmrd8r3UhDlVhjOBY7edaUwpG9I+tiyVNEYd5tNTx+TEKl3SS5QtachU/T2R01jrURzZzpiagV70JuJ/Xiszvcsw5zLNDEo2W9TLBDEJmfxNulwhM2JkCWWK21sJG1BFmbHpuK5rY/AXn14mwVnlquLd2DjOYYYiHMExnIIPF1CFa6hDAAz68AjP8OJI58l5dd5mrQVnPnMIf+C8/wCf248d</latexit><latexit sha1_base64="tFVRkguKhl+bmG2dWOYXdfmpxL4=">AAAB63icbVDLSsNAFL2prxhftS7dDC2Cq5KIoO4KdeGyorGFNpTJdNIOnUzCzEQooZ/gThTErf6Ff+DSjX/j9LHQ1gMXDufcy733hClnSrvut1VYWV1b37A3na3tnd294n7pTiWZJNQnCU9kK8SKciaor5nmtJVKiuOQ02Y4rE/85j2ViiXiVo9SGsS4L1jECNZGuql3vW6x4lbdKdAy8eakUrM/P0qX7+VGt/jV6SUki6nQhGOl2p6b6iDHUjPC6djpZIqmmAxxn7YNFTimKsinp47RkVF6KEqkKaHRVP09keNYqVEcms4Y64Fa9Cbif14709F5kDORZpoKMlsUZRzpBE3+Rj0mKdF8ZAgmkplbERlgiYk26TiOY2LwFp9eJv5J9aLqXps4TmEGGw6hDMfgwRnU4Aoa4AOBPjzAEzxbwnq0XqzXWWvBms8cwB9Ybz8fcZA7</latexit><latexit sha1_base64="tFVRkguKhl+bmG2dWOYXdfmpxL4=">AAAB63icbVDLSsNAFL2prxhftS7dDC2Cq5KIoO4KdeGyorGFNpTJdNIOnUzCzEQooZ/gThTErf6Ff+DSjX/j9LHQ1gMXDufcy733hClnSrvut1VYWV1b37A3na3tnd294n7pTiWZJNQnCU9kK8SKciaor5nmtJVKiuOQ02Y4rE/85j2ViiXiVo9SGsS4L1jECNZGuql3vW6x4lbdKdAy8eakUrM/P0qX7+VGt/jV6SUki6nQhGOl2p6b6iDHUjPC6djpZIqmmAxxn7YNFTimKsinp47RkVF6KEqkKaHRVP09keNYqVEcms4Y64Fa9Cbif14709F5kDORZpoKMlsUZRzpBE3+Rj0mKdF8ZAgmkplbERlgiYk26TiOY2LwFp9eJv5J9aLqXps4TmEGGw6hDMfgwRnU4Aoa4AOBPjzAEzxbwnq0XqzXWWvBms8cwB9Ybz8fcZA7</latexit>

Mm
<latexit sha1_base64="hpLSLdwqmFuZR5rI0nRCD1Wnqm4=">AAAB63icbVDLSsNAFL2prxpfVZduBovgqiQiqLuCGzdCRWMLbSiT6aQdOjMJMxMhhH6CO1EQt36Gf+DSjX/j9LHQ1gMXDufcy733RCln2njet1NaWl5ZXSuvuxubW9s7ld29e51kitCAJDxRrQhrypmkgWGG01aqKBYRp81oeDn2mw9UaZbIO5OnNBS4L1nMCDZWur3uim6l6tW8CdAi8WekWi9/foBFo1v56vQSkgkqDeFY67bvpSYssDKMcDpyO5mmKSZD3KdtSyUWVIfF5NQROrJKD8WJsiUNmqi/JwostM5FZDsFNgM9743F/7x2ZuLzsGAyzQyVZLoozjgyCRr/jXpMUWJ4bgkmitlbERlghYmx6biua2Pw559eJMFJ7aLm3dg4TmGKMhzAIRyDD2dQhytoQAAE+vAIz/DiSOfJeXXepq0lZzazD3/gvP8AClyPYw==</latexit><latexit sha1_base64="XWTGW5oZP94U4lUs4yxaaT99gr8=">AAAB63icbVDLSgNBEOyNr7i+Yjx6GRIET2EjgnoL6MGLENE1gWQJs5PZZMjM7DIzK4Qln+BNFMSr/oV/4NGLf+PkcdDEgoaiqpvurjDhTBvP+3ZyS8srq2v5dXdjc2t7p7BbvNNxqgj1Scxj1QyxppxJ6htmOG0mimIRctoIB+djv3FPlWaxvDXDhAYC9ySLGMHGSjdXHdEplL2KNwFaJNUZKdfynx/Fi/dSvVP4andjkgoqDeFY61bVS0yQYWUY4XTktlNNE0wGuEdblkosqA6yyakjdGCVLopiZUsaNFF/T2RYaD0Uoe0U2PT1vDcW//NaqYlOg4zJJDVUkumiKOXIxGj8N+oyRYnhQ0swUczeikgfK0yMTcd1XRtDdf7pReIfVc4q3rWN4ximyMM+lOAQqnACNbiEOvhAoAcP8ATPjnQenRfnddqac2Yze/AHztsPieOQgQ==</latexit><latexit sha1_base64="XWTGW5oZP94U4lUs4yxaaT99gr8=">AAAB63icbVDLSgNBEOyNr7i+Yjx6GRIET2EjgnoL6MGLENE1gWQJs5PZZMjM7DIzK4Qln+BNFMSr/oV/4NGLf+PkcdDEgoaiqpvurjDhTBvP+3ZyS8srq2v5dXdjc2t7p7BbvNNxqgj1Scxj1QyxppxJ6htmOG0mimIRctoIB+djv3FPlWaxvDXDhAYC9ySLGMHGSjdXHdEplL2KNwFaJNUZKdfynx/Fi/dSvVP4andjkgoqDeFY61bVS0yQYWUY4XTktlNNE0wGuEdblkosqA6yyakjdGCVLopiZUsaNFF/T2RYaD0Uoe0U2PT1vDcW//NaqYlOg4zJJDVUkumiKOXIxGj8N+oyRYnhQ0swUczeikgfK0yMTcd1XRtDdf7pReIfVc4q3rWN4ximyMM+lOAQqnACNbiEOvhAoAcP8ATPjnQenRfnddqac2Yze/AHztsPieOQgQ==</latexit>

Mm
<latexit sha1_base64="hpLSLdwqmFuZR5rI0nRCD1Wnqm4=">AAAB63icbVDLSsNAFL2prxpfVZduBovgqiQiqLuCGzdCRWMLbSiT6aQdOjMJMxMhhH6CO1EQt36Gf+DSjX/j9LHQ1gMXDufcy733RCln2njet1NaWl5ZXSuvuxubW9s7ld29e51kitCAJDxRrQhrypmkgWGG01aqKBYRp81oeDn2mw9UaZbIO5OnNBS4L1nMCDZWur3uim6l6tW8CdAi8WekWi9/foBFo1v56vQSkgkqDeFY67bvpSYssDKMcDpyO5mmKSZD3KdtSyUWVIfF5NQROrJKD8WJsiUNmqi/JwostM5FZDsFNgM9743F/7x2ZuLzsGAyzQyVZLoozjgyCRr/jXpMUWJ4bgkmitlbERlghYmx6biua2Pw559eJMFJ7aLm3dg4TmGKMhzAIRyDD2dQhytoQAAE+vAIz/DiSOfJeXXepq0lZzazD3/gvP8AClyPYw==</latexit><latexit sha1_base64="XWTGW5oZP94U4lUs4yxaaT99gr8=">AAAB63icbVDLSgNBEOyNr7i+Yjx6GRIET2EjgnoL6MGLENE1gWQJs5PZZMjM7DIzK4Qln+BNFMSr/oV/4NGLf+PkcdDEgoaiqpvurjDhTBvP+3ZyS8srq2v5dXdjc2t7p7BbvNNxqgj1Scxj1QyxppxJ6htmOG0mimIRctoIB+djv3FPlWaxvDXDhAYC9ySLGMHGSjdXHdEplL2KNwFaJNUZKdfynx/Fi/dSvVP4andjkgoqDeFY61bVS0yQYWUY4XTktlNNE0wGuEdblkosqA6yyakjdGCVLopiZUsaNFF/T2RYaD0Uoe0U2PT1vDcW//NaqYlOg4zJJDVUkumiKOXIxGj8N+oyRYnhQ0swUczeikgfK0yMTcd1XRtDdf7pReIfVc4q3rWN4ximyMM+lOAQqnACNbiEOvhAoAcP8ATPjnQenRfnddqac2Yze/AHztsPieOQgQ==</latexit><latexit sha1_base64="XWTGW5oZP94U4lUs4yxaaT99gr8=">AAAB63icbVDLSgNBEOyNr7i+Yjx6GRIET2EjgnoL6MGLENE1gWQJs5PZZMjM7DIzK4Qln+BNFMSr/oV/4NGLf+PkcdDEgoaiqpvurjDhTBvP+3ZyS8srq2v5dXdjc2t7p7BbvNNxqgj1Scxj1QyxppxJ6htmOG0mimIRctoIB+djv3FPlWaxvDXDhAYC9ySLGMHGSjdXHdEplL2KNwFaJNUZKdfynx/Fi/dSvVP4andjkgoqDeFY61bVS0yQYWUY4XTktlNNE0wGuEdblkosqA6yyakjdGCVLopiZUsaNFF/T2RYaD0Uoe0U2PT1vDcW//NaqYlOg4zJJDVUkumiKOXIxGj8N+oyRYnhQ0swUczeikgfK0yMTcd1XRtDdf7pReIfVc4q3rWN4ximyMM+lOAQqnACNbiEOvhAoAcP8ATPjnQenRfnddqac2Yze/AHztsPieOQgQ==</latexit>

Cm
<latexit sha1_base64="sYO7WzhZGcJWXPjhdsSFtH2bh/g=">AAAB63icbVDLSsNAFL2prxhfVZduBovgqiQiqLtCNy4rGltoQ5lMJ+3QmUmYmQgl9BPciYK49TP8A5du/Bunj4W2HrhwOOde7r0nzjjTxve/ndLK6tr6hrvpbW3v7O6V9w/udZorQkOS8lS1YqwpZ5KGhhlOW5miWMScNuNhfeI3H6jSLJV3ZpTRSOC+ZAkj2Fjptt4V3XLFr/pToGUSzEml5n5+gEWjW/7q9FKSCyoN4VjrduBnJiqwMoxwOvY6uaYZJkPcp21LJRZUR8X01DE6sUoPJamyJQ2aqr8nCiy0HonYdgpsBnrRm4j/ee3cJJdRwWSWGyrJbFGSc2RSNPkb9ZiixPCRJZgoZm9FZIAVJsam43mejSFYfHqZhGfVq6p/Y+M4hxlcOIJjOIUALqAG19CAEAj04RGe4cWRzpPz6rzNWkvOfOYQ/sB5/wH7B49Z</latexit><latexit sha1_base64="77TjYVGI5Che5iLUZkrAzJJzigQ=">AAAB63icbVDLSgNBEOyNr7i+Yjx6GRIET2FXBPUWiAePEV0TSJYwO5lNhszMLjOzQgj5BG+iIF71L/wDj178GyePgyYWNBRV3XR3RSln2njet5NbWV1b38hvulvbO7t7hf3inU4yRWhAEp6oZoQ15UzSwDDDaTNVFIuI00Y0qE38xj1VmiXy1gxTGgrckyxmBBsr3dQ6olMoexVvCrRM/DkpV/OfH8XL91K9U/hqdxOSCSoN4Vjrlu+lJhxhZRjhdOy2M01TTAa4R1uWSiyoDkfTU8foyCpdFCfKljRoqv6eGGGh9VBEtlNg09eL3kT8z2tlJj4PR0ymmaGSzBbFGUcmQZO/UZcpSgwfWoKJYvZWRPpYYWJsOq7r2hj8xaeXSXBSuah41zaOU5ghD4dQgmPw4QyqcAV1CIBADx7gCZ4d6Tw6L87rrDXnzGcO4A+ctx96nZB3</latexit><latexit sha1_base64="77TjYVGI5Che5iLUZkrAzJJzigQ=">AAAB63icbVDLSgNBEOyNr7i+Yjx6GRIET2FXBPUWiAePEV0TSJYwO5lNhszMLjOzQgj5BG+iIF71L/wDj178GyePgyYWNBRV3XR3RSln2njet5NbWV1b38hvulvbO7t7hf3inU4yRWhAEp6oZoQ15UzSwDDDaTNVFIuI00Y0qE38xj1VmiXy1gxTGgrckyxmBBsr3dQ6olMoexVvCrRM/DkpV/OfH8XL91K9U/hqdxOSCSoN4Vjrlu+lJhxhZRjhdOy2M01TTAa4R1uWSiyoDkfTU8foyCpdFCfKljRoqv6eGGGh9VBEtlNg09eL3kT8z2tlJj4PR0ymmaGSzBbFGUcmQZO/UZcpSgwfWoKJYvZWRPpYYWJsOq7r2hj8xaeXSXBSuah41zaOU5ghD4dQgmPw4QyqcAV1CIBADx7gCZ4d6Tw6L87rrDXnzGcO4A+ctx96nZB3</latexit>

BEC
<latexit sha1_base64="Vu9Ja5Hpth19+k/yDX2P/SuMvGM=">AAAB+XicbVBNS8NAEJ34WeNHox71ECyCp5KKoN6KRfBYwdhCW8pmu2mXbjZhdyKWmF/iTRTEq3/Fi//G7cdBWx8MPN6bYWZekAiu0fO+raXlldW19cKGvbm1vVN0dvfudZwqynwai1g1A6KZ4JL5yFGwZqIYiQLBGsGwNvYbD0xpHss7HCWsE5G+5CGnBI3UdYpX3ayN7BF1mF3X8rzrlLyyN4G7SCozUqoehrIKAPWu89XuxTSNmEQqiNatipdgJyMKORUst9upZgmhQ9JnLUMliZjuZJPDc/fYKD03jJUpie5E/T2RkUjrURSYzojgQM97Y/E/r5VieNHJuExSZJJOF4WpcDF2xym4Pa4YRTEyhFDFza0uHRBFKJqsbNs2MVTmn14k/mn5suzdmjjOYIoCHMARnEAFzqEKN1AHHyik8Ayv8GY9WS/Wu/UxbV2yZjP78AfW5w9zDpSl</latexit><latexit sha1_base64="elYsNF/0j66XsMw/NSivHSypcVc=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN6KRfBYwdhCG8Jmu2mXbjZhdyKGmF/iTRSkV6/+DC/+G7cfB219MPB4b4aZeUHCmQLH+TaWlldW19ZLG+bm1vZO2drdu1dxKgl1Scxj2Q6wopwJ6gIDTtuJpDgKOG0Fw8bYbz1QqVgs7iBLqBfhvmAhIxi05FvlKz/vAn0EFebXjaLwrYpTdSawF0ltRir1w1A0Rtln07e+ur2YpBEVQDhWqlNzEvByLIERTguzmyqaYDLEfdrRVOCIKi+fHF7Yx1rp2WEsdQmwJ+rviRxHSmVRoDsjDAM1743F/7xOCuGFlzORpEAFmS4KU25DbI9TsHtMUgI80wQTyfStNhlgiQnorEzT1DHU5p9eJO5p9bLq3Oo4ztAUJXSAjtAJqqFzVEc3qIlcRFCKntErejOejBfj3RhNW5eM2cw++gPj4wf47paH</latexit><latexit sha1_base64="elYsNF/0j66XsMw/NSivHSypcVc=">AAAB+XicbVBNS8NAEN34WeNHox71ECyCp5KKoN6KRfBYwdhCG8Jmu2mXbjZhdyKGmF/iTRSkV6/+DC/+G7cfB219MPB4b4aZeUHCmQLH+TaWlldW19ZLG+bm1vZO2drdu1dxKgl1Scxj2Q6wopwJ6gIDTtuJpDgKOG0Fw8bYbz1QqVgs7iBLqBfhvmAhIxi05FvlKz/vAn0EFebXjaLwrYpTdSawF0ltRir1w1A0Rtln07e+ur2YpBEVQDhWqlNzEvByLIERTguzmyqaYDLEfdrRVOCIKi+fHF7Yx1rp2WEsdQmwJ+rviRxHSmVRoDsjDAM1743F/7xOCuGFlzORpEAFmS4KU25DbI9TsHtMUgI80wQTyfStNhlgiQnorEzT1DHU5p9eJO5p9bLq3Oo4ztAUJXSAjtAJqqFzVEc3qIlcRFCKntErejOejBfj3RhNW5eM2cw++gPj4wf47paH</latexit>

Figure 9: Encryptment in the HFC scheme for a 1-block header and m-block message. For simplicity the
diagram does not show the details of padding.

6 Encryptment from Hashing

In this section, we turn our attention to building secure and efficient encryptment schemes. As we
shall see in Section 7, these can be lifted to multi-opening, many-time secure ccAEAD via simple
and efficient transforms.

As one might expect given the close relationship between binding and CR hashing discussed
previously in Section 5, our starting point will be cryptographic hashing. A slightly simplified
version of our construction is shown in Figure 9 (padding details are omitted), where f is a com-
pression function. In summary, the scheme hashes the key, associated data and message data (the
latter two of which are repeatedly XOR’d with the key). Intermediate chaining variables from the
hash computation are used as pads to encrypt the message data, while the final chaining variable
constitutes the binding tag.

Intuitively, (strong) receiver binding derives from the collision resistance of the underlying
hash function. We XOR the key into all the associated data and message blocks to ensure that
every application of the compression function is keyed. This is critical; just prepending (or both
prepending and appending) the key to the data leads to a scheme whose confidentiality is easily
broken. Likewise one cannot dispense with the additional initial block that simply processes the
key, otherwise the encoding of the key, associated data, and message would not be injective and
binding attacks result.

Some notation. Before defining the full scheme, we first give some additional notation which
will simplify the presentation.

The algorithm Parsed is used to partition a string into d-bit blocks. Formally, we define Parsed
to be the algorithm which on input X outputs (X1, . . . , Xℓ) such that |Xi| = d for 1 ≤ i ≤ ℓ − 1
and |Xℓ| = |X| mod d. For correctness, we require that X = X1 ∥ . . . ∥Xℓ. Similarly, we define
Truncr to be the algorithm which on input X outputs the r leftmost bits of X. We write ⟨y⟩64 to
be the encoding of y as a 64-bit string.

The padding scheme is parameterized by positive integers d and n, but we omit these in
the notation for simplicity. We assume d ≥ n ≥ 128. Our scheme utilizes a padding scheme
PadS = (PadH,PadM,PadM,PadSuf,Pad). The header and message padding functions PadH,
PadM take as input a pair (H,M), and return tuples (H1, . . . ,Hh) and (M ′1, . . . ,M

′
m−1) respec-

tively. We require that Hi,M
′
j ∈ {0, 1}d for i = 1, . . . , h, and j = 1, . . . ,m−1. We abuse notation to

let PadH(H,M) (resp. PadM(H,M)) denote the concatenation of the blocks returned by these al-
gorithms. The online padding algorithm PadM takes as input a tuple (H,Mi, i) where Mi ∈ {0, 1}n,
and outputs M ′i ∈ {0, 1}d. We require that for any pair (H,M), it holds that PadM(H,Mi, i) = M ′i
for i = 1, . . . ,m−1, where (M ′1, . . . ,M

′
m−1)← PadM(H,M). This allows PadM to be computed in

20

an online manner, with the message data being delivered in n-bit blocks. Finally, we define PadSuf
to be the algorithm which takes as input ℓH , ℓM ∈ N2 and a string X ∈ {0, 1}≤d, and outputs a
string Y such that Trunc|X|(Y) = X, and Y is a multiple of d-bits. The full padding function is
then defined to be Pad(H,M) = PadH(H,M) ∥ PadM(H,M) ∥ PadSuf(|H|, |M |,Mm) where Mm

denotes the final message block in the output of Parsen(M). Note that d divides |Pad(H,M)|.

PadH(H,M):

(H1, . . . , Hh)← Parsed(H ∥ 0d−|H| mod d)

Return (H1, . . . , Hh)

PadM(H,M):

(M1, . . . ,Mm)← Parsen(M)

For i = 1, . . . ,m− 1

M ′
i ←Mi ∥ 0d−n

Return (M ′
1, . . . ,M

′
m−1)

PadM(H,Mi, i):

M ′
i ←Mi ∥ 0d−n

Return M ′
i

PadSuf(ℓH , ℓM ,Mm):

p← min{i ∈ N : d | ((ℓM mod n) + i+ 128)}
Return Mm ∥ 0p ∥ ⟨ℓH⟩64 ∥ ⟨ℓM ⟩64

Figure 10: Padding scheme PadS =
(PadH,PadM,PadM,PadSuf,Pad). We re-
quire that ℓH , ℓM ∈ N.

Padding scheme properties. To prove the secu-
rity of HFC as an encryptment scheme, the padding
scheme Pad must be injective. An example of such
a padding scheme is shown in Figure 10, and we
shall assume that HFC is instantiated with this
scheme unless stated otherwise. Our padding scheme
is a variant of MD strengthening. We will not
rely on the strengthening for its traditional pur-
pose of forming a suffix-free padding scheme; we
use strengthening only for injectivity and will as-
sume more of f. If we would additionally like to
prove the otCTXT-security of HFC, we require that
the padding scheme satisfies the stronger property
of prefix-freeness, meaning that if (H,M) ̸= (H ′,M ′)
then Pad(H,M) is not a prefix of Pad(H ′,M ′). This
can be achieved by, for example, adding frame-bits
to distinguish the final block from the rest of the
header and message data.

Iterated functions. Next we define iterated func-
tions. Let f : {0, 1}n×{0, 1}d → {0, 1}n be a function
for some d ≥ n ≥ 128, let D+ = ∪i≥1{0, 1}id and let V0 ∈ {0, 1}n. Then f+ : {0, 1}n×D+ → {0, 1}n
denotes the iteration of f, where f+(V0, X1 ∥ · · · ∥Xm) = Vm is computed via Vi = f(Vi−1, Xi) for
1 ≤ i ≤ m.

The HFC encryptment scheme. The hash-function-chaining encryptment scheme HFC =
(HFCKg,HFCEnc,HFCDec,HFCVer) is based on a compression function f : {0, 1}n × {0, 1}d →
{0, 1}n. The pseudocode for the encryptment and decryptment algorithms is presented in Figure 11.

Key generation HFCKg chooses KEC←$ {0, 1}d. Encryptment first pads the header and message
using the padding functions PadH and PadM respectively. We let IV ∈ {0, 1}n be a fixed constant
value (also called an initialization vector). The scheme computes an initial chaining variable as V0 =
f(IV,KEC). It then hashes PadH(H,M)∥PadM(H,M)∥PadSuf(|H|, |M |,Mm) (where Mm denotes
the final block returned by Parsen(M)) with f+, the iteration of the compression function f, where
the secret encryptment key KEC is XORed into each d-bit block prior to hashing. The final chaining
variable produced by this process forms the binding tag BEC. Notice that while the compression
function takes d-bit inputs, the way in which the message data is padded means we only process
n-bits of message in each compression function call; looking ahead, this is to ensure decryptability.
We will see that the collision resistance of the iterated hash function when instantiated with an
appropriate compression function implies the sr-BIND security of the construction.

Rather than running a separate encryption algorithm alongside this process to encrypt the
message, we instead generate ciphertext blocks by XORing the message blocksMi with intermediate
chaining variables, yielding Ci = Vh+i−1⊕Mi for 1 ≤ i ≤ m where h denotes the number of header
blocks. Recall that in our notation X ⊕ Y silently truncates the longer string to the length of

21

HFCEnc(KEC, H,M):

(H1, . . . , Hh)← PadH(H,M)

(M1, . . . ,Mm)← Parsen(M)

(M ′
1, . . . ,M

′
m−1)← PadM(H,M)

V0 ← f(IV,KEC)

Vh ← f+
(
V0, (KEC ⊕H1) ∥ · · · ∥ (KEC ⊕Hh)

)
CEC ← ε

For i = 1, . . . ,m− 1 do

CEC ← CEC ∥ (Vh+i−1 ⊕Mi)

Vh+i ← f(Vh+i−1, (KEC ⊕M ′
i))

CEC ← CEC ∥ (Vh+m−1 ⊕Mm)

M ′
m,M ′

m+1 ← Parsed(PadSuf(|H|, |M |,Mm))

BEC ← f+(Vh+m−1, (KEC ⊕M ′
m) ∥ (KEC ⊕M ′

m+1))

Return (CEC, BEC)

HFCDec(KEC, H,CEC, BEC):

(H1, . . . , Hh)← PadH(H,CEC)

(C1, . . . , Cm)← Parsen(CEC)

V0 ← f(IV,KEC)

Vh ← f+
(
V0, (KEC ⊕H1) ∥ · · · ∥ (KEC ⊕Hh)

)
For i = 1, . . . ,m− 1 do

Mi ← Vh+i−1 ⊕ Ci ;M
′
i ← PadM(H,Mi, i)

Vh+i ← f(Vh+i−1, (KEC ⊕M ′
i))

Mm ← Vh+m−1 ⊕ Cm

M ′
m,M ′

m+1 ← Parsed(PadSuf(|H|, |CEC|,Mm))

B′
EC ← f+(Vh+m−1, (KEC ⊕M ′

m) ∥ (KEC ⊕M ′
m+1))

If B′
EC ̸= BEC then

Return ⊥
Return M1 ∥ · · · ∥Mm

Figure 11: The HFC encryptment scheme HFC built from a compression function f : {0, 1}n × {0, 1}d →
{0, 1}n and padding scheme PadS = (PadH,PadM,PadM,PadSuf,Pad). Here KEC ∈ {0, 1}d, and IV ∈
{0, 1}n is a fixed public constant.

the shorter string, and so only the n-bits of message data in each d-bit padded message block
is XORed with the n-bit chaining variable; similarly, if message M is such that |M | mod n = r,
then the final ciphertext block produced by this process is truncated to the leftmost r-bits. The
properties of the compression function ensure that the chaining variables are pseudorandom, thus
yielding the required otROR security. By ‘reusing’ chaining variables as random pads we can
achieve encryptment with no additional overhead over just computing the binding tag, yielding
better efficiency (see further discussion below).

Decryption DO(KEC, H,CEC) begins by padding H into d-bit blocks via PadH(H,M) and pars-
ing CEC into n-bit blocks. The algorithm computes the initial chaining variable as V0 = f(IV,KEC),
then hashes the padded header as in encryption. The scheme then recovers the first message block
M1 by XORing the chaining variable into the first ciphertext block C1. This is padded via the
online padding function PadM(H,M1, 1), and then used to compute the next chaining variable via
application of f, and so on. Notice how at most n-bits of message data is recovered in each such
step; this is why we must process only n-bits of message data in each compression function call,
else the decryptor would be unable to compute the next chaining variable. Finally, DO recomputes
and verifies the binding tag, returning the message only if verification succeeds.

The verification algorithm (not shown), on input (KEC, H,M,BEC), pads the message to
PadH(H,M) ∥ PadM(H,M) ∥ PadSuf(|H|, |M |,Mm), XORs KEC into every block, and hashes the
resulting string with f+ with initial chaining variable V0 = f(IV,KEC), checking that the output
matches the binding tag BEC.

Efficiency. The efficiency of the scheme (in terms of throughput) depends on the parameters d, n,
where recall that f : {0, 1}n×{0, 1}d → {0, 1}n. As discussed previously, at most n-bits of message
data can be processed in each compression function call. As such, the HFC encryptment scheme
achieves optimal throughput when d = n. In this case no padding is applied to the message blocks,
and so computing the full encryptment incurs no overhead over simply computing the binding tag.

If d > n, then some throughput is lost due to padding. We present an alternative padding scheme
for this case, which recovers some throughput by padding message blocks with header data. In more
detail, consider the padding scheme AltPadD = (AltPadH,AltPadM,AltPadM,AltPadSuf,AltPad)
shown in Figure 12, where AltPadSuf is defined identically to PadSuf in Figure 10. The scheme
parses the message data into n-bit blocks and the header data into (d−n)-bits blocks. It then con-

22

AltPadH(H,M) :

(H1, . . . , Hh)← Parsed−n(H)

(M1, . . . ,Mm)← Parsen(M)

β ← min(m,h)

If β = h then

Return ε

Else (Hβ+1, . . . , Hh)← Parsed(Hβ+1 ∥ . . . ∥Hh)

Hh ← Hh ∥ 0d−|H| mod d

Return (Hβ+1, . . . , Hh)

AltPadM(H,M) :

(H1, . . . , Hh)← Parsed−n(H)

(M1, . . . ,Mm)← Parsen(M)

β ← min(m,h)

For i = 1, . . . , β do

Xi ←Mi ∥Hi

If β = h then for i = β + 1, . . . ,m− 1

M ′
i ←Mi ∥ 0d−n

Return (X1, . . . , Xβ ,M
′
β+1, . . . ,Mm)

AltPadM(H,Mi, i) :

(H1, . . . , Hh)← Parsed−n(H)

If i ≤ h then

M ′
i ←Mi ∥Hi

Else M ′
i ←Mi ∥ 0d−n

Return M ′
i

Figure 12: Alternative padding scheme AltPadD.

structs d-bit blocks by padding the message blocks with header blocks. Any header / message data
remaining after this process is padded unambiguously similarly to the previous scheme (Figure 10).
It is straightforward to verify that AltPad is injective.

6.1 Analyzing the HFC Encryptment Scheme

We now analyze the security of the HFC encryptment scheme, relative to the security goals detailed
in Section 4.

Strong receiver binding. We begin by proving that the HFC encryptment scheme satisfies
strong receiver binding provided the underlying padding function is injective. Observe that the
binding tag computation performed by the encryptment algorithm HFCEnc is equivalent to hashing
an encoding of the input tuple (KEC, H,M) with f+. The encoding — which consists of padding the
header and message, XORing the key KEC into each block and then prepending KEC — is injective
provided the padding function Pad is injective. As such, any tuple breaking the sr-BIND security
of HFC is a collision against f+.

A well-known folklore result (see [3]) gives that f+ is collision-resistant provided the underlying
compression function is both collision-resistant and that it is hard to find an input which hashes
to the IV . Standard compression functions satisfy both properties. The full proof of the following
is given in Appendix H. The conditions on d, n in the theorem can be relaxed; the conditions arise
from our choice of padding.

Theorem 3 Let HFC be the scheme defined above using compression function f : {0, 1}n×{0, 1}d →
{0, 1}n for d ≥ n ≥ 128, and instantiated with an injective padding scheme PadS. Then for any
sr-BINDHFC adversary A, we detail an adversary B such that Advsr-bind

HFC (A) ≤ Advcr
f+(B), where

adversary B runs in the same time as A.

Sender binding and correctness. The s-BIND security of HFC is immediate because decryption
verifies the binding tag. Similarly, it is straightforward to verify that the scheme is strongly correct.
Therefore Lemma 1 allows us to bound the SCU security of HFC as an immediate consequence of
these observations coupled with Theorem 3.

One-time confidentiality. All that remains to prove that HFC is a secure encryptment scheme is
to bound its otROR security. We do this in the next theorem, by reducing otROR security of HFC
to a the related-key attack (RKA) PRF security [4] of f for a specific class of related-key deriving
functions.

Let F : {0, 1}n × {0, 1}d → {0, 1}n be a function, and consider the games RKA-PRF0 and
RKA-PRF1. In both games the attacker is given access to an oracle to which he may submit

23

queries of the form (X,Y) ∈ {0, 1}n×{0, 1}d. In game RKA-PRF0 the oracle returns F (X,Y ⊕Kprf)
where Kprf is a PRF key. In game RKA-PRF1, the oracle returns a random value for each query,
answering consistently for repeat queries. The linear-only RKA-PRF advantage of an adversary A
is defined as

Adv⊕-prfF (A) =
⏐⏐Pr [RKA-PRF0AF ⇒ 1

]
− Pr

[
RKA-PRF1A ⇒ 1

]⏐⏐
where the probabilities are over the coins used in the games.

We can bound the otROR security of HFC by a game hopping argument, first arguing that
we can replace compression function calls with random functions by a reduction to the LKA-PRF
security of f, and then replacing the random function outputs with random bit strings using a
birthday-bound argument. The full proof is given in Appendix H.

Theorem 4 Let HFC be the shown in Figure 11, built from a compression function f : {0, 1}n ×
{0, 1}d → {0, 1}n for d ≥ n ≥ 128, and instantiated with an injective padding scheme PadS. Let
A be an otROR adversary whose encryption query totals at most ℓ blocks of d bits after padding.

Then there exists an adversary B such that Advot-ror
HFC (A) ≤ Adv⊕-prff (B) + (ℓ+1)2

2n+1 . The adversary
B runs in time that of A plus O(ℓ) overhead and makes at most (ℓ+ 1) queries.

One-time integrity and ccAEAD security. In the following theorem, we bound the otCTXT
secure of HFC under the additional assumption that the padding scheme used is prefix-free. As
discussed in Section 4, this result combined with the above imply that HFC (reframed in the
ccAEAD syntax) is a secure one-time ccAEAD scheme.

The proof first argues that we can replace compression function calls with random functions by
a reduction to the LKA-PRF security of f. It then uses the prefix-freeness of the padding scheme
to argue that (barring accidental collisions amongst intermediate chaining variables, accounting
for the birthday bound term), each binding tag is computed as the result of a fresh query to the
random function, and so the probability that A can guess the value of an unseen binding tag is
small (bounding this guessing probability accounts for the final term below). The full proof is given
in Appendix H.

We note that without a prefix-free padding scheme, HFC is not otCTXT secure in general.
Indeed for the padding scheme of Figure 10, an attacker can construct a pair (H,M) for his enc
query, such that a prefix of Pad(H,M) is equal to Pad(H,M ′) for some (H,M) ̸= (H,M ′). By
choosing (H,M) such that the binding tag for (H,M ′) is among the random pads used to en-
crypt M , A can then recover the correct binding tag and random pads for (H,M ′), from the
ciphertext component CEC corresponding to (H,M). This in turn enables A to construct a valid
forgery for (H,M ′). It seems likely that small modifications to the HFC construction would achieve
otCTXT security while only requiring an injective padding scheme. For example, consider a mod-
ified scheme HFC′ which takes as input a key (KEC,K

′
EC)←$ {0, 1}d × {0, 1}d. Modified encrypt-

ment HFCEnc′ on input ((KEC,K
′
EC), H,M) computes HFCEnc(KEC, H,M) = (CEC, BEC), and out-

puts (CEC, (BEC, f(BEC,K
′
EC))), where we call the latter value in the tuple the authentication tag.

To decrypt (H,CEC, (BEC, B
′
EC)), HFCDec

′ computes HFCDec(KEC, H,CEC, BEC), and checks that
B′EC = f(BEC,K

′
EC), returning ⊥ if either of these steps returns an error. Let (H∗, C∗EC, (B

∗
EC, B

∗′
EC))

denote the encryptment arising from the attacker’s enc query in game otCTXT against HFC′. Now
the attacker will be required to guess a random authentication tag in order to create a successful
forgery, unless they can find (H,CEC) ̸= (H∗, C∗EC) such that HFCDec(H,CEC, B

∗
EC) ̸=⊥, which in

turn breaks the SCU security of the underlying HFC scheme. We leave formalizing this intuition
and proving the properties of such a modified scheme as an open problem.

24

Theorem 5 Let HFC be as shown in Figure 11, built from a compression function f : {0, 1}n ×
{0, 1}d → {0, 1}n for d ≥ n ≥ 128, and instantiated with a prefix-free padding scheme PadS. Let A
be an otCTXT adversary who makes q decryption queries, among which there are q1 distinct header
/ ciphertext pairs (H,CEC). Suppose that the header / message (from the single encryption query),
and the q1 distinct header / ciphertexts (from the decryption queries) have a combined length of
ℓ blocks of d bits after padding. Then there exists an adversary B such that Advot−ctxt

HFC (A) ≤
Adv⊕-prff (B)+ (ℓ+1)2

2n+1 + q
2n−ℓ−q . The adversary B runs in time that of A plus an O(ℓ) overhead and

makes at most (ℓ+ 1) queries.

Instantiations. The obvious (and probably best) choice to instantiate f is the SHA-256 or SHA-
512 compression function. These provide good software performance, and there is a shift towards
widespread hardware support in the form of the Intel SHA instructions [13, 20, 46]. Extensive
cryptanalysis for the CR (e.g., [26, 30, 43]), preimage resistance (e.g., [21, 26]), and RKA-PRP of
the associated SHACAL-2 blockcipher (e.g., [23, 27,28,31]) gives confidence in its security.

Other options, although in some cases less well-studied cryptanalytically, include SHA-3 final-
ists. In particular, a variant of the HFC construction using a sponge-based mode such as Keccak,
in which the key is fed to the sponge prior to hashing the message blocks, would allow us to avoid
the RKA assumption. We could also remove the assumption by using a compression function with
a dedicated key input such as LP231 [41].

BLAKE2b [2] is a variant of the BLAKE hash function and was also a SHA-3 finalist. Its
compression function is not explicitly blockcipher-based; it is built from a variant of the quarter-
round function of the ChaCha20 stream cipher [6]. It is believed to have security comparable to
SHA-256, but is notable for efficiency—on some platforms it outperforms even MD5 in software.

Another approach would be to use AES via a PGV compression function [37]; we focus our
discussion further on Davies-Meyer (DM), one of the secure PGV constructions [12]. Letting
E : {0, 1}d × {0, 1}n → {0, 1}n be a blockcipher, DM is defined as DM(V,M) = EM (V) ⊕ V . For
HFC, an important advantage of DM over other PGV compression functions (e.g., Matyas-Meyer-
Oseas) is that the blockcipher keys do not depend on intermediate chaining values, so key scheduling
for the entire (encoded) message can be done up front. Another advantage of DM is that the linear-
only RKA-PRF security of DM is inherited from a linear-only RKA-PRP security of the underlying
cipher. We discuss this further in Appendix G. An obvious choice for E would be AES-128. On
systems with AES-NI, HFC instantiated with DM-AES will have very good performance, though
not quite as fast as AES-GCM or OCB given the need to rekey every block. Security of AES has
been studied extensively, and known attacks do not falsify the assumptions we need [9, 10]. On
systems with AES-NI, HFC instantiated with DM-AES will have very good performance. More
problematic is that binding can only hold up 264, which is in general insufficient in practice.

7 Compactly Committing AEAD from Encryptment

In this section we recall the formal notions for compactly committing AEAD schemes (ccAEAD
schemes), following the treatment given by GLR [19], and compare these to encryptment. With
this in place, we show in Section 7.3 how to build ccAEAD from encryptment with very efficient
transforms. In Appendix I we will show how to construct a secure encryptment scheme from a
ccAEAD scheme in a way that transfers our negative results from Section 5 to ccAEAD.

25

7.1 ccAEAD Syntax and Correctness

Encryptment can be viewed as a one-time secure, deterministic variant of ccAEAD. We discuss
further the differences between the two primitives later in the section.

ccAEAD schemes. Formally, a ccAEAD scheme is a tuple of algorithms CE = (Kg,Enc,Dec,Ver)
with associated key space K ⊆ Σ∗, header space H ⊆ Σ∗, message space M ⊆ Σ∗, ciphertext
space C ⊆ Σ∗, opening space Kf ⊆ Σ∗, and binding tag space T ⊆ Σ∗, defined as follows. The
randomized key generation algorithm Kg takes no input, and outputs a secret key K ∈ K. The
randomized encryption algorithm Enc takes as input a tuple (K,H,M) ∈ K×H×M and outputs
a ciphertext / binding tag pair (C,CB) ∈ C × T . The deterministic decryption algorithm Dec
takes as input a tuple (K,H,C,CB) ∈ H ×M × C × T , and outputs a message / opening pair
(M,Kf) ∈ M× Kf or the error symbol ⊥. The deterministic verification algorithm Ver takes as
input a tuple (H,M,Kf , CB) ∈ H×M×Kf ×T , and outputs a bit b. We assume that if Dec and
Ver are queried on inputs which do not lie in their defined input spaces, then they return ⊥ and 0
respectively.

Correctness and compactness. Correctness for ccAEAD schemes is defined identically to the
COR correctness notion for encryptment schemes (Figure 5), except in the ccAEAD case the
probability is now over the coins of Enc also. We require that the structure of ciphertexts C depend
only on the length of the underlying message. Formally, let M∗ = {i | ∃m ∈ M : |m| = i}. Then
we require that the ciphertext space C can be partitioned into disjoint sets C(i) ⊆ C, i ∈M∗, such
that for all (H,M) ∈ H ×M it holds that C ∈ C(|M |) with probability one for the sequence of
algorithm executions: K←$ Kg ; (C,CB)←$ Enc(K,H,M). Finally, we require that the binding
tags CB are compact, by which we mean that all CB returned by a ccAEAD scheme are of constant
length blen which is linear in the key size.

Comparison with encryptment. With this in place, we highlight the key differences between
encryptment and ccAEAD schemes. The overarching difference is that encryptment schemes are
single-use (a key is only ever used to encrypt a single message), whereas ccAEAD schemes are
multi-use. To support this, the encryption algorithm for ccAEAD schemes is randomized, whereas
for encryptment this algorithm is deterministic. This is necessary for achieving schemes that enjoy
security in the face of attackers that can obtain multiple encryptions. Moreover, while encryptment
schemes are restricted to use the same key for verification as they use for encryptment, ccAEAD
schemes output an explicit opening key Kf during decryption. There is no requirement that this
equal the secret key used for encryption. Again, outputting an opening key distinct from the
encryption key allows for ccAEAD schemes that maintain confidentiality and integrity even after
some ciphertexts produced under a given encryption key have been opened.

AEAD schemes. The definition of an AEAD scheme AEAD = (AEAD.kg,AEAD.enc,AEAD.dec)
(see Section 2) can be recovered from the above definition of ccAEAD schemes by noticing that
each algorithm can be defined identically to their ccAEAD variants, except we view the ciphertext
/ binding tag pair as a single ciphertext, and modify decryption to no longer output the opening, in
the AEAD case. This framing allows us to define security notions for AEAD schemes as a special
case of those notions for ccAEAD schemes for conciseness and ease of comparison. Similarly regular
AE schemes are defined to be the same as AEAD schemes but with all references to the header
removed.

26

MO-REALA
CE:

K←$ Kg

b′←$AEnc,Dec,ChalEnc

Return b′

Enc(H,M)

(C,CB)←$ Enc(K,H,M)

Y ← Y ∪ {(H,C,CB)}
Return (C,CB)

Dec(H,C,CB)

If (H,C,CB) /∈ Y then

Return ⊥
(M,Kf)← Dec(K,H,C,CB)

Return (M,Kf)

ChalEnc(H,M)

(C,CB)←$ Enc(K,H,M)

Return (C,CB)

MO-RANDA
CE:

K←$ Kg

b′←$AEnc,Dec,ChalEnc

Return b′

Enc(H,M)

(C,CB)←$ Enc(K,H,M)

Y ← Y ∪ {(H,C,CB)}
Return (C,CB)

Dec(H,C,CB)

If (H,C,CB) /∈ Y then

Return ⊥
(M,Kf)← Dec(K,H,C,CB)

Return (M,Kf)

ChalEnc(H,M)

(C,CB)←$ C(|M |)× {0, 1}blen

Return (C,CB)

MO-CTXTA
CE:

K←$ Kg ; win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M)

(C,CB)←$ Enc(K,H,M)

Y ← Y ∪ {(H,C,CB)}
Return (C,CB)

Dec(H,C,CB)

Return Dec(K,H,C,CB)

ChalDec(H,C,CB)

If (H,C,CB) ∈ Y then

Return ⊥
(M,Kf)← Dec(K,H,C,CB)

If M ̸= ⊥ then

win← true

Return (M,Kf)

Figure 13: Confidentiality (left two games) and ciphertext integrity (rightmost) games for ccAEAD.

7.2 Security Notions for Compactly Committing AEAD

We now define the security notions for ccAEAD schemes, following GLR. They adapt the famil-
iar security notions of real-or-random (ROR) ciphertext indistinguishability [40], and ciphertext
integrity (CTXT) [5] for AE schemes to the ccAEAD setting. We focus on GLR’s multi-opening
(MO) security notions. MO-ROR (resp. MO-CTXT) requires that if multiple messages are en-
crypted under the same key, then learning the message / opening pair (M,Kf) for some of the
resulting ciphertexts does not compromise the ROR (resp. CTXT) security of the remaining un-
opened ciphertexts. This precludes schemes which for example have the opening key Kf equal to
the secret encryption key K.

Confidentiality. Games MO-REAL and MO-RAND are shown in Figure 13. In both variants,
the attacker is given access to an oracle ChalEnc to which he may submit message / header
pairs. This oracle returns real (resp. random) ciphertext / binding tag pairs in game MO-REAL
(resp. MO-RAND). The attacker is then challenged to distinguish between the two games. To
model multi-opening security, the attacker is also given a pair of encryption / decryption oracles,
Enc and Dec, and may submit the (real) ciphertexts generated via a query to the former to the
latter, learning the openings of these ciphertexts in the process. The challenge decryption oracle
will return ⊥ for any ciphertext not generated via the encryption oracle, to prevent the attacker
trivially winning by decrypting a ciphertext returned by ChalEnc. We define the advantage of an
attacker A in game MO-ROR against a ccAEAD scheme CE as

Advmo-ror
CE (A) =

⏐⏐Pr [MO-REALACE ⇒ 1
]
− Pr

[
MO-RANDACE ⇒ 1

]⏐⏐ .

Ciphertext integrity. Ciphertext integrity guarantees that an attacker cannot produce a fresh
ciphertext which will decrypt correctly. The multi-opening adaptation to the ccAEAD setting
MO-CTXT is shown in Figure 13. The attacker A is given access to encryption oracle Enc and a
challenge decryption oracle ChalDec. The attacker wins if he submits a ciphertext to ChalDec
which decrypts correctly and which wasn’t the result of a previous query to the encryption oracle.

27

To model multi-opening security, the attacker is given access to a further oracle Dec via which he
may decrypt ciphertexts and learn the corresponding openings. The advantage of an attacker A in
game MO-CTXT against a ccAEAD scheme CE is then defined

Advmo-ctxt
CE (A) = Pr

[
MO-CTXTACE ⇒ true

]
.

Security for standard AEAD. We note that the familiar ROR and CTXT notions for AEAD
schemes can be recovered from the corresponding ccAEAD games in Figure 13 by reframing the
ccAEAD scheme as an AEAD scheme as described previously, removing access to oracle Dec
in all games, and removing Enc in MO-REAL and MO-RAND. Advantage functions are defined
analogously. Since here we are removing attacker capabilities, it follows that security for a ccAEAD
scheme with respect to these notions implies security for the derived AEAD scheme also.

Receiver and sender binding. Strong receiver binding for ccAEAD schemes is the same as
for encryptment (Figure 6), except the attacker outputs openings Kf ,K

′
f rather than secret keys

K,K ′ as part of his guess. The sender binding game for a ccAEAD scheme challenges an attacker
A to output a tuple (K,H,C,CB) such that (Kf ,M) ← Dec(K,H,C,CB) does not equal ⊥ but
Ver(H,M,Kf , CB) = 0. This is the same as the associated game for encryptment, except that
the opening Kf recovered during decryption is used for verification rather than the key output
by A. Given the similarities, we abuse notation by using the same names for ccAEAD binding
notion games and advantage terms as in the encryptment case; which version will be clear from the
context.

Given that both target certain binding notions, a natural question is whether an sr-BIND secure
ccAEAD scheme is also robust [18], and vice versa. In Appendix D, we show that neither notion
implies the other in generality. We also discuss the conditions under which the ccAEAD schemes
we build from secure encryptment are robust.

7.3 Encryptment to ccAEAD Transforms

We now turn to building ccAEAD from encryptment. Fix an encryptment scheme
EC = (EKg,EC,DO,EVer) and a standard AEAD scheme AEAD = (AEAD.Kg,AEAD.enc,AEAD.dec).
Let CE[EC,AEAD] = (Kg,Enc,Dec,Ver) be the ccAEAD scheme whose encryption, decryption, and
verification algorithms are shown in Figure 14. Key generation Kg runs K←$ AEAD.Kg and out-
puts K.

To encrypt a header / message (H,M), Enc uses the key generation algorithm of the encryptment
scheme to generate a one-time encryptment key KEC←$ EKg, and computes the encryptment of
the header and message via (CEC, BEC) ← EC(KEC, H,M). The scheme then uses the encryption
algorithm of the AEAD scheme to encrypt the one-time key KEC with header BEC, producing
CAE←$ AEAD.enc(K,BEC,KEC), and outputs ((CEC, CAE), BEC). On input (K, (CEC, CAE), BEC),
Dec computes KEC ← AEAD.dec(K,BEC, CAE) and if KEC =⊥ returns ⊥ since this clearly indicates
that CAE is invalid. The recovered key KEC is in turn used to recover the message via M ←
DO(KEC, H,CEC, BEC). If M =⊥, the scheme returns ⊥; otherwise, EC returns (M,KEC) as the
message / opening pair. Ver simply applies the verification algorithm EVer of the underlying
encryptment scheme to the input tuple and returns the result.

Notice that by including the binding tag BEC as the header in the authenticated encryption, this
ensures the integrity of BEC. If we did not authenticate BEC then an attacker could trivially break
the MO-CTXT-security of the scheme by using an Enc query to obtain ciphertext ((CEC, CAE), BEC)
for a pair (H,M), submitting that ciphertext to Dec to recover the opening / key KEC, with which

28

Enc(K,H,M):

KEC←$ EKg

(CEC, BEC)← EC(KEC, H,M)

CAE←$ AEAD.enc(K,BEC,KEC)

Return ((CEC, CAE), BEC)

Dec(K,H, (C,CB)):

(CEC, CAE)← C ;BEC ← CB

KEC ← AEAD.dec(K,BEC, CAE)

If KEC = ⊥ then Return ⊥
M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
Return (M,KEC)

Figure 14: A generic transform from an encryptment scheme EC and a standard authenticated encryption
scheme AEAD to a multi-opening ccAEAD scheme CE[EC,AEAD]. Verification simply runs EVer.

he can easily create a valid forgery by computing (C ′EC, B
′
EC)← EC(KEC, H

′,M ′) for some distinct
header / message pair and outputting ((C ′EC, CAE), B

′
EC). Including the binding tag as the header in

the AEAD ciphertext means that an attacker trying to replicate the above mix-and-match attack
must create a forgery for an encryptment binding tag and key already returned as the result of an
Enc query, thus violating the SCU security of the underlying encryptment scheme.

Security of the transform. Next, we analyze the security of the ccAEAD scheme CE[EC,AEAD]
shown in Figure 14. We begin with confidentiality. The proof of the following theorem follows from
reductions to the ROR security of the underlying encryptment and AEAD schemes, and is given
in Appendix J.

Theorem 6 Let EC be an encryptment scheme, AEAD be an authenticated encryption scheme,
and let CE[EC,AEAD] be the ccAEAD scheme built from EC according to Figure 14. Then for
any adversary A in the MO-ROR game against CE making a total of q queries, of which qc are to
ChalEnc and qe are to Enc, there exists adversaries B and C such that

Advmo-ror
CE (A) ≤ 2 ·Advror

AEAD(B) + qc ·Advot-ror
EC (C) .

Adversaries B and C run in the same time as A with an O(q) overhead, and adversary B makes at
most qc + qe encryption oracle queries.

Next we bound the MO-CTXT advantage of any adversary against CE[EC,AEAD], via a reduction
to the CTXT security of the underlying AEAD scheme, and the SCU security of the encryptment
scheme. The proof is given in Appendix J.

Theorem 7 Let EC be an encryptment scheme, AEAD be an authenticated encryption scheme,
and let CE[EC,AEAD] be the ccAEAD scheme built from EC according to Figure 14. Then for any
adversary A in the MO-CTXT game against CE making a total of q queries, of which qe are to
Enc, there exists adversaries B and C such that

Advmo-ctxt
CE (A) ≤ Advctxt

AEAD(B) + qe ·Advscu
EC (C) .

Adversaries B and C run in the same time as A with an O(q) overhead, and adversary B makes at
most as many queries as A.

We omit bounding the s-BIND and sr-BIND security of CE[EC,AEAD], since CE inherits these
properties directly from EC. By reframing CE as a regular AEAD scheme, our transform yields a

29

ROR and CTXT secure single-pass AEAD scheme. To implement the transform, the fixed-input-
length AE scheme must be instantiated. One can use, for example, AES-GCM or OCB.

An alternate transform. We provide one other approach for building ccAEAD from encrypt-
ment. It uses a PRF, most simply re-using the compression function f used in HFC. It uses a
long-term key K. Instead of generating the encryptment key KEC randomly, this instantiation will
compute KEC ← f(N,K⊕ fpad) for some randomly-chosen nonce N ←$ {0, 1}n and a fixed constant
string fpad. After EC outputs CEC, BEC, the compression function will again be used to compute
CAE ← f(BEC,K⊕ spad) for a fixed constant string spad (distinct from fpad). Decryption is imple-
mented in the obvious way. In Appendix K we will prove that as long as f is a good RKA-PRF, this
transform results in a secure MO-ccAEAD scheme. This transform is also conceptually elegant,
relying only on a single cryptographic primitive.

8 Other Applications of Encryptment

The applications of encryptment extend beyond ccAEAD, with our single-pass constructions offer-
ing new and efficient instantiations of a variety of primitives. In this section we describe several of
these primitives and their applications.

Concealment schemes. In [14], Dodis et al. introduce the notion of concealment schemes, a
primitive which has a number of applications in the context of authenticated encryption. A con-
cealment scheme is defined to be a pair of algorithms C = (conceal, open). The randomized conceal-
ment algorithm conceal takes as input a message M , and outputs a pair (h, b)←$ conceal(M). The
deterministic opening algorithm open takes as input a hider and binder pair, and outputs either
the underlying message M or ⊥, depending on whether (h, b) is in the range of conceal(M).

One-pass concealment schemes and applications. In [14], the authors show how to construct
concealment schemes using a one-time secure symmetric encryption scheme E = (kg, enc, dec) for
which the keys K←$ kg are short, and a collision resistant hash function CRHF. To conceal a
message M , the scheme chooses a random key K, sets h = enc(K,M), and b = K||CRHF(h).
However this requires two-passes for both the encryption and the hashing step. In contrast, given
a otROR, r-BIND and s-BIND secure encryptment scheme EC = (EKg,EC,DO,EVer) with strong
correctness, one can construct a secure concealment scheme which achieves the desired security goals
with just a single pass over the data. We assume the header H = ε in the subsequent discussion,
and so omit this input from algorithms. The concealment scheme C[EC] = (conceal.[EC], open.[EC])
is defined as follows. To conceal a message M , conceal.[EC] generates a key KEC←$ EKg, computes
(CEC, BEC)← EC(KEC,M). The scheme outputs (h, b) where h = CEC and b = KEC||BEC.

With this encryptment-based concealment we can give one-pass instantiations of domain exten-
sion for AE and remotely-keyed AE. Domain extension for AE takes an AE for which the message
space consists of only ‘short’ messages and allows it to encrypt much longer messages. The mod-
ified encryption algorithm on input (K,M) is defined to first compute the concealment of M via
(h, b)←$ conceal(M), and then output ciphertext (h,AE.enc(K, b)). In remotely-keyed AE, a secure
but computationally-limited device holding a long-term AE key offloads most of the computational
work of encrypting and decrypting to an untrusted but more powerful device. In [14] the authors
show a “canonical” RKAE from any concealment scheme, so we can get RKAE from encryptment
via C[EC]. An interesting question for future work is defining and constructing remotely-keyed
ccAEAD schemes, and if applying their RKAE transform to C[EC] gives a remotely-keyed ccAEAD
scheme.

30

Verifiable outsourced storage from encryptment. In the majority of this work we have
viewed encryptment as a combined encryption and commitment scheme, but an alternate way to
view it is as a kind of three-party secret sharing scheme for the header and message pair. If EC runs
EKg internally instead of accepting a key as input, the (now randomized) EC algorithm will output
(CEC, BEC,KEC) on input H,M . None of these three values in isolation reveals any information
about the message M . We will denote as SShare(H,M) the randomized algorithm which on input
(H,M) first computes KEC←$ EKg then outputs (EC(KEC, H,M),KEC).

This secret-sharing viewpoint of encryptment gives an optimally-efficient and verifiable way to
store large files on untrusted cloud storage. There are three parties: an untrusted storage provider,
a public ledger providing integrity but not confidentiality (such as a blockchain), and the user.
When the user wants to store file M with header H, it runs SShare(H,M). It stores CEC with the
cloud provider, posts BEC on the public ledger, and retains KEC in its own trusted storage. Since
KEC is small the user can store it in hardened local storage like a TPM. Likewise, since BEC is small
the cost of storing it on the public ledger is minimized. In addition to minimizing local storage
overhead for the user, storing BEC in a public ledger gives the user the ability to prove misbehavior
on the part of the cloud provider, such as deleting part of the file or trying to modify it.

Acknowledgments

The authors thank Jon Millican for his help on understanding Facebook’s message franking systems.
Dodis is partially supported by gifts from VMware Labs and Google, and NSF grants 1619158,
1319051, 1314568. Grubbs is supported by an NSF Graduate Research Fellowship (DGE-1650441).
A portion of this work was completed while Grubbs visited Royal Holloway University, and he
thanks Kenny Paterson for generously hosting him. Ristenpart is supported in part by NSF grants
1704527 and 1514163, as well as a gift from Microsoft. Woodage is supported by the EPSRC
and the UK government as part of the Centre for Doctoral Training in Cyber Security at Royal
Holloway, University of London (EP/K035584/1).

References

[1] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In TCC, 2010.

[2] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian Winnerlein.
Blake2: simpler, smaller, fast as MD5. In ACNS, 2013.

[3] Mihir Bellare, Joseph Jaeger, and Julia Len. Better than advertised: Improved collision-
resistance guarantees for MD-based hash functions. In ACM CCS, 2017.

[4] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In EUROCRYPT, 2003.

[5] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among no-
tions and analysis of generic composition. In ASIACRYPT, 2000.

[6] Daniel J. Bernstein. ChaCha, a variant of Salsa20. https://cr.yp.to/chacha/

chacha-20080128.pdf.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak sponge function
family main document. Submission to NIST SHA3, 2009.

31

https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf

[8] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the sponge:
single-pass authenticated encryption. In SAC, 2011.

[9] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full AES-192 and
AES-256. In ASIACRYPT, 2009.

[10] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and related-key attack
on the full AES-256. In CRYPTO. 2009.

[11] John Black, Martin Cochran, and Thomas Shrimpton. On the impossibility of highly-efficient
blockcipher-based hash functions. In EUROCRYPT, 2005.

[12] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-cipher-
based hash-function constructions from PGV. In CRYPTO, 2002.

[13] Advanced Micro Devices. The ZEN microarchitecture, 2016. https://www.amd.com/en/

technologies/zen-core.

[14] Yevgeniy Dodis and Jee Hea An. Concealment and its applications to authenticated encryption.
In EUROCRYPT, 2003.

[15] Facebook. Facebook Messenger app. https://www.messenger.com/, 2016.

[16] Facebook. Messenger Secret Conversations technical whitepaper, 2016.

[17] Pooya Farshim, Benôıt Libert, Kenneth G Paterson, and Elizabeth A Quaglia. Robust en-
cryption, revisited. In PKC. 2013.

[18] Pooya Farshim, Claudio Orlandi, and Razvan Rosie. Security of symmetric primitives under
incorrect usage of keys. FSE, 2017.

[19] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing authenti-
cated encryption. In CRYPTO, 2017.

[20] Sean Gulley, Vinodh Gopal, Kirk Yap, Wajdi Feghali, and Jim Guilford. Intel SHA extensions,
2013. https://software.intel.com/en-us/articles/intel-sha-extensions.

[21] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced meet-in-the-middle
preimage attacks: First results on full Tiger, and improved results on MD4 and SHA-2. In
ASIACRYPT, 2010.

[22] Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via randomized hashing. In
CRYPTO, 2006.

[23] Seokhie Hong, Jongsung Kim, Sangjin Lee, and Bart Preneel. Related-key rectangle attacks
on reduced versions of SHACAL-1 and AES-192. In FSE, 2005.

[24] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 security in sponge-based
authenticated encryption modes. In ASIACRYPT, 2014.

[25] Charanjit S Jutla. Encryption modes with almost free message integrity. In EUROCRYPT,
2001.

[26] Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques for preimages:
attacks on Skein-512 and the SHA-2 family. In FSE, 2012.

32

https://www.amd.com/en/technologies/zen-core
https://www.amd.com/en/technologies/zen-core
https://www.messenger.com/
https://software.intel.com/en-us/articles/intel-sha-extensions

[27] Jongsung Kim, Guil Kim, Seokhie Hong, Sangjin Lee, and Dowon Hong. The related-key
rectangle attack–application to SHACAL-1. In ACISP, 2004.

[28] Jongsung Kim, Guil Kim, Sangjin Lee, Jongin Lim, and Junghwan Song. Related-key attacks
on reduced rounds of SHACAL-2. In INDOCRYPT, 2004.

[29] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-encryption
modes. In FSE, 2011.

[30] Mario Lamberger and Florian Mendel. Higher-order differential attack on reduced SHA-256.
IACR ePrint, Report 2011/037, 2011.

[31] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Related-key rectangle attack
on 42-round SHACAL-2. In ICIS, 2006.

[32] David McGrew and John Viega. The Galois/counter mode of operation (GCM). NIST Modes
of Operation, 2004.

[33] David McGrew and John Viega. The security and performance of the galois/Counter mode of
operation. In INDOCRYPT, 2004.

[34] Jon Millican. Personal communication.

[35] Jon Millican. Challenges of E2E Encryption in Facebook Messenger. RWC, 2017.

[36] Payman Mohassel. A closer look at anonymity and robustness in encryption schemes. In
ASIACRYPT, 2010.

[37] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block ciphers: A
synthetic approach. In CRYPTO, 1993.

[38] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes
OCB and PMAC. In ASIACRYPT, 2004.

[39] Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of operation for
efficient authenticated encryption. ACM TISSEC, 2003.

[40] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap
problem. In EUROCRYPT, 2006.

[41] Phillip Rogaway and John Steinberger. Constructing cryptographic hash functions from fixed-
key blockciphers. In CRYPTO, 2008.

[42] Phillip Rogaway and John Steinberger. Security/efficiency tradeoffs for permutation-based
hashing. In EUROCRYPT, 2008.

[43] Somitra Kumar Sanadhya and Palash Sarkar. New collision attacks against up to 24-step
SHA-2. In INDOCRYPT, 2008.

[44] Thomas Shrimpton and Martijn Stam. Building a collision-resistant compression function from
non-compressing primitives. In ICALP, 2008.

[45] Open Whisper Systems. Signal. https://signal.org/, 2016.

33

https://signal.org/

[46] Wouter van der Linde. Parallel SHA-256 in NEON for use in hash-based signatures, 2016. BSc
thesis, Radboud University.

[47] Mark N Wegman and J Lawrence Carter. New hash functions and their use in authentication
and set equality. JCSS, 1981.

[48] Whatsapp. Whatsapp. https://www.whatsapp.com/, 2016.

A Relationship Between Receiver Binding Notions

In the following theorem, we prove that sr-BIND security implies r-BIND security for ccAEAD
schemes; our results readily extend to encryptment schemes also. We then show that the converse
does not hold by constructing a scheme which has receiver binding but for which strong receiver
binding can be trivially broken.

Theorem 8 Let CE = (Kg, Enc, Dec, Ver) be a ccAEAD scheme. Then for any attacker A in game
r-BIND against CE, there exists an attacker B in game sr-BIND against CE such that

Advr-bind
CE (A) ≤ Advsr-bind

CE (B) ,
and moreover, B runs in the same time A. On the other hand, there exists a CE scheme CE′ =
(Kg′,Enc′,Dec′,Ver’) which is r-BIND secure, but for which there exists an efficient attacker C such
that

Advsr-bind
CE (C) = 1 .

Proof: To prove the first claim, let A be an attacker in game r-BIND against CE. We then define B
to be the attacker in game sr-BIND against CE who simply runs A; eventually A halts and outputs
((H,M,Kf), (H

′,M ′,K ′f), CB)←$A, and B returns the same tuple to his challenger. Then

Advr-bind
CE (A) = Pr

[
r-BINDACE ⇒ true

]
= Pr

[
Ver(H,M,Kf , CB) = Ver(H ′,M ′,K ′f , CB) = 1 ∧ (H,M) ̸= (H ′,M ′)

]
≤ Pr

[
Ver(H,M,Kf , CB) = Ver(H ′,M ′,K ′f , CB) = 1 ∧ (H,M,Kf) ̸= (H ′,M ′,K ′f)

]
= Pr

[
sr-BINDBCE ⇒ true

]
= Advsr-bind

CE (B) ,

where all probabilities are over the coins of A (recall that Ver is deterministic), proving the claim.

To prove that the converse does not hold, we now define a CE scheme which is r-BIND secure,
but not sr-BIND secure. Take any CE scheme CE = (Kg,Enc,Dec,Ver) which is r-BIND secure
and for which all valid openings Kf are bit-strings of some fixed length n (for example, one may
take the Committing Encrypt-and-PRF scheme from Section 7 of [19]). We define a modified
scheme CE′ = (Kg′,Enc′,Dec′,Ver′) as follows. We let Kg′,Enc′,Dec′ be identical to Kg,Enc,Dec,
and define Ver′ to be the algorithm which on input (H,M,Kf , CB) computes K ′f = [Kf]

n
1 (where

[x]n1 denotes truncating the binary string x to the n least significant bits), and returns the output
of Ver(H,M,K ′f , CB).

It is straightforward to see that the modified scheme CE′ is r-BIND secure. Indeed for any attacker
D in game r-BIND against CE′, we may define an attacker E in game r-BIND against CE who simply

34

https://www.whatsapp.com/

runs D and outputs (H,M, [Kf]
n
1), (H

′,M ′, [K ′f]
n
1), CB) where ((H,M,Kf), (H

′,M ′,K ′f), CB) is the
tuple output by D. It is easy to see that any winning output for D implies a winning output for E
also and so Advr-bind

CE′ (D) ≤ Advr-bind
CE (E).

However, an adversary C may win game sr-BIND with probability 1 by taking any tuple (H,M,Kf , CB)
for which 1 ← Ver(H,M,Kf , CB), and submitting ((H,M, 0||Kf), (H,M, 1||Kf), CB) to his chal-
lenger. Now (H,M, 0||Kf) ̸= (H,M, 1||Kf), but since Ver′(H,M, 0||Kf) = Ver(H,M, 1||Kf) = 1,
it holds that Advsr-bind

CE′ (C) = 1, implying the result.

B Proofs from Section 4

Proof of Lemma 1.
We argue by a series of game hops, shown in Figure 15. We first define game G0 which is

identical to game SCU against EC, except we change the specification of oracle dec to perform a
number of additional checks, and set flags depending on the results. These additional steps do not
affect the outcome of the game, and so it follows that

Pr
[
SCUAEC ⇒ 1

]
.

Next we define game G1, which is identical to game G0 except now if A makes a query to dec
which decrypts correctly to M ′ ̸=⊥, but for which verification fails, then the game sets M ′ =⊥ and
so the win flag will not be set. These games run identically until the flag bad1 is set, and so the
Fundamental Lemma of Game Playing implies that

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1] ≤ Pr [bad1 ← true in G0] .

We bound the probability of this event occurring with a reduction to the s-BIND security of EC.
Let B be an adversary in game s-BIND against EC. B runs A as a subroutine as follows. He
generates a key K∗EC←$ EKg, and simulates A’s enc query by computing the required encryptment
(C∗EC, B

∗
EC) and returning this, along with K∗EC, to A. He simulates the dec oracle by applying

DO(K∗EC, ·, ·, B∗EC) to the queried header / ciphertext pairs (H ′, C ′EC), and returning the result to
A. For queries which decrypt to M ′ ̸=⊥, he computes b′ ← EVer(H ′,M ′,K∗EC, B

∗
EC). If he ever finds

a tuple (H ′, C ′EC, B
∗
EC) which decrypts correctly under K∗EC but which does not verify correctly, B

halts and outputs (K∗EC, H
′, C ′EC, B

∗
EC) to his challenger. Notice that such a tuple constitutes a

winning query for B, and that the flag bad1 gets set if and only if such a tuple is found. It follows
that

Pr [bad1 ← true in G0] ≤ Pr
[
s-BINDBEC ⇒ 1

]
= Advs-bind

EC (B) .

Next we define game G2, which is identical to game G1 except now if A submits a query (H ′, C ′EC)
which decrypts correctly to some message M ′ ̸=⊥ and for which verification succeeds, then if
(H ′,M ′) does not equal the challenge header / message pair (H∗,M∗) then dec sets M ′ =⊥ and
win does not get set to true. These games run identically unless flag bad2 gets set, and so the
Fundamental Lemma of Game Playing implies that

Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1] ≤ Pr [bad2 ← true in G1] .

We bound the probability that this event occurs with a reduction to the r-BIND security of EC.
Let C be an adversary in game r-BIND against EC. C runs A as a subroutine by choosing a key
K∗EC←$ EKg and simulating oracles enc and dec as described previously, (except he now rejects any
dec queries which fail verification as per G1). Let (C∗EC, B

∗
EC) denote the encryptment generated

35

by the enc query on input (H∗,M∗) with key K∗EC, and notice that the correctness of EC implies
that 1 ← EVer(H∗,M∗,K∗EC, B

∗
EC). If at any point the attacker submits a query (H ′, C ′EC) to dec

such that M ′ ← DO(K∗EC, H
′, C ′EC, B

∗
EC) and 1 ← EVer(H ′,M ′,K∗EC, B

∗
EC) but for which (H ′,M ′)

does not equal the header / message pair (H∗,M∗) underlying the challenge encryptment, then C
halts and outputs ((H∗,M∗,K∗EC), (H

′,M ′,K∗EC), B
∗
EC). Such a tuple constitutes a win for C in his

game, and notice that the flag bad2 is set if and only if such a tuple is found. It follows that

Pr [bad2 ← true in G1] ≤ Pr
[
r-BINDCEC ⇒ 1

]
= Advr-bind

EC (C) .

Finally we define game G3, which is identical to G2 except that now if the attacker submits a query
(H ′, C ′EC) to oracle dec which decrypts correctly to message M ′ under challenge key K∗EC, verifies
correctly, and for which (H ′,M ′) = (H∗,M∗), then if it is the case that C ′EC ̸= C∗EC where C∗EC
is the ciphertext derived in the challenge query to enc, the game sets M ′ ←⊥ and the win flag
remains false. Notice that this game is impossible to win, since the only queries which will not be
rejected by the added checks are those for which (H ′, C ′EC) = (H∗, C∗EC), but then these themselves
are rejected by the first line of pseudocode in dec, and so will never result in win being set. It
follows that

Pr [G3 ⇒ 1] = 0 .

Notice that these games run identically unless the flag bad3 is set, and so it holds that

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1] | ≤ Pr [bad3 ← true in G2] .

We claim that Pr [bad3 ← true in G2] = 0. To see this, notice that bad3 being set implies the
existence of a tuple (K∗EC, H

∗, C ′EC, B
∗
EC) such that M∗ ← DO(K∗EC, H

∗, C ′EC, B
∗
EC) but for which

C ′EC ̸= C∗EC where we know that (C∗EC, B
∗
EC) = EC(K∗EC, H

∗,M∗) from the challenge query to enc.
Moreover, notice that it must be the case that (K∗EC, H

∗, C ′EC, B
∗
EC) ∈ KEC × HEC × CEC × TEC,

otherwise by definition DO would return ⊥. However, since EC is deterministic, this then violates
the assumed strong correctness of the scheme, and proving the claim.

Putting this all together, we find that

Advscu
EC (A) ≤ Advs-bind

EC (B) +Advr-bind
EC (C) .

C Encryptment via Generic Composition

Given an encryption scheme E = (kg, enc, dec), and a commitment scheme with verification CS =
(Com,VerC), it is straightforward to construct an encryptment scheme EC = (EKg,EC,DO,EVer)
by composing the two. The resulting scheme is essentially an adaptation of the CtE2 ccAEAD
scheme from [19] rephrased in the encryptment syntax, except requires weaker one-time security
properties of the underlying primitives.

Key generation EKg outputs keys of the form (K,Rc, Re) where K←$ Kg is a key for the under-
lying encryption scheme, and Rc, Re are drawn randomly from the coin spaces of the commitment
and encryption scheme respectively. On input ((K,Rc, Re), H,M), encryptment algorithm EC first
computes a commitment / opening pair for H||M via (c, d)← Com(H||M ;Rc), and sets BEC = c.
It then encrypts the opening along with the message to give CEC ← enc(K, d||M ;Re), and outputs
encryptment (CEC, BEC). Decryption DO works by decrypting CEC under key K to recover message
M and opening d, and verifying the commitment via b ← VerC(c, d,H||M), returning ⊥ if verifi-
cation fails. Provided verification succeeds, then DO uses the key (K,Rc, Re) to re-run EC for the

36

G0, G1 :

K←$ EKg

win← false

query-made← false

ε←$Aenc(·,·),dec(·,·)

Return win

enc(H,M)

If query-made = true then Return ⊥
query-made← true

(CEC, BEC)← EC(KEC, H,M)

K∗
EC ← KEC ; C∗

EC ← CEC

B∗
EC ← BEC ;H∗ ← H

Return ((CEC, BEC),KEC)

dec(H′, C′
EC)

If query-made = false then Return ⊥
If (H′, C′

EC) = (H∗, C∗
EC)

Return ⊥
M ′ ← DO(K∗

EC, H
′, C′

EC, B
∗
EC)

If M ′ =⊥ Return ⊥
b′ ← EVer(H′,M ′,K∗

EC, B
∗
EC)

If b′ = 0 then

bad1 ← true ; M ′ ←⊥
If (H′,M ′) ̸= (H∗,M∗) then

bad2 ← true

If (C′
EC ̸= C∗

EC) then

bad3 ← true

If M ′ ̸= ⊥ then win← true

Return M ′

G2, G3 :

K←$ EKg

win← false

query-made← false

ε←$Aenc(·,·),dec(·,·)

Return win

enc(H,M)

If query-made = true then Return ⊥
query-made← true

(CEC, BEC)← EC(KEC, H,M)

K∗
EC ← KEC ; C∗

EC ← CEC

B∗
EC ← BEC ;H∗ ← H

Return ((CEC, BEC),KEC)

dec(H′, C′
EC)

If query-made = false then Return ⊥
If (H′, C′

EC) = (H∗, C∗
EC)

Return ⊥
M ′ ← DO(K∗

EC, H
′, C′

EC, B
∗
EC)

If M ′ =⊥ Return ⊥
b′ ← EVer(H′,M ′,K∗

EC, B
∗
EC)

If b′ = 0 then

bad1 ← true ;M ′ ←⊥
If (H′,M ′) ̸= (H∗,M∗) then

bad2 ← true ;M ′ ←⊥
If (C′

EC ̸= C∗
EC) then

bad3 ← true ; M ′ ←⊥
If M ′ ̸= ⊥ then win← true

Return M ′

Figure 15: Games for proof of Lemma 1.

37

FROBA
CE

((K,H), (K′, H′), (C,CB))←$A
If K = K′ return 0

M1 ← Dec(K,H, (C,CB))

M2 ← Dec(K′, H′, (C,CB))

Return (M1 ̸=⊥ ∧M2 ̸=⊥)

Figure 16: The full robustness (FROB) security game for a ccAEAD scheme CE = (Kg,Enc,Dec,Ver).

revealed message, to verify that the resulting encryptment matches that which was decrypted. The
message is returned only if this latter check returns true. On input (H,M, d,BEC), encryptment
verification EVer simply computes VerC(BEC, d,H||M) and returns the result.

It’s easy to see that if E and CS satisfy one-time notions of real-or-random security, then the
encryptment scheme satisfies our notion of otROR security. If the commitment scheme is binding,
this in turn implies the encryptment scheme is r-BIND secure, since any winning tuple in the
r-BIND game also breaks the binding of the commitment scheme. s-BIND security and strong
correctness follow from the fact that the commitment is verified, and the encryptment recomputed,
during decryption. Together these properties imply the scheme is SCU secure by Lemma 1.

D Stronger Receiver Binding and Robust Encryption

An encryption scheme is said to be robust if it is infeasible to find two distinct keys which decrypt
the same ciphertext to a valid message. Robust encryption was first formalized in the public-key
setting by Abdalla et al. in [1] and later extended in [17, 36]. Farshim et al. provide the first
treatment of robust authenticated encryption in [18].

Full robustness. In Figure 16 we adapt the definition of full robustness (FROB) for symmetric
encryption from Farshim et al. [18] to the ccAEAD setting. The original FROB definition of [18]
can be recovered from the one shown in Figure 16 by replacing the ciphertext / binding tag pair
(C,CB) with a single ciphertext C, and removing all references to headers. The attacker A is
challenged to output a tuple ((K,H), (K ′, H ′), (C,CB)) such that K ̸= K ′, but the ciphertext /
binding tag pair (C,CB) decrypts correctly under both keys and the corresponding headers. The
FROB advantage term for an attacker A against a ccAEAD scheme CE is defined

Advfrob
CE (A) = Pr

[
FROBACE ⇒ 1

]
,

where the probability is over the coins of Enc and A.

Separations between FROB and sr-BIND security. Intuitively, both robust encryption and
ccAEAD target some notion of binding security. Thus, a natural question is whether an sr-BIND-
secure ccAEAD scheme is also FROB secure, and vice versa. It turns out that the two notions are
orthogonal and neither implies the other in generality.

The intuition for this is that breaking robustness requires finding distinct keys which both
decrypt the same ciphertext correctly, whereas breaking sr-BIND security requires finding distinct
tuples (H,M,Kf) ̸= (H ′,M ′,K ′f) which both verify the same binding tag correctly. Since there is
no requirement that decrypting with distinct keys will result in distinct openings being recovered
during decryption, breaking robustness does not necessarily translate into a win for an attacker in
game sr-BIND. However, we note that an attacker can only break FROB security without breaking
sr-BIND security if the winning tuple uses the same headers for both decryptions, and both keys
decrypt the ciphertext to the same underlying message; such an attack would seem to be of little

38

concern in verifiable abuse reporting (and perhaps other settings as well).
Likewise, since any verification performed during decryption uses the opening output by Dec

as opposed to one specified by an attacker, one may modify the verification algorithm of a robust
ccAEAD scheme in such a way that it becomes easy to produce two distinct openings which verify
the same binding tag (thereby breaking the sr-BIND security of the scheme), but in such a way
that these ‘bad’ openings will never be recovered during normal decryption, leaving the robustness
of the scheme unaffected.

The case is different if the ccAEAD scheme is such that it always outputs its key as the opening
(as is the case for many single-opening ccAEAD schemes). If such a scheme is sender binding —
so ciphertexts which decrypt correctly must also verify correctly — then sr-BIND security implies
FROB security. It is straightforward to verify that FROB security does not imply sr-BIND security
for such schemes in general (for a separating example, modify an FROB-secure ccAEAD scheme
which outputs its encryption key as the opening such that it becomes easy to find distinct headers
which verify with the same key / message / binding tag tuple, but decryption is left unchanged).
We formalize this intuition and provide separating examples in the following theorem.

Theorem 9 (1) There exists a ccAEAD scheme CE1 = (Kg1,Enc1,Dec1,Ver1) which is FROB-
secure, but for which there exists an efficient attacker B such that

Advsr-bind
CE1

(B) = 1 .

(2) There exists a ccAEAD scheme CE2 = (Kg2,Enc2,Dec2,Ver2) which is sr-BIND-secure, but for
which there exists an efficient attacker C such that

Advfrob
CE2

(C) = 1 .

(3) Let CE = (Kg,Enc,Dec,Ver) be a ccAEAD scheme which outputs its encryption key as the
opening. Then for any attacker A in game FROB against CE, there exists adversaries D, E such
that

Advfrob
CE (A) ≤ Advs-bind

CE (D) +Advsr-bind
CE (E) .

and moreover D, E run in the same time as A.

Proof: We start with (1). Let CE = (Kg,Enc,Dec,Ver) be an FROB-secure ccAEAD scheme, for
which all valid openings Kf are of some fixed length of n-bits. We then construct a modified scheme
CE1 = (Kg1,Enc1,Dec1,Ver1) which is identical to CE except we define Ver1 to be the algorithm
which on input (H,M,Kf , CB) setsK

′
f = Truncn(Kf), and returns the result of Ver(H,M,K ′f , CB).

Notice that decryption is identical in both schemes; even if Dec′ runs the modified Ver′ as a subrou-
tine, then since Dec′ only outputs openings Kf such that |Kf | = n the modifications to verification
have no effect on decryption. Therefore any winning tuple in game FROB against CE′ is a win-
ning tuple for CE also, violating the assumed robustness of CE. However, an attacker B can win
the sr-BIND security game with probability one by outputting ((H,M,Kf ||0), (H,M,Kf ||1), CB)
where (H,M,Kf , CB) is any tuple such that Ver(H,M,Kf , CB) = 1, thereby proving the first
claim.

To prove (2), let CE = (Kg,Enc,Dec,Ver) be an sr-BIND-secure ccAEAD scheme for which all keys
output by Kg are bit-strings of length κ. We define a modified scheme CE2 = (Kg2,Enc2,Dec2,Ver2)
which is identical to CE except we define Dec2 to be the algorithm which on input a tuple
(K,H,C,CB), computes K ′ = Truncκ(K), and returns the output of Dec(K ′, H,C,CB). Since
verification in CE2 is unchanged, the modified scheme CE2 inherits the sr-BIND security of CE.
However, an attacker C can win the FROB game against CE2 with probability one by choos-

39

ing a key K and message M , computing (C,CB)←$ Enc(H,K,M), and outputting the tuple
((K||0, H), (K||1, H), (C,CB)).

For (3), consider an attacker A in game FROB against CE. Then any winning tuple
((K,H), (K ′, H ′), (C,CB)) for A must be such that K ̸= K ′ and Dec(K,H, (C,CB)) = (M,Kf) ̸=⊥
and Dec(K ′, H ′, (C,CB)) = (M ′,K ′f) ̸=⊥. Since by definition Dec outputs its key as the opening,
it follows that Kf ̸= K ′f also. If A has found a tuple (K,H, (C,CB)) which decrypts successfully
to (M,K) but for which Ver(H,M,K,CB) = 0, then he has broken the s-BIND security of CE. If
this is not the case, then A has found (K,H,M) ̸= (K ′, H ′,M ′) which both verify correctly with
binding tag CB, breaking the sr-BIND security of CE. Reductions to the appropriate adversaries
then imply the claim.

Robustness of ccAEAD schemes from Section 7.3. In Section 7.3 we present two transforms
which allow the construction of a secure ccAEAD from a secure encryptment scheme.

It is straightforward to verify that the ccAEAD scheme CE = (Kg,Enc,Dec,Ver) built from
the first transform using a secure AEAD scheme is robust provided the underlying AEAD scheme
is itself robust. In fact, provided the underlying encryptment scheme is sr-BIND and s-BIND
secure, then the AEAD scheme need only satisfy a weaker property that it is infeasible for an
attacker to find a tuple ((K,H), (K ′, H ′), CAE) such that K ̸= K ′ and AEAD.dec(K,H,CAE) =
AEAD.dec(K ′, H ′, CAE). The intuition for this is that if this property is not satisfied then different
encryptment keys will be recovered during decryption; therefore since the encryptment scheme is
sender binding (and so ciphertexts which decrypt correctly must also verify correctly), this results
in a winning tuple for an attacker in game sr-BIND against the underlying encryptment scheme.

The second transform which uses a PRF results in a robust ccAEAD scheme provided the PRF
is collision-resistant and the underlying encryptment scheme is both sr-BIND and s-BIND-secure.
We formalize this and provide a proof sketch in the following lemma.

Lemma 2 Let CE = (Kg,Enc,Dec,Ver) be the ccAEAD scheme obtained from the second trans-
form using a PRF PRF, and an encryptment scheme EC = (EKg,EC,DO,EVer). Then for any
attacker A in game FROB against CE, there exists attackers B, C, and D such that

Advfrob
CE (A) ≤ Advcr

PRF(B) +Advs-bind
EC (C) +Advsr-bind

EC (D) ,
and moreover, all adversaries run in the same time as A.

Proof: (Sketch) Recall that for this transform, encryption on input (K,H,M) computes KEC =
PRF(N,K ⊕ fpad) for random N and a fixed constant fpad, then (CEC, BEC) ← EC(KEC, H,M),
finally outputting ciphertext / binding tag pair

(C,CB) = ((N,CEC,PRF(BEC,K)), BEC) .

Let A be an attacker in the FROB game against the resulting ccAEAD scheme, and suppose A
outputs a winning tuple

((K,H), (K ′, H ′), ((N,CEC,PRF(BEC,K)), BEC)) .

This implies that K ̸= K ′, and that the ciphertext decrypts correctly under both keys. Suppose
further that K,K ′ are such thatKEC = PRF(N,K⊕fpad) = PRF(N,K ′⊕fpad); then this translates
into a winning pair for an attacker B in the CR-game against PRF. On the other hand, suppose
that KEC ̸= K ′EC (where KEC = PRF(N,K⊕ fpad) and K ′EC = PRF(N,K ′⊕ fpad)), but nonetheless
DO(KEC, H,CEC, BEC) = M ̸=⊥ and DO(K ′EC, H

′, CEC, BEC) = M ′ ̸=⊥. Suppose one (or both) of
the input tuples do not verify despite de-encrypting correctly; then A has found a ciphertext and
header / key pair which violates the s-BIND security of the encryptment scheme EC; we may bound

40

OCB-EncNK(M):

Partition M into M1, . . . ,Mm

For i = 1 to m− 1 do Ci ← Ẽ1,N,i,0
K (Mi)

Pad← Ẽ0,N,i,0(len(Mm))

Cm ←Mm ⊕ Pad

C ← C1 ∥ · · · ∥ Cm

Σ←M1 ⊕ · · · ⊕Mm−1 ⊕ Cm0∗ ⊕ Pad

CB ← Ẽ0,N,i,1
K (Σ)

Return (C,CB)

OCB-DecNK(C,CB):

Partition C into C1, . . . , Cm

For i = 1 to m− 1 do Mi ← D̃1,N,i,0
K (Ci)

Pad← Ẽ0,N,i,0(len(Cm))

Mm ← Cm ⊕ Pad

M ←M1 ∥ · · · ∥Mm

Σ←M1 ⊕ · · · ⊕Mm−1 ⊕ Cm0∗ ⊕ Pad

C′
B ← Ẽ0,N,i,1

K (Σ)

If (CB = C′
B) then Return (M, (K,N))

Return ⊥

OCB-Ver(M, (K,N), CB):

Partition M into M1, . . . ,Mm

Pad← Ẽ0,N,i,0
K (len(Mm))

Cm ←Mm ⊕ Pad

Σ←M1 ⊕ · · · ⊕Mm−1 ⊕ Cm0∗ ⊕ Pad

C′
B ← Ẽ0,N,i,1

K (Σ)

If C′
B ̸= CB then Return 0

Return 1

Figure 17: OCB as a nonce-based ccAEAD scheme. By Cm0∗ we mean pad Cm with enough zeros to make
an n-bit string. By “Partition” we mean parsing a string into n-bit blocks and one (possibly shorter) block.
The function len returns the length of a string in bits.

the probability of this event occurring via a reduction to an attacker C in game s-BIND against
EC. If such an event does not occur, then A has found tuples (KEC, H,M) ̸= (K ′EC, H

′,M ′) which
both verify correctly with binding tag BEC. This corresponds to a winning tuple for an attacker D
in game sr-BIND against CE. Putting this together proves the claim.

E OCB is Not Binding

The offset codebook mode (OCB) was first introduced by Rogaway, Bellare, Black, and Krovetz [39]
and later refined by Rogaway [38] and Rogaway and Krovetz [29]. We follow the formulation given
in [38]. Recall that OCB relies on a tweakable blockcipher Ẽ with tweak space T = {0, 1}×{0, 1}n×
[1 .. 2n/2]× {0, 1} and message space {0, 1}n for some block length n (e.g., n = 128).

There are multiple ways to reconceptualize OCB as a ccAEAD scheme, in particular because
one needs to decide whether to include the IV as part of the opening or the committing portion
of the ciphertext. Neither approach provides (any form of) receiver binding; we demonstrate
for brevity only the former conceptualization. (Readers unfamiliar with nonce-based ccAEAD
should see [19].) Figure 17 details the pseudocode for a nonce-based ccAEAD scheme OCB =
(OCB-Kg,OCB-Enc,OCB-Dec,OCB-Ver) based on OCB; we omit associated data from both the
construction and the discussion below, for simplicity. Key generation simply picks a key for the
underlying tweakable blockcipher Ẽ.

OCB has excellent performance properties, with rate-1 encryption and decryption (roughly, one
blockcipher call per block of message / ciphertext; see Section 5 for a formal definition) and even
faster verification. But unfortunately it is clearly not receiver binding as, intuitively, verification
does not provide CR. In more detail, consider the following r-BIND adversary A against OCB. It
computes (C,CB)← OCB-EncNK(M) for arbitrary K,N and message M = M1||M2|| . . . ||Mm such
that m ≥ 3. Attacker A then sets M ′ = M1||M2||M3|| . . . ||Mm, where Mi denotes message block
Mi with its least significant bit flipped. Attacker A then returns (((K,N),M), ((K,N),M ′), CB)

41

to its challenger.
Since the first two message blocks in M,M ′ have different least significant bits, it is clearly the

case that ((K,N),M) ̸= ((K,N),M ′). However, since Mm = M ′m, and M1 ⊕M2 ⊕ · · · ⊕Mm−1 =
M ′1⊕M ′2⊕ · · ·⊕M ′m−1, it is easy to verify that both messages will result in the same tag CB when
encrypted under (K,N), thereby allowing A to win game r-BIND with probability one.

F The SHA-3 Duplex Construction

Our HFC construction has a number of similarities to the AE scheme SpongeWrap built using the
SHA-3 winner Keccak [7, 8]. The SpongeWrap scheme uses a large permutation π : {0, 1}r+c →
{0, 1}r+c for some r, c ∈ N. This permutation is used to iteratively hash the message, with the
resulting output forming the binding tag. Portions of the intermediate chaining variables are
simultaneously used as pads to mask the message. The key difference between this scheme and
HFC is that the large state size offered by Keccak means that there is no need to key each call to
π — this is done indirectly via the extra c bits of state that are not used for outputs.

We now describe our SpongeWrap-like encryptment scheme SPE. It works as follows. Encrypt-
ment of a sequence of message blocks M1, . . . ,Mm each of length r bits with a key K ∈ {0, 1}r
first sets Y0 = π(K ∥ 0c). The scheme then iteratively compute Ci = Yi−1 ⊕ Mi where Yi =
π(Yi−1 ⊕ (Mi ∥ 0c)) for 1 ≤ i ≤ m. (Note that the XOR operation Yi−1 ⊕Mi returns the XOR of
the leftmost r bits of Yi−1 with Mi.) The binding tag BEC is then set to be the leftmost r bits
of π(Ym), and the scheme outputs encryptment (C1 ∥ · · · ∥ Cm, BEC). Decryption and verification
work in the natural way. One can of course include associated data and suitable padding to achieve
an encryptment scheme which can handle associated data and arbitrary length messages.

The security analyses from [8] imply that SpongeWrap as an encryptment scheme achieves
otROR and SCU security. Tighter bounds can likely be obtained using techniques from [24].
The construction is receiver binding by a lifting of the proof of collision-resistance for Keccak.
Moreover, it is straightforward to verify that the scheme is also sender binding and strongly correct.
SpongeWrap-based encryptment yields one-pass ccAEAD via the transforms of Section 7.3, and
may be a good choice should SHA-3 be implemented widely.

G Davies-Meyer as an RKA-PRF

We analyze the linear-only RKA-PRF security of Davies-Meyer (DM). First we need to define
an additional RKA security notion for pseudorandom permutations (PRPs). For a blockcipher
E : K× {0, 1}n → {0, 1}n (where for concreteness we define K = {0, 1}n), define game RKA-PRP0
to be identical to game RKA-PRF0 except an oracle query for (X,Y) is answered via EK⊕Y (X).
Define game RKA-PRP1 to be identical to game RKA-PRF1 except permutivity is enforced on the
random samples returned for all queries with the same K ⊕ Y . For a blockcipher E and adversary
A, define the linear-only RKA-PRP advantage of A against E as

Adv⊕-prpE (A) =
⏐⏐⏐⏐Pr [RKA-PRP0AE ⇒ 1

]
− Pr

[
RKA-PRP1A ⇒ 1

] ⏐⏐⏐⏐ .
Next, we state the theorem bounding the RKA-PRF advantage of an adversary A against the

DM construction with a blockcipher E by the RKA-PRP advantage of an adversary B against the
blockcipher E. The proof of the following theorem is straightforward.

42

Theorem 10 Let E : {0, 1}n × {0, 1}n → {0, 1}n be a blockcipher. Let DM[E] be the function
defined as DM[E](K,V1, V2) = EV2⊕K(V1)⊕ V1. Let A be an RKA-PRF adversary against DM[E]
making at most q queries to its oracle. Then there exists an adversary B such that

Adv⊕-prfDM[E](A) ≤ Adv⊕-prpE (B) + q2

2n
.

The adversary B runs in the same amount of time as A with an O(q) overhead and makes q queries.

H Proofs from Section 6

Proof of Theorem 3.
We first introduce some notation to simplify the subsequent discussion. Recall that our HFC

padding is defined Pad(H,M) = PadH(H,M)∥PadM(H,M)∥PadSuf(|H|, |M |,Mm). For a header
/ message pair (H,M) such that X1|| . . . ||Xℓ ← Parsed(Pad(H,M)), we define

P(KEC, H,M) := KEC||X1 ⊕KEC|| . . . ||Xℓ ⊕KEC ;

and notice that HFC computes the binding tag of a triple (KEC, H,M) asBEC = f+(IV,X1|| . . . ||Xℓ),
where recall that IV ∈ {0, 1}n is a fixed public constant.

Consider an attacker B in the CR-game against f+. B runs the sr-BIND attacker A as a subrou-
tine. Suppose that A wins the sr-BIND against HFC with tuple ((KEC, H,M), (K ′EC, H

′,M ′), BEC).
Since verification HFCVer works by recomputing the binding tag and checking for equality, a win
for A corresponds to finding (KEC, H,M) ̸= (K ′EC, H

′,M ′) such that f+(IV,P(KEC, H,M)) =
f+(IV,P(K ′EC, H ′,M ′)). We claim that such a win for A allows B to construct a winning collision
in the CR-game against f+. To see this, notice that P is injective, which is to say that for all
(KEC, H,M), (K ′EC, H

′,M ′), if P(KEC, H,M) = P(K ′EC, H ′,M ′), this implies that (KEC, H,M) =
(K ′EC, H

′,M ′). To justify this, notice that since KEC is prepended to the output of P, if KEC ̸= K ′EC
the padded strings are clearly different. On the other hand if KEC = K ′EC, then P(KEC, H,M) =
P(K ′EC, H ′,M ′) implies that Pad(H,M) = Pad(H ′,M ′). This in turns implies that (H,M) =
(H ′,M ′) by the injectivity of Pad(H,M) as discussed in Section 6.

As such, any winning tuple ((KEC, H,M), (K ′EC, H
′,M ′), BEC) for A breaking the sr-BIND

security of the HFC scheme, corresponds to a winning pair P(KEC, H,M) ̸= P(K ′EC, H ′,M ′) for B
in the CR-game against f+. It follows that

Advsr-bind
HFC (A) ≤ Advcr

f+(B) ,
as required.

Proof of Theorem 4.
The games for this proof are shown in Figure 18. We begin with game G0 of that figure, which

is a rewriting of otROR0 which runs the encryption procedure of HFC in A’s encryption oracle.
Since this is only a syntactic change,

Pr
[
otROR0AHFC ⇒ 1

]
= Pr [G0 ⇒ 1] .

Next we transition to game G1, in which each fresh query to the compression function f is answered
with an n-bit random bit string as opposed to the output of the function. A look up table is
maintained to ensure that responses to repeated queries are consistent. We may bound the difference
between G0 and G1 via a reduction to the RKA-PRF security of f. Let B be an attacker in the
RKA-PRF game against f. Attacker B simulates A’s encryption oracle using its own ROR oracle
as follows. On input (H,M), attacker B pads and partitions the message as per the scheme. B
then computes the encryptment following the pseudocode description of encryptment algorithm

43

HFCEnc and submitting a query (V,X) to his ROR oracle every time HFCEnc would compute
f(V, (KEC ⊕ X)). B then returns the resulting ciphertext and binding tag (CEC, BEC) to A, and
outputs whatever bit A does. Notice that if B’s oracle is returning real compression function
outputs then this perfectly simulates game G0, otherwise it perfectly simulates game G1. Therefore
a reduction to the RKA-PRF security of f implies that

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1] | ≤ Adv⊕-prff (B) .
Next we define game G2 (not shown) to be identical to G1, except we answer each fresh query to f
with a uniform random bit string, regardless of whether or not the query is fresh. Games G2 and G1

run identically unless f is queried on the same input twice. Notice that this may only occur if one
of the randomly sampled n-bit chaining variables collides with either another randomly sampled
n-bit chaining variable or with IV ∈ {0, 1}n. Supposing A’s query is such that the message /
header have a combined length of ℓ d-bit blocks after padding, then a standard argument taking a
birthday bound implies that

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1] | ≤ (ℓ+ 1)2

2n+1
,

where the extra plus one follows from the extra compression function call required to compute the
initial chaining variable V0. Moreover, notice that in game G2 both CEC and BEC are identically
distributed to random bit strings, and so

Pr [G2 ⇒ 1] = Pr
[
otROR1AHFC ⇒ 1

]
.

Combining and rewriting gives the desired result.

Proof of Theorem 5.
Let A be an attacker in game otCTXT against HFC who makes q queries to oracle dec. We

argue by a series of game hops. We begin by defining game G0 which is equivalent to game otCTXT
against HFC. We may assume without loss of generality that A never repeats a query to dec, nor
queries the tuple (H∗, C∗EC, B

∗
EC) where (C∗EC, B

∗
EC) is the encryptment returned in response to A’s

enc query (H∗,M∗), since such a query will always result in ⊥ being returned. More generally,
we may assume that A never makes a dec query of the form (H∗, C∗EC, BEC) for some BEC ̸= B∗EC,
where again starred values correspond to the challenge enc query, since due to the strong correctness
of the scheme, the binding tag will be incorrect, and so decryptment will always return an error.
Finally, we may assume that A never makes a dec query such that the ‘first phase’ of decryptment
— by which we mean the steps which recover the message underlying the ciphertext — returns
an error, since this cannot possibly correspond to a winning query. As such, to each dec query
(H,CEC, BEC) made by A, we may associate a pair (H,M) which will be recovered in the first
decryptment phase from (H,CEC), and moreover due to the strong correctness of the scheme, it
follows that if (H,CEC) ̸= (H ′, C ′EC) then the associated header / message pairs (H,M), (H ′,M ′)
will be distinct also.

With this in place, we now define G1, which is identical to G0 except each fresh query to the
compression function f is answered with an n-bit random bit string as opposed to the output of the
function. A look up table is maintained to ensure that responses to repeated queries are consistent.
An analogous argument to that made in the proof of Theorem 4 implies that exists an attacker B
in the RKA-PRF game against f with the claimed query budget such that

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1] | ≤ Adv⊕-prff (B) .
Next we define game G2, which is identical to G1 except we modify oracle dec to decrypt queries for
which the header / ciphertext pair (H,CEC) have previously been queried to dec by table look-up. In

44

G0:

KEC←$ {0, 1}d

query-made← false

b←$Aenc(·,·)

Return b

enc(H,M):

If query-made = true then Return ⊥
query-made← true

H1, . . . , Hh ← PadH(H,M)

M1, . . . ,Mm ← PadM(H,M)

V0 ← f(IV,KEC)

For i = 1, . . . , h do Vi ← f(Vi−1, (KEC ⊕Hi))

CEC ← ε

For i = 1, . . . ,m− 1 do

CEC ← CEC ∥ (Vh+i−1 ⊕Mi)

Vh+i ← f(Vh+i−1, (KEC ⊕Mi))

CEC ← CEC ∥ (Vh+m−1 ⊕Mm)

M ′
m,M ′

m+1 ← Parsed(PadSuf(|H|, |M |,Mm))

α← max{i : |M ′
m+i| > 0}

For i = 0, α

Vh+m+i ← f(Vh+m+i−1, (KEC ⊕Mm+i))

BEC ← Vh+m+α

Return (CEC, BEC)

G1:

KEC←$ {0, 1}d

query-made← false

b←$Aenc(·,·)

Return b

enc(H,M):

If query-made = true then Return ⊥
query-made← true

H1, . . . , Hh ← PadH(H,M)

M1, . . . ,Mm ← PadM(H,M)

G[IV,KEC]←$ {0, 1}n ;V0 ← G[IV,KEC]

For i = 1, . . . , h do

If G[Vi−1, (KEC ⊕Hi)] = ⊥ then

G[Vi−1, (KEC ⊕Hi)]←$ {0, 1}n

Vi ← G[Vi−1, (KEC ⊕Hi)]

CEC ← ε

For i = 1, . . . ,m− 1 do

CEC ← CEC ∥ (Vh+i−1 ⊕Mi)

If G[Vh+i−1, (KEC ⊕Mi)] = ⊥ then

G[Vh+i−1, (KEC ⊕Mi)]←$ {0, 1}n

Vh+i ← G[Vh+i−1, (KEC ⊕Mi)]

CEC ← CEC ∥ (Vh+m−1 ⊕Mm)

M ′
m,M ′

m+1 ← Parse(PadSuf(|H|, |M |,Mm))

α← max{i : |M ′
m+i| > 0}

For i = 0, α

If G[Vh+m+i−1, (KEC ⊕Mm+i)] = ⊥ then

G[Vh+m+i−1, (KEC ⊕Mm+i)]←$ {0, 1}n

Vh+m+i−1 ← G[Vh+m+i−1, (KEC ⊕Mm+i)]

BEC ← Vh+m+α

Return (CEC, BEC)

Figure 18: Games for the proof of Theorem 4.

more detail, table D is initialized to ⊥. Each time dec is queried on a tuple (H,CEC, BEC) such that
D[H,CEC] =⊥, dec runs HFCDec and sets D[H,CEC] = (M,BEC) where M is the message recovered
during decryption, and BEC is the (correct) binding tag for this pair which is computed during
decryption. Subsequently, if dec is queried on a tuple (H,CEC, B

′
EC), such that D[H,CEC] ̸=⊥, it

simply checks if BEC = B′EC, returns M if so, and ⊥ otherwise. This is a purely syntactic change
which does not affect the outcome of the game, and so it follows that

Pr [G1 ⇒ 1] = Pr [G2 ⇒ 1] .

Next we define game G3, which is identical to game G2, except if one of random strings sampled to
respond to a fresh query to f collides with a previously sampled string or the initialization vector
IV , then we sample again such that this is not the case. Notice that these games run identically
unless two of these sampled strings collide, an event we denote coll. The Fundamental Lemma of
Game Playing therefore implies that

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1] | ≤ Pr [coll in G2] .

We now bound this probability. Let (H0,M0) denote the query made by A to enc. Suppose that of
A’s q dec queries, these contain q1 distinct and chronologically ordered pairs (H1, C1

EC), . . . , (H
q1 , Cq1

EC),
and let (H1,M1), . . . , (Hq1 ,M q1) denote the pairs of headers and underlying messages correspond-
ing to these queries. Moreover, following from the discussion at the beginning of the proof, it must

45

be the case that (H i,M i) ̸= (Hj ,M j) for 0 ≤ i < j ≤ q1. Suppose that the total padded length
of these messages in d-bit blocks is equal to ℓ. Notice that at most (ℓ+ 1) strings will be sampled
while processing these queries (the plus one term arising from the initial query of (IV,KEC) made
by enc to compute the initial chaining variable V0), and so a birthday bound implies that

Pr [coll in G2] ≤
(ℓ+ 1)2

2n+1
.

We now argue that in game G3, each binding tag B0
EC, . . . , B

q1
EC is computed as the result of a

fresh query to f, and is chosen randomly from a set of size at least 2n − ℓ. To see this, consider
computing the binding tag for each of the padded strings Pad(H0,M0), . . . ,Pad(Hq1 ,M q1) in G3,
which are of length ℓ0, . . . , ℓq1 in d-bit blocks respectively. To Pad(H i,M i), we let (V i

0 , . . . , V
i
ℓi
)

denote the set of chaining variables passed through during the binding tag computation, where
V i
0 = f(IV,KEC) = V j

0 for all 0 ≤ i < j ≤ q1, and Bi
EC = V i

ℓi
. We let |LCP(i, j)| denote the

the length of the longest common prefix in d-bit blocks of Pad(H i,M i) and Pad(Hj ,M j). More
formally, we let |LCP(i, j)| = max{k : Trunck·d(Pad(H

i,M i)) = Trunck·d(Pad(H
j ,M j))} (recall

Trunck·d(X) returns X if |X| < kd and the first kd bits of X otherwise). We let |LCP(j)| =
maxi<j |LCP(i, j)|; that is to say, the length of the longest prefix in d-bit blocks that Pad(Hj ,M j)

shares with any previously processed padded message. We write M j
k to denote the kth d-bit block

of Pad(Hj ,M j).
We claim that the following hold. (1.) Let 1 ≤ j ≤ q1, and p = |LCP(j)|. Then for all 0 ≤ i < j

such that LCP(i, j) = p, it holds that p < min(ℓi, ℓj). (2.) Consider the binding tag computation
for padded messages Pad(H i,M i) and Pad(Hj ,M j) where 0 ≤ i < j ≤ q1, and suppose that of the
associated series of chaining variables it holds that V i

k = V j
k′ for some 0 ≤ k ≤ ℓi, 0 ≤ k′ ≤ ℓj . Then

it must be the case that k = k′ and the first k blocks of Pad(H i,M i) and Pad(Hj ,M j) are equal.
To see that (1.) holds, first recall that the padding scheme Pad is prefix-free. Since by assump-

tion (H i,M i) ̸= (Hj ,M j) for all 0 ≤ i < j ≤ q1, it must be the case that Pad(H i,M i) is not a
prefix of Pad(Hj ,M j) or vice versa. As such, they must differ in at least one d-bit block, and so it
follows that |LCP(i, j)| < min(ℓi, ℓj).

For (2.), note that if k = k′ = 0 then the statement is vacuously true, and so we suppose for
the remainder of the proof that at least one of k, k′ is non-zero. Suppose for a contradiction there
exist Pad(H i,M i),Pad(Hj ,M j) which share a common chaining variable V i

k = V j
k′ , but for which

the claim does not hold. Since the strings returned in response to compression function f calls
are sampled without replacement, distinct queries will always return distinct responses. Suppose
that k, k′ > 0 (the case in which one of k, k′ equals 0 is entirely analogous). Then V i

k , V
j
k′ are

computed by querying (V i
k−1, (KEC ⊕M i

k)) and (V j
k′−1, (KEC ⊕M j

k′)) to f respectively. As such, it

must be the case that V i
k−1 = V j

k′−1 and M i
k = M j

k . Repeatedly applying this argument yields that

V i
k−α = V j

k′−α and M i
k−α+1 = M j

k′−α+1 for all α = 1, . . . ,min(k, k′). Suppose first that k ̸= k′, and

suppose without loss of generality that k < k′. This implies that V i
0 = V j

k′−k where k′ − k ≥ 1.

However, since V i
0 = f(IV,KEC) this implies that V j

k′−k−1 = IV , which is impossible since V j
k′−k−1

must have been computed via querying the random function and in G3, IV is removed from the
range of the function. Therefore it must be the case that k = k′, and so by the previous argument
(M i

1, . . . ,M
i
k) = (M j

1 , . . . ,M
j
k) also, proving the claim.

With this in place, consider computing the binding tag for a message Pad(Hj ,M j), where
p = |LCP(j)|. Let Prevj = {Pad(Hk,Mk)}k<j be the messages resulting from the first j − 1
queries to dec. Let Xj = {Pad(H i,M i) ∈ Prevj : LCP(i, j) = p}; in other words, the set of
previously processed padded header / message pairs which share a prefix of length p blocks with
Pad(Hj ,M j). Due to the consistency in responses to repeated queries to the compression function,

46

it is clearly the case that for all Pad(H i,M i) ∈ Xj , it holds that (V
i
0 , . . . , V

i
p) = (V j

0 , . . . , V
j
p). Since

by (1.), it must be the case that p < ℓi, ℓj , it follows that M
i
p+1,M

j
p+1 ̸= ε, and moreover the next

chaining variable for Pad(Hj ,M j) will be computed via querying (V j
p , (KEC ⊕M j

p+1)) to f.
We claim this will be a fresh query to f, and so will be answered with a string chosen uniformly

from a set of at most 2n − ℓ− 1 untaken points. To see this, notice that for all Pad(H i,M i) ∈ Xj ,

it holds that M i
p+1 ̸= M j

p+1, since otherwise this would contradict the maximality of p. Now

(2.) implies that V j
p cannot equal V i

k for any Pad(H i,M i), 0 ≤ i < j and 0 ≤ k ≤ ℓi unless

Pad(H i,M i) ∈ Xj and k = p. This implies that V j
p has not been queried to f at any point during

the computation of the first (j− 1) binding tags other than during the computation of the (p+1)st

chaining variable for strings in Xj . Since we have already argued that all such queries have a

distinct message block and so do not collide, it follows that (V j
p , (KEC ⊕M j

p+1)) represents a fresh

query to f, and so V j
p+1 is chosen uniformly from the set of available points. This in turn forces the

query made to compute the next chaining variable to be distinct from all points previously queried,
and so repeatedly applying the same argument implies the binding tag Bj

EC = V j
ℓj

is the result of a

fresh query also. Finally, since at most (ℓ+ 1) chaining variables are sampled while processing the
messages of combined length ℓ d-bit blocks, and the random strings returned in response to fresh
f queries are sampled without replacement (and from a set excluding IV ∈ {0, 1}n), it follows that
each binding tag is chosen from a set of size at most (2n − ℓ− 1), proving the claim.

We conclude by bounding the probability that A makes a winning query to dec, an event we
denote win. For 1 ≤ i ≤ q1, we mark the event that A makes a query (H i, Ci

EC, B
′
EC) to dec such

that B′EC = Bi
EC by setting a flag wini. Suppose that A makes ai queries with header / ciphertext

(H i, Ci
EC), and notice that

∑q1
i=1 ai = q. It follows that

Pr [win = true] = Pr [∨q1i=1wini = true] ≤
q1∑
i=1

ai∑
j=1

Pr
[
wini set by jth query of form (H i, Ci

EC, ·)
]

≤
q1∑
i=1

ai∑
j=1

1

2n − ℓ− 1− (j − 1)
≤

q∑
i=1

ai
2n − ℓ− 1− (q − 1)

≤ q

2n − ℓ− q
.

The first inequality follows from a union bound. The second inequality follows since each binding
tag is chosen uniformly from a set of size at least 2n− ℓ−1, and each incorrect guess at binding tag
Bi

EC allows A to reduce the size of the set of possible values for that binding tag by one. The third
inequality follows since ai ≤ q for all 1 ≤ i ≤ q1. The final argument follows since

∑q1
i=1 ai = q.

I A Transform from ccAEAD to Encryptment

In this section, we describe a transform which builds a secure encryptment scheme from any secure
ccAEAD scheme. Moreover, the rate of encryptment in the transformed construction is exactly
that of ccAEAD encryption; as such, the negative results on rate-1 encryptment schemes from
Section 5 in turn rule out the existence of rate-1 ccAEAD schemes. In Section 7.3, we prove that
the other direction of the implication holds by showing that any secure encryptment scheme can
be transformed into a secure ccAEAD scheme using an authenticated encryption scheme, thereby
establishing an equivalence between encryptment and ccAEAD.

Let CE = (Kg,Enc,Dec,Ver) be a ccAEAD scheme, with associated coin space R. Then we may
construct an encryptment scheme EC[CE] = (EKg,EC,DO,EVer) from CE as follows. We define EKg

47

to be the algorithm which generates a ccAEAD key K←$ Kg, chooses random coins R←$R where
R denotes the coin space of the ccAEAD scheme, and outputs KEC = K ∥ R. The deterministic
encryptment algorithm on input (K∥R,H,M) uses the encryption algorithm of the ccAEAD scheme
with coins fixed to R to compute (C,CB)← Enc(K,H,M ;R), returning (CEC, BEC) = (C,CB). In
particular, notice that the rate of EC is exactly that of Enc.

We define DO to be the algorithm which, on input (K ∥R,H,CEC, BEC) first uses the decryption
algorithm of the ccAEAD scheme to compute (M,Kf) ← Dec(K,H,CEC, BEC). It then checks
if Enc(K,H,M ;R) = (CEC, BEC) and if so returns M ; otherwise it returns ⊥. Notice that re-
encrypting and comparing the encryptment in this way ensures the encryptment scheme has strong
correctness.

For EVer there are two cases. If the ccAEAD scheme is such that it outputs its key as the
opening Kf = K, then we define EVer to be the algorithm which on input (H,M,K ∥ R,BEC)
simply computes Ver(H,M,K,BEC) and returns the result. If ccAEAD does not fall in this class
of schemes, then EVer needs to recover the opening key K ′f before verifying the binding tag. EVer
can always do this (for both classes of ccAEAD scheme) given (H,M,K ∥R,BEC) by re-computing
(C ′, C ′B) ← Enc(K,H,M ;R), followed by (M ′,K ′f) ← Dec(K,H,C ′, C ′B) to recover the opening
K ′f , and finally returning the output of Ver(H,M,K ′f , BEC), (or 0 if any of these intermediate steps
return an error).

We describe the security of the derived encryptment scheme EC[CE] in the following theorem.

Theorem 11 Let CE= (Kg, Enc, Dec, Ver) be a ccAEAD scheme. Then there exists a strongly cor-
rect encryptment scheme EC[CE]= (EKg, EC, DO, EVer) such that for all adversaries A1,A2,A3, we
give adversaries B, C,D such that Advot-ror

EC[CE](A1) ≤ Advmo-ror
CE (B), Advr-bind

EC[CE](A2) ≤ Advr-bind
CE (C),

and Advs-bind
EC[CE](A3) ≤ Advs-bind

CE (D). Moreover, adversaries B, C,D run in the time of A1,A2,A3

respectively.

Since the encryptment is recomputed during decryption with DO, it is straightforward to see that
the scheme is strongly correct. We sketch the proof of the remainder of the three-part theorem
below.

(Part 1) It is easy to see that an attacker B in game MO-ROR against the ccAEAD scheme
CE can perfectly simulate game otROR for an attacker A1 against the derived encryptment scheme
EC[CE] by submitting B’s encryption query to his own encryption oracle and returning the result;
therefore a reduction to the otROR security of CE implies the first result.

(Part 2) To see that EC[CE] is receiver binding, notice that to win game r-BIND against EC[CE],
attacker A2 must output a tuple

((K ∥R,H,M), (K ′ ∥R′, H ′,M ′), CB)

such that (H,M) ̸= (H ′,M ′) but for which

Ver(H,M,Kf , CB) = Ver(H ′,M ′,K ′f , CB) = 1

where

(M,Kf) = Dec(K,H,Enc(K,H,M ;R)), and

(M ′,K ′f) = Dec(K ′, H ′,Enc(K ′, H ′,M ′;R′)) .

Thus an adversary C in game r-BIND against CE can simply run A2. When A2 outputs
((K ∥ R,H,M), (K ′ ∥ R′, H ′,M ′), CB), C runs Enc then Dec on both tuples to obtain each of the
openings, and return ((Kf , H,M), (K ′f , H

′,M ′), CB). This will be a winning tuple if A2’s output
is a winning tuple.

48

G0:

K←$ AEAD.Kg

b′←$AEnc,Dec,ChalEnc

Return b′

Enc(H,M):

KEC←$ EKg

(CEC, BEC)← EC(KEC, H,M)

CAE←$ AEAD.enc(K,BEC,KEC)

Y ← Y ∪ {(H,CEC, CAE, BEC)}
Return ((CEC, CAE), BEC)

Dec(H,C,CB):

If (H,C,CB) /∈ Y then

Return ⊥
(CEC, CAE)← C ;BEC ← CB

KEC ← AEAD.dec(K,BEC, CAE)

If KEC = ⊥ then Return ⊥
(M,KEC)← DO(KEC, H,CEC, BEC)

If (M,KEC) = ⊥ then Return ⊥
Return (M,KEC)

ChalEnc(H,M):

KEC←$ EKg

(CEC, BEC)← EC(KEC, H,M)

CAE←$ AEAD.enc(K,BEC,KEC)

Return ((CEC, CAE), BEC)

G1, G2 :

K←$ AEAD.Kg

b′←$AEnc,Dec,ChalEnc

Return b′

Enc(H,M):

KEC←$ EKg

(CEC, BEC)← EC(KEC, H,M)

CAE←$ AEAD.enc(K,BEC,KEC)

CAE←$ CAEAD(|KEC|)
Y ← Y ∪ {(H,CEC, CAE, BEC)}
D[H,CEC, CAE, BEC]← (M,KEC)

Return ((CEC, CAE), BEC)

Dec(H,C,CB):

If (H,C,CB) /∈ Y then

Return ⊥
(CEC, CAE)← C ;BEC ← CB

(M,KEC)← D[H,CEC, CAE, BEC]

Return (M,KEC)

ChalEnc(H,M):

KEC←$ EKg

(CEC, BEC)← EC(KEC, H,M)

CAE←$ AEAD.enc(K,BEC,KEC)

CAE←$ CAEAD(|KEC|)
Return ((CEC, CAE), BEC)

G3, G4 :

K←$ AEAD.Kg

b′←$AEnc,Dec,ChalEnc

Return b′

Enc(H,M):

KEC←$ EKg

(CEC, BEC)← EC(KEC, H,M)

CAE←$ CAEAD(|KEC|)
CAE←$ AEAD.enc(K,BEC,KEC)

Y ← Y ∪ {(H,CEC, CAE, BEC)}
D[H,CEC, CAE, BEC]← (M,KEC)

Return ((CEC, CAE), BEC)

Dec(H,C,CB):

If (H,C,CB) /∈ Y then

Return ⊥
(CEC, CAE)← C ;BEC ← CB

(M,KEC)← D[H,CEC, CAE, BEC]

Return (M,KEC)

ChalEnc(H,M):

KEC←$ EKg

CEC←$ {0, 1}clen(|M|)

BEC←$ {0, 1}btlen

CAE←$ CAEAD(|KEC|)
Return ((CEC, CAE), BEC)

Figure 19: Games for proof of Theorem 6.

(Part 3) To see that sender binding holds, suppose an attacker A3 in game s-BIND against
EC[CE] outputs a winning tuple (K ∥ R,H,C,CB). To decrypt correctly under DO, it must be
the case that Dec(K,H,C,CB) = (M,Kf) ̸=⊥, and Enc(K,H,M ;R) = (C,CB). The verification
algorithm EVer is then run on input (H,M,K ∥ R,CB), computing Enc(K,H,M ;R) = (C,CB),
followed by Dec(K,H,C,CB) = (M ′,K ′f). Here, the success of decryption implies that these steps
do not return an error, and that Kf = K ′f ; that is to say that the same opening is recovered
during both decryption and verification. Therefore, for verification to fail, it must be the case that
Ver(H,M,K ′f , CB) = 0. As such, any winning tuple implies a winning tuple for an adversary D in
game s-BIND against CE.

Finally, combining Lemma 1, Theorem 11, and that EC[CE] is strongly correct implies that
EC[CE] is, moreover, SCU secure.

J Proofs from Section 7

Proof of Theorem 6.
Let A be an attacker in game MO-ROR against CE[EC,AEAD]. We argue by a series of game

hops, as shown in Figure 19. We begin by defining game G0, which is identical to the MO-REAL
game of Figure 13, with the generic Enc and Dec procedures replaced with those of CE[EC,AEAD]
from Figure 14.

Next we define game G1, which is identical to game G0, except decryption by oracle Dec
is performed via table lookup. In more detail, we begin with an array D, initially set to ⊥.
When Enc computes a ciphertext ((CEC, CAE), BEC) under key KEC in response to some query

49

(H,M), it sets D[H,CEC, CAE, BEC] = (M,KEC). For subsequent decryption queries of the form
(H, ((CEC, CAE), BEC)), Dec now returns the pair (M,KEC) stored at entry D[H,CEC, CAE, BEC].
We need not maintain a look up table for ciphertexts generated by oracle ChalEnc, since Dec
only returns decryptions of ciphertexts generated via oracle Enc. It is easy to see that this is a
purely syntactic change and the two games are functionally equivalent, so it follows that

Pr [G0 ⇒ 1] = Pr [G1 ⇒ 1] .

Next we define game G2, which is identical to game G1 except all ciphertexts encrypted under the
AEAD scheme AEAD = (AEAD.Kg,AEAD.enc,AEAD.dec) are replaced with random ciphertexts of
appropriate length. We claim that there exists an adversary B1 in the ROR-security game against
AEAD such that

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1] | ≤ Advror
AEAD(B1) .

Adversary B1 proceeds as follows. B1 runs A as a subroutine. In response to Enc and ChalEnc
queries on input (H,M), B1 generates KEC←$ EKg, computes (CEC, BEC) ← EC(KEC, H,M) and
then queries (BEC,KEC) to his challenge encryption oracle, receiving CAE in return. B1 returns
ciphertext ((CEC, CAE), BEC) to A, and for Enc queries, additionally sets D[H,CEC, CAE, BEC] =
(M,KEC). To simulate the Dec oracle, B1 returns ⊥ if the header / ciphertext pair queried was not
the result of a previous query to Enc, and returns the pair (M,KEC) stored at D[H,CEC, CAE, BEC]
otherwise. At the end of the game B1 outputs whatever bit A does. Notice that if B1’s encryption
oracle is returning real ciphertexts as in game REALB1AEAD then this perfectly simulates game G1,

and if the oracle is returning random bit strings as in game RANDB1AEAD then this perfectly simulates
game G2. It follows that

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1] | = |Pr
[
REALB1AEAD ⇒ 1

]
− Pr

[
RANDB1AEAD ⇒ 1

]
|

= Advror
AEAD(B1) ,

proving the claim. Next we define game G3, which is identical to game G2 except that during
ChalEnc queries, the ciphertext / binding tag pairs produced by the encryptment scheme EC =
(EKg,EC,DO,EVer) are replaced with random bit strings of appropriate length. We claim that
there exists an adversary C in the otROR game against EC such that

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1] | ≤ qc ·Advot-ror
EC (C) .

where qc denotes the number of ChalEnc queries made by A. To see this, we define a series of
hybrid games H0, . . . ,Hqc where H0 is identical to game G2, Hqc is identical to game G3, and Hi is
identical to game Hi−1 except during the ith ChalEnc query, the encryptment outputs are replaced
with random bit strings. A standard hybrid argument implies that

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1] | ≤
qc−1∑
i=0

|Pr [Hi ⇒ 1]− Pr [Hi+1 ⇒ 1] . (1)

We now bound the gap between these game. Fix an index i ∈ [0, qc − 1] and let Ci be an attacker
in the otROR game against EC. Ci runs A as a subroutine, simulating his oracles as follows. For
Enc / Dec queries, A simulates the oracles by executing the pseudocode descriptions in game G2

(or equivalently G3). In response to ChalEnc queries, attacker Ci responds to the first i queries
by choosing random CEC, BEC, CAE of appropriate length, and returning ((CEC, CAE), BEC). For
the (i+ 1)th query, Ci queries his own encryption oracle on the query pair (H,M) to receive back
(CEC, BEC), and returns ((CEC, CAE), BEC) for random CAE. For the remaining ChalEnc queries,

50

Ci generates ciphertexts as per the pseudocode description of the oracle in game G2. At the end of
the game, adversary Ci outputs whatever bit A does.

Notice that if Ci’s encryption oracle returns real ciphertexts as in game otROR0, then this
perfectly simulates game Hi, whereas if the oracle returns random ciphertexts as in game otROR
then this perfectly simulates game Hi+1. It follows that

|Pr [Hi ⇒ 1]− Pr [Hi+1 ⇒ 1] | = |Pr
[
otROR0CiEC ⇒ 1

]
− Pr

[
otROR1CiEC ⇒ 1

]
|

= Advot-ror
EC (Ci) ;

substituting this into equation 1, and defining C to be the attacker who chooses i←$ [0, qc− 1] and
runs attacker Ci, proves the claim.

Notice that in game G3, in response to a query (H,M), oracle ChalEnc always returns a
random ciphertext / binding tag pair of appropriate length. Next we define game G4 to be the
same as game G3, except we revert oracle Enc to generate ciphertexts CAE by running AEAD.enc
rather than by choosing random ciphertexts. A reduction to the ROR-security of AEAD analogous
to that described above implies that there exists an adversary B2 in game ROR against AEAD such
that

|Pr [G3 ⇒ 1]− Pr [G4 ⇒ 1] | ≤ Advror
AEAD(B2) .

In particular, notice that in game G4, oracle Enc always returns real ciphertexts. We define a
final transition to game G5 (not shown) which does away with the look up table and instead runs
AEAD.dec on the relevant queries to Dec; again this is a purely syntactic change, and so

Pr [G4 ⇒ 1] = Pr [G5 ⇒ 1] .

Now game G5 is identical to game MO-RAND. Putting this all together via a triangle inequality,
it follows that there exists adversaries B, C such that

Advmo-ror
CE (A) ≤ 2 ·Advror

AEAD(B) + qc ·Advot-ror
EC (C) ,

where B is the attacker who flips a coin and depending on the outcome runs either B1 or B2 as
defined above, concluding the proof.

Proof of Theorem 7.
We argue by a series of game hops, shown in Figure 20. We begin by defining game G0, which

is simply the MO-CTXT game of Figure 13 with the generic Enc and Dec procedures replaced with
those of CE[EC,AEAD] from Figure 14. It follows that

Advmo-ctxt
CE (A) = Pr [G0 ⇒ 1] .

Next we define game G1, which is identical to game G0, except we maintain a table D of header
/ ciphertext pairs which were returned from oracle Enc; subsequently, the decryption of such
ciphertexts in oracles Dec and ChalDec is performed via table look up. Entries in the table are
of the form D[H,CEC, BEC, CAE], and we write e.g., D[·, ·, BEC, CAE] to denote the set

{(M,KEC) = D[H,CEC, BEC, CAE] : H ∈ H, CEC ∈ C} .
This is a purely syntactic change, which does not affect the outcome of the game. Likewise we set a
number of bad flags, but these too do not affect the outcome of the game. We additionally modify
oracle Dec so that if the attacker A submits a query which decrypts correctly but which does not
correspond to a previous query to Enc (and is thus not stored in the look up table), the win flag
is set to true. This change can only increase the attacker’s chance of success, and so it follows that

Pr [G0 ⇒ 1] ≤ Pr [G1 ⇒ 1] .

51

G0::

K←$ AEAD.Kg ; win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M):

KEC←$ EKg

(CEC, BEC)← EC(KEC, H,M)

CAE←$ AEAD.enc(K,BEC,KEC)

Y ← Y ∪ {(H,CEC, CAE, BEC)}
Return ((CEC, CAE), BEC)

Dec(H,C,CB):

(CEC, CAE)← C ;BEC ← CB

KEC ← AEAD.dec(K,BEC, CAE)

If KEC = ⊥ then Return ⊥
M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
Return (M,KEC)

ChalDec(H,C,CB):

(CEC, CAE)← C ;BEC ← CB

If (H,CEC, CAE, BEC) ∈ Y then

Return ⊥
KEC ← AEAD.dec(K,BEC, CAE)

If KEC = ⊥ then Return ⊥
M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

G1, G2 ::

K←$ AEAD.Kg ; win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M):

KEC←$ EKg

(CEC, BEC)← EC(KEC, H,M)

CAE←$ AEAD.enc(K,BEC,KEC)

Y ← Y ∪ {(H,CEC, CAE, BEC)}
D[H,CEC, BEC, CAE]← (M,KEC)

Return ((CEC, CAE), BEC)

Dec(H,C,CB):

(CEC, CAE)← C ;BEC ← CB

If D[H,CEC, BEC, CAE] ̸=⊥
Return D[H,CEC, BEC, CAE]

KEC ← AEAD.dec(K,BEC, CAE)

If KEC = ⊥ then Return ⊥
If D[·, ·, BEC, CAE] = {⊥}

bad1 ← true

Return ⊥
M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
If D[H,CEC, BEC, CAE] = {⊥}

bad2 ← true

win← true

Return (M,KEC)

ChalDec(H,C,CB):

(CEC, CAE)← C ;BEC ← CB

If (H,CEC, CAE, BEC) ∈ Y then

Return ⊥
KEC ← AEAD.dec(K,BEC, CAE)

If KEC = ⊥ then Return ⊥
If D[·, ·, BEC, CAE] = {⊥}

bad1 ← true

Return ⊥
M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
If D[H,CEC, BEC, CAE] = {⊥}

bad2 ← true

win← true

Return (M,KEC)

G3::

K←$ AEAD.Kg ; win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M):

KEC←$ EKg

(CEC, BEC)← EC(KEC, H,M)

DEC[CEC, BEC,KEC]← (H,M)

CAE←$ AEAD.enc(K,BEC,KEC)

Y ← Y ∪ {(H,CEC, CAE, BEC)}
D[H,CEC, BEC, CAE]← (M,KEC)

Return ((CEC, CAE), BEC)

Dec(H,C,CB):

(CEC, CAE)← C ;BEC ← CB

If D[H,CEC, BEC, CAE] ̸=⊥
Return D[H,CEC, BEC, CAE]

KEC ← AEAD.dec(K,BEC, CAE)

If KEC = ⊥ then Return ⊥
If D[·, ·, BEC, CAE] = {⊥}

bad1 ← true

Return ⊥
M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
If D[H,CEC, BEC, CAE] = {⊥}

bad2 ← true

Return ⊥
win← true

Return (M,KEC)

ChalDec(H,C,CB):

(CEC, CAE)← C ;BEC ← CB

If (H,CEC, CAE, BEC) ∈ Y then

Return ⊥
KEC ← AEAD.dec(K,BEC, CAE)

If KEC = ⊥ then Return ⊥
If D[·, ·, BEC, CAE] = {⊥}

bad1 ← true

Return ⊥
M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
If D[H,CEC, BEC, CAE] = {⊥}

bad2 ← true

Return ⊥
win← true

Return (M,KEC)

Figure 20: Games for proof of Theorem 7.

52

Next we define game G2, which is identical to game G1 except we change the way in which or-
acles Dec and ChalDec respond to queries. Namely now if the attacker submits a query to Dec or
ChalDec of the form (H,CEC, BEC, CAE) such that D[H,CEC, BEC, CAE] =⊥ and
AEAD.dec(K,BEC, CAE) ̸=⊥, it checks if D[·, ·, BEC, CAE] = {⊥}, and if so returns ⊥. These games
run identically unless the bad1 flag is set, and so the Fundamental Lemma of Game Playing implies
that

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1] | ≤ Pr [bad1 ← true in G1] .

We bound this probability with a reduction to the CTXT security of AEAD. Let B be an attacker
in the CTXT game against AEAD who runs A as a subroutine as follows. To simulate oracle Enc
on query (H,M), B computes generates an encryptment key KEC←$ EKg, computes (CEC, BEC)←
EC(KEC, H,M), queries (BEC,KEC) to his own encryption oracle receiving CAE in return, and
returns ((CEC, CAE), BEC) to A. B maintains a look up table of queries to Enc. To simulate Dec
andChalDec queries for (H, (CEC, CAE), BEC), B checks ifD[H,CEC, BEC, CAE] ̸=⊥; if so he returns
the stored (M,KEC) if the query was to the Dec oracle, and ⊥ if the query was to ChalDec. If
no such entry is stored, B submits the pair (BEC, CAE) to his own challenge decryption oracle. If ⊥
is returned, he returns ⊥ to A, otherwise he simulates the rest of the query as per the pseudocode
description. Notice that flag bad1 being set corresponds to A making a query (H, (CEC, CAE), BEC)
where (BEC, CAE) does not correspond to an encryption query made by B in his game, but which
nonetheless decrypts correctly. As such, this corresponds to a winning query for B. It follows that

Pr [bad1 ← true in G1] = Pr
[
CTXTBAEAD ⇒ 1

]
≤ Advctxt

AEAD(B) .

Notice that in game G2, all encryptment keys KEC recovered and input to DO during decryption
oracle queries correspond to keys generated in response to Enc queries. As such to each query
(H, (CEC, BEC), CAE) which may successfully decrypt in game G2, there must be an entry of the
form D[·, ·, BEC, CAE] = (·,KEC). By the correctness of the encryption scheme, all table entries
of that form must share the same key KEC, and this will be the key which is recovered during
decryption.

Next, we define a game G3 which is identical to game G2 except we again change the way
in which Dec, ChalDec respond to queries. Now if the attacker makes a query of the form
(H, (CEC, CAE), BEC) such that D[·, ·, BEC, CAE] ̸= {⊥}, and DO(KEC, CEC, BEC) does not return an
error (where KEC is the key underlying (BEC, CAE)), but for which D[H,CEC, BEC, CEC] =⊥, we
return ⊥. Notice that this restriction makes the game impossible to win, since Dec and ChalDec
will reject any ciphertext not previously returned by Enc. As such it follows that

Pr [G3 ⇒ 1] = 0 .

These two games run identically unless the flag bad2 is set, and so the fundamental lemma of game
playing implies that

|Pr [G2 ⇒ 1]− Pr [G3 ⇒ 1] | ≤ Pr [bad2 = true in G2] ;

we now bound this probability with a reduction to the SCU security of EC.
Suppose that attacker A makes q Enc queries, and let C be an attacker in the SCU game

against EC who proceeds as follows. C chooses a key K←$ Kg, an index i←$ [1, q], and runs A as a
subroutine. C simulates all apart from the ith Enc query by choosing a key KEC←$ EKg, comput-
ing (CEC, BEC)← EC(KEC, H,M) on the given input, setting CAE←$ AEAD.dec(K,BEC,KEC) and
returning ciphertext ((CEC, CAE), BEC). For the ith query, C submits A’s query (H∗,M∗) to his en-
cryptment oracle, receiving ((C∗EC, B

∗
EC),K

∗
EC) in return. C computes C∗AE ← AEAD.dec(K,B∗EC,K

∗
EC)

53

and returns ((C∗EC, C
∗
AE), B

∗
EC) to A. C maintains a look up table of the ciphertexts generated in

response to Enc queries as described previously.
C simulates oracles Dec and ChalDec for queries (H, (CEC, CAE), BEC) by checking if there is

an entry in the look up table of the form D[·, ·, BEC, CAE] = (M,KEC). If not he returns ⊥, but
if so he computes M ∪ {⊥} ∋ X ← DO(KEC, H,CEC, BEC) and returns the output to A. If A
ever makes a decryption query (H, (CEC, CAE), BEC) such that D[·, ·, BEC, CAE] ̸= {⊥} and which
decrypts correctly but for which D[H,CEC, BEC, CAE] =⊥, the bad2 flag will be set. If additionally
such a query has (BEC, CAE) = (B∗EC, C

∗
AE) and so corresponds to the ith Enc query in which C

inserted his challenge, then C submits the tuple (H,CEC) to his challenge decryption oracle.
If such an event occurs, then by definition DO(K∗EC, H,CEC, B

∗
EC) does not return ⊥, where

K∗EC is the key associated to (B∗EC, C
∗
AE), and that which was used in C’s challenge. At the same

time, we know that D[H,CEC, B
∗
EC, C

∗
AE] =⊥, so (H,CEC) ̸= (H∗, C∗EC). Therefore, this constitutes

a winning query for C in the SCU game.
Letting (B1

EC, C
1
AE), . . . , (B

q
EC, C

q
AE) denote the set of ciphertexts returned in response to the q

Enc queries made by A, and bad(BEC, CAE) denote the ciphertext in the query which resulted in
bad2 being set (by a previous transition, the only ciphertexts which could cause bad2 to be set must
correspond to an Enc query). We write Cj for the attacker who inserts his challenge at the jth

Enc query. Then taking a union bound, it follows that

Pr [bad2 ← true in G2] ≤
q∑

j=1

Pr
[
bad2 ← true in G2 ∧ bad(BEC, CAE) = (Bj

EC, C
j
AE)

]
≤

q∑
j=1

Pr
[
SCUC

j

EC ⇒ 1
]

= q ·Advscu
EC (C) .

Putting this altogether, it follows that

Advmo-ctxt
CE[EC,AEAD](A) ≤ Advctxt

AEAD(B) + q ·Advscu
EC (C)

which concludes the proof.

K An Alternate Encryptment-to-ccAEAD Transform

In this section we give a detailed description of the alternate transform for building ccAEAD
from encryptment given in Section 7.3. The encryption and decryption algorithms of the trans-
form (denoted as CE[EC, f]) are depicted in Figure 21. The scheme uses a compression function
f : {0, 1}n × {0, 1}d → {0, 1}n to derive a one-time encryptment key KEC from the long-term key
K and a randomly-generated N . It computes the ciphertext and binding tag via EC(KEC, ·, ·),
then computes an additional tag using another call to the compression function. The two uses of
the compression function are domain-separated using two distinct d-bit constants (fpad and spad)
XORed into the long-term key K.

Security of the compression function transform. We will begin by proving that CE[EC, f]
achieves multi-opening real-or-random security if the encryptment scheme EC is one-time real-or-
random secure and the compression function f is an RKA-PRF when keyed on its second input.

Theorem 12 Let EC be an encryptment scheme, f : {0, 1}n × {0, 1}d → {0, 1}n be a compression
function and let CE[EC, f] be the ccAEAD scheme built from EC and f according to Figure 21. Let

54

CE[EC, f].Enc(K,H,M):

N ←$ {0, 1}n

KEC ← f(N,K ⊕ fpad)

(CEC, BEC)← EC(KEC, H,M)

CAE ← f(BEC,K ⊕ spad)

Return ((N,CEC, CAE), BEC)

CE[EC, f].Dec(K,H, (C,CB)):

(N,CEC, CAE)← C ;BEC ← CB

C′
AE ← f(BEC,K ⊕ fpad)

If CAE ̸= C′
AE then Return ⊥

KEC ← f(N,K ⊕ spad)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
Return (M,KEC)

Figure 21: A transform CE[EC, f] for building a ccAEAD scheme from an encryptment scheme EC and a
compression function f : {0, 1}n × {0, 1}d → {0, 1}n. The strings fpad and spad are fixed and distinct.

fpad and spad be fixed distinct d-bit strings. Then for any adversary A in the MO-ROR game
against CE making a total of q queries, of which qc are to ChalEnc and qe are to Enc, there exists
adversaries B and C such that

Advmo-ror
CE (A) ≤ 2 ·Adv⊕-prff (B) + qc ·Advot-ror

EC (C) + (qe + qc)
2

2n
+

q2

2blen
.

Adversaries B and C run in the same amount of time as A. Adversary B makes at most 2q oracle
queries.

Proof: This proof will use a sequence of game hops depicted in Figure 22 and Figure 23. We begin
with game G0, which is exactly MO-REALCE[EC,f] except decryption oracle queries are answered via
table lookup. Concretely, the Enc oracle keeps a table D indexed by H,C,BEC triples and where
the value in D for each triple is M,KEC. On a decryption query the appropriate value in the table
is returned. This value is guaranteed to exist because the table Y is checked before decryption is
performed. This is only a syntactic change, so there is no change in advantage.

Game G1 is identical to G0 except all calls to f are replaced by calls to a random function. We use
RF (·, ·) for calls to the random function, where the first input is either a zero or one. We use zero
or one instead of fpad and spad to make the domain separation more explicit in the pseudocode. A
standard argument gives us a reduction B1 to the RKA-PRF security of f, which works as follows.
When A queries Enc or ChalEnc on (H,M), B samples N then queries (N, fpad) to its oracle. It
uses the output of its first oracle call as the KEC value to run (CEC, BEC)← EC(KEC, H,M). Then
it queries its oracle again with (BEC, spad) and uses the output as CAE. Because fpad and spad are
distinct, we see that

|Pr [G1 ⇒ 1]− Pr [G0 ⇒ 1]| ≤ Adv⊕-prff (B1) .

Game G2 is the same as G1 except a flag bad is set if any of the randomly sampled Ns collide.
Game G3 is the same as G2 except we include the boxed code. Now, in the event of such a collision,
the game resamples the N in question such that this is not the case. At most (qe + qc) nonces are
sampled, so by the Fundamental Lemma of code-based games,

|Pr [G3 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ Pr [bad = true in G3] ≤
(qe + qc)

2

2n+1
.

55

Game G4 is a syntactic change to sample the KEC values in ChalEnc as uniformly random bit
strings.

Games G5 is the same as G4 except the outputs of EC in ChalEnc are replaced by uniformly
random bits.

We can construct a reduction C to the one-time real-or-random security of EC (via a standard
hybrid argument over the qc queries made to ChalEnc) to get that

|Pr [G5 ⇒ 1]− Pr [G4 ⇒ 1]| ≤ qc ·Advot-ror
EC (C) .

In game G6 we set a bad1 flag to true if the BEC generated in ChalEnc collides with any previous
one (including those output by Enc). Game G7 is the same as G6 except it includes the boxed
code, which re-draws a new BEC value, distinct from all previous BEC values, if the bad1 flag is set.
This step is necessary because in a subsequent step CAE values need to be uniformly random bit
strings (not outputs of RF). By the fundamental lemma of code-based games, we get

|Pr [G6 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ Pr [bad = true in G6] ≤
q2

2blen+1
.

In game G8, CAE values are sampled uniformly at random instead of being generated via RF . This
change is syntactic. Note that in game G8, RF is never called in ChalEnc and all outputs are
generated uniformly at random except for N and BEC, which are sampled without replacement.
Thus, once we change back to sampling N and BEC with replacement the distribution of ChalEnc
outputs in game G8 will be the same as in MO-RANDCE[EC,f]. When we replace the calls to RF in
Enc with calls to f and undo table decryption, both oracles will be the same as in MO-RANDCE[EC,f].
Games G9 through G12 do this. Since they only undo previous transitions, we will not depict them.

Game G9 is the same as G8 except binding tags are sampled with replacement. This undoes the
transition from G5 to G6, so

|Pr [G9 ⇒ 1]− Pr [G8 ⇒ 1]| ≤ q2

2blen+1
.

Game G10 is the same as G9, except N values are sampled with replacement. This undoes the
transition from G2 to G3, so

|Pr [G10 ⇒ 1]− Pr [G9 ⇒ 1]| ≤ (qe + qc)
2

2n+1
.

Game G11 replaces calls to RF in Enc with keyed calls to f. We can build an RKA-PRF adversary
B2 so that

|Pr [G11 ⇒ 1]− Pr [G10 ⇒ 1]| ≤ Adv⊕-prff (B2) .

Game G12 undoes table decryption. This change is syntactic, so

Pr [G12 ⇒ 1] = Pr [G11 ⇒ 1] .

We can construct an adversary B, which is an elementary wrapper around B1 and B2 and flips a
random bit to decide which of the two to run, to replace the PRF advantage terms for B1 and B2
with a single term Adv⊕-prff (B). Summing the upper bounds on the individual game transitions
yields the bound.

56

G0:

K←$ {0, 1}d

Return AEnc,Dec,ChalDec

Enc(H,M):

N ←$ {0, 1}n

KEC ← f(N,K ⊕ fpad)

(CEC, BEC)← EC(KEC, H,M)

CAE ← f(BEC,K ⊕ spad)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

If (H,C,CB) ̸∈ Y then Return ⊥
Return D[H,C,BEC]

ChalEnc(H,M):

N ←$ {0, 1}n

KEC ← f(N,K ⊕ fpad)

(CEC, BEC)← EC(KEC, H,M)

CAE ← f(BEC,K ⊕ spad)

C ← N ∥ CEC ∥ CAE

Return (C,BEC)

G1:

Return AEnc,Dec,ChalDec

Enc(H,M):

N ←$ {0, 1}n

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

If (H,C,CB) ̸∈ Y then Return ⊥
Return D[H,C,BEC]

ChalEnc(H,M):

N ←$ {0, 1}n

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Return (C,BEC)

RF (b,X):

If Rb[X] ̸= ⊥ then Return Rb[X]

Rb[X]←$ {0, 1}n

Return Rb[X]

G2, G3 :

Return AEnc,Dec,ChalDec

Enc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
IV ← IV ∪N

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

If (H,C,CB) ̸∈ Y then Return ⊥
Return D[H,C,BEC]

ChalEnc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
IV ← IV ∪N

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Return (C,BEC)

RF (b,X):

If Rb[X] ̸= ⊥ then Return Rb[X]

Rb[X]←$ {0, 1}n

Return Rb[X]

G4:

Return AEnc,Dec,ChalDec

Enc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
IV ← IV ∪N

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

If (H,C,CB) ̸∈ Y then Return ⊥
Return D[H,C,BEC]

ChalEnc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
IV ← IV ∪N

KEC←$K
(CEC, BEC)← EC(KEC, H,M)

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Return (C,BEC)

RF (b,X):

If Rb[X] ̸= ⊥ then Return Rb[X]

Rb[X]←$ {0, 1}n

Return Rb[X]

Figure 22: Games for the proof of Theorem 12.

57

G5:

Return AEnc,Dec,ChalDec

Enc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
IV ← IV ∪N

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

If (H,C,CB) ̸∈ Y then Return ⊥
Return D[H,C,BEC]

ChalEnc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
(CEC, BEC)←$ C(|M |)× {0, 1}blen

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Return (C,BEC)

RF (b,X):

If Rb[X] ̸= ⊥ then Return Rb[X]

Rb[X]←$ {0, 1}n

Return Rb[X]

G6, , G7 :

Return AEnc,Dec,ChalDec

Enc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
IV ← IV ∪N

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

B ← B ∪BEC

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

If (H,C,CB) ̸∈ Y then Return ⊥
Return D[H,C,BEC]

ChalEnc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
(CEC, BEC)←$ C(|M |)× {0, 1}blen

If BEC ∈ B then

bad1 ← true

BEC←$ {0, 1}blen \ B
B ← B ∪BEC

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Return (C,BEC)

RF (b,X):

If Rb[X] ̸= ⊥ then Return Rb[X]

Rb[X]←$ {0, 1}n

Return Rb[X]

G8:

Return AEnc,Dec,ChalDec

Enc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
IV ← IV ∪N

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

B ← B ∪BEC

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,C,BEC]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

If (H,C,CB) ̸∈ Y then Return ⊥
Return D[H,C,BEC]

ChalEnc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
(CEC, BEC)←$ C(|M |)× {0, 1}blen

If BEC ∈ B then

bad1 ← true

BEC←$ {0, 1}blen \ B
B ← B ∪BEC

CAE←$ {0, 1}n

C ← N ∥ CEC ∥ CAE

Return (C,BEC)

RF (b,X):

If Rb[X] ̸= ⊥ then Return Rb[X]

Rb[X]←$ {0, 1}n

Return Rb[X]

Figure 23: Further games for the proof of Theorem 12.

58

Next we bound the MO-CTXT advantage of any adversary against CE[EC, f], via a reduction
to the RKA-PRF security of the compression function, and the SCU security of the encryptment
scheme.

Theorem 13 Let EC be an encryptment scheme, f : {0, 1}n × {0, 1}d → {0, 1}n be a compression
function and let CE[EC, f] be the ccAEAD scheme built from EC and f according to Figure 21. Let
fpad and spad be fixed distinct d-bit strings. Then for any adversary A in the MO-CTXT game
against CE making a total of q queries, of which qe are to Enc, there exists adversaries B and C
such that

Advmo-ctxt
CE (A) ≤ Adv⊕-prff (B) + qe ·Advscu

EC (C) +Advs-bind
EC (D) +Advsr-bind

EC (E) + 2q2 + q

2n
.

Adversaries B and C run in the same amount of time as A plus a O(q) overhead, and adversary B
makes at most q queries.

Proof: This proof will use a sequence of game hops. We begin with game G0, which is a rewriting of
game MO-CTXTCE[EC,f] except with the explicit encryption and decryption procedures of CE[EC, f].
Next we move to game G1, in which decryption is done via table lookup in Dec and ChalDec. The
table is indexed withH,CEC, BEC, CAE tuples and the value of each tuple is theM,KEC pair obtained
during the query to Enc. Additionally, the win flag can be set in Dec if a ciphertext not in the table
decrypts correctly. This increases the adversary’s advantage, so Pr [G1 ⇒ true] ≥ Pr [G0 ⇒ true].

Game G2 is the same as G1 except all calls to f have been replaced by a lazy-sampled random
function R. A standard argument lets us build a reduction B so that

|Pr [G2 ⇒ true]− Pr [G1 ⇒ true]| ≤ Adv⊕-prff (B) .
The reduction B is nearly identical to the reduction B1 described in the proof of Theorem 12, so
we elide the details. Here, as in the previous proof, we use zero and one for the first input to the
random function to make the domain separation explicit.

Game G3 is the same as G2 except Ns are sampled without replacement. By the fundamental
lemma of code-based games,

|Pr [G3 ⇒ true]− Pr [G2 ⇒ true]| ≤ q2e
2n

.

In gameG4, winning queries having the sameN and BEC as a previous output of Enc are disallowed.
Concretely, on a query to Dec or ChalDec having nonce N and binding tag BEC, the game looks
to see if any entries in the table D are of the form D[·, N, ·, BEC, ·]. Since a winning query of this
form will also have the same KEC as the one generated during the corresponding Enc call, any such
query will also be a valid forgery against EC in game SCU. Note that disallowing repeat nonces,
as ensured by the previous transition, is necessary here because the distribution of KEC values in
game G4 must be the same as in SCU. Thus, we can build an adversary C using a hybrid argument
over the qe queries made to Enc to get that

|Pr [G4 ⇒ true]− Pr [G3 ⇒ true]| ≤ qe ·Advscu
EC (C) .

In game G5 winning queries having BEC values not output by Enc are disallowed. Here is where
the domain separation of calls to f are important—without it, an adversary may try to forge by
using a previously seen CAE value as a key for encryptment, but domain separation prevents this.
The only queries which win in G5 and not G6 are those for which the adversary has guessed the
correct CAE value for a new BEC. Each query only has a 1/2n probability of guessing correctly, so

59

by a union bound

|Pr [G5 ⇒ true]− Pr [G4 ⇒ true]| ≤ q

2n
.

(Note that this step is essentially identical to the information-theoretic part of the standard security
bound for MACs built from PRFs.)

In game G6, collisions in the output of RF (0, ·) are disallowed: if the value sampled in RF (0, ·)
has been seen previously, a bad flag is set and the output is resampled from the set of unseen
values for the bit 0. Here we prevent two different nonces from resulting in the same key. To
see why this is important, take two nonces N0 ̸= N1 so that RF (0, N0) = RF (0, N1). Then if
(H,N0, CEC, BEC, CAE) is a valid ciphertext, (H,N1, CEC, BEC, CAE) will be as well, so the adversary
can forge. By the fundamental lemma of code-based games,

|Pr [G6 ⇒ true]− Pr [G5 ⇒ true]| ≤ q2

2n
.

By a previous transition, the only way to win in game G6 is to use a previously-seen BEC value
with a different N . A different N results in a different key in this game. By s-BIND security, any
winning query must also verify correctly, so in G6 any winning query must also break sr-BIND (as
different (KEC, H,M) tuples result in the same binding tag). Thus,

Pr [G6 ⇒ true] ≤ Advs-bind
EC (D) +Advsr-bind

EC (E) .

Summing the upper-bounds for all the game hops (and noting that qe ≤ q ⇒ q2e ≤ q2, so we can
combine the G3 and G6 terms) yields the bound.

We omit proofs for the sr-BIND and s-BIND security of CE[EC, f]; the transform inherits these
properties directly from EC.

60

G0:

K←$ {0, 1}d ; win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M):

N ←$ {0, 1}n

KEC ← f(N,K ⊕ fpad)

(CEC, BEC)← EC(KEC, H,M)

CAE ← f(BEC,K ⊕ spad)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
Return (C,BEC)

Dec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

C′
AE ← f(BEC,K ⊕ spad)

If C′
AE ̸= CAE then Return ⊥

KEC ← f(N,K ⊕ fpad)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
Return (M,KEC)

ChalDec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

If (H,C,BEC) ∈ Y then

Return ⊥
C′

AE ← f(BEC,K ⊕ spad)

If C′
AE ̸= CAE then Return ⊥

KEC ← f(N,K ⊕ fpad)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

G1:

K←$ {0, 1}d ; win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M):

N ←$ {0, 1}n

KEC ← f(N,K ⊕ fpad)

(CEC, BEC)← EC(KEC, H,M)

CAE ← f(BEC,K ⊕ spad)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,N,CEC, BEC, CAE]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

V ← D[H,N,CEC, BEC, CAE]

If V ̸= ⊥:
(M,KEC)← V

Return (M,KEC)

C′
AE ← f(BEC,K ⊕ spad)

If C′
AE ̸= CAE then Return ⊥

KEC ← f(N,K ⊕ fpad)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

ChalDec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

If (H,C,BEC) ∈ Y then

Return ⊥
C′

AE ← f(BEC,K ⊕ spad)

If C′
AE ̸= CAE then Return ⊥

KEC ← f(N,K ⊕ fpad)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

G2:

win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M):

N ←$ {0, 1}n

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,N,CEC, BEC, CAE]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

V ← D[H,N,CEC, BEC, CAE]

If V ̸= ⊥:
(M,KEC)← V

Return (M,KEC)

C′
AE ← RF (1, BEC)

If C′
AE ̸= CAE then Return ⊥

KEC ← RF (0, N)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

ChalDec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

If (H,C,BEC) ∈ Y then

Return ⊥
C′

AE ← RF (1, BEC)

If C′
AE ̸= CAE then Return ⊥

KEC ← RF (0, N)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

RF (b,X):

If Rb[X] ̸= ⊥:
Return Rb[X]

Y ←$ {0, 1}n

Rb[X]← Y

G3:

win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
IV ← IV ∪N

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,N,CEC, BEC, CAE]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

V ← D[H,N,CEC, BEC, CAE]

If V ̸= ⊥:
(M,KEC)← V

Return (M,KEC)

If D[·, N, ·, BEC, ·] ̸= ⊥ then

Return ⊥
C′

AE ← RF (1, BEC)

If C′
AE ̸= CAE then Return ⊥

KEC ← RF (0, N)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

ChalDec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

If (H,C,BEC) ∈ Y then

Return ⊥
C′

AE ← RF (1, BEC)

If C′
AE ̸= CAE then Return ⊥

KEC ← RF (0, N)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

RF (b,X):

If Rb[X] ̸= ⊥:
Return Rb[X]

Y ←$ {0, 1}n

Rb[X]← Y

Figure 24: Games for proof of Theorem 13.

61

G4:

win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
IV ← IV ∪N

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,N,CEC, BEC, CAE]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

V ← D[H,N,CEC, BEC, CAE]

If V ̸= ⊥:
(M,KEC)← V

Return (M,KEC)

If D[·, N, ·, BEC, ·] ̸= ⊥ then

Return ⊥
C′

AE ← RF (1, BEC)

If C′
AE ̸= CAE then Return ⊥

KEC ← RF (0, N)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

ChalDec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

If (H,C,BEC) ∈ Y then

Return ⊥
If D[·, N, ·, BEC, ·] ̸= ⊥ then

Return ⊥
C′

AE ← RF (1, BEC)

If C′
AE ̸= CAE then Return ⊥

KEC ← RF (0, N)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

RF (b,X):

If Rb[X] ̸= ⊥:
Return Rb[X]

Y ←$ {0, 1}n

Rb[X]← Y

G5:

win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
IV ← IV ∪N

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,N,CEC, BEC, CAE]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

V ← D[H,N,CEC, BEC, CAE]

If V ̸= ⊥:
(M,KEC)← V

Return (M,KEC)

If D[·, N, ·, BEC, ·] ̸= ⊥ then

Return ⊥
If D[·, ·, ·, BEC, ·] = ⊥ then

Return ⊥
C′

AE ← RF (1, BEC)

If C′
AE ̸= CAE then Return ⊥

KEC ← RF (0, N)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

ChalDec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

If (H,C,BEC) ∈ Y then

Return ⊥
If D[·, N, ·, BEC, ·] ̸= ⊥ then

Return ⊥
If D[·, ·, ·, BEC, ·] = ⊥ then

Return ⊥
C′

AE ← RF (1, BEC)

If C′
AE ̸= CAE then Return ⊥

KEC ← RF (0, N)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

RF (b,X):

If Rb[X] ̸= ⊥:
Return Rb[X]

Y ←$ {0, 1}n

Rb[X]← Y

G6:

win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M):

N ←$ {0, 1}n

If N ∈ IV then

bad← true

N ←$ {0, 1}n \ IV
IV ← IV ∪N

KEC ← RF (0, N)

(CEC, BEC)← EC(KEC, H,M)

CAE ← RF (1, BEC)

C ← N ∥ CEC ∥ CAE

Y ← Y ∪ {(H,C,BEC)}
D[H,N,CEC, BEC, CAE]← (M,KEC)

Return (C,BEC)

Dec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

V ← D[H,N,CEC, BEC, CAE]

If V ̸= ⊥:
(M,KEC)← V

Return (M,KEC)

If D[·, N, ·, BEC, ·] ̸= ⊥ then

Return ⊥
C′

AE ← RF (1, BEC)

If C′
AE ̸= CAE then Return ⊥

KEC ← RF (0, N)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

ChalDec(H,C,CB):

(N,CEC, CAE)← C ;BEC ← CB

If (H,C,BEC) ∈ Y then

Return ⊥
If D[·, N, ·, BEC, ·] ̸= ⊥ then

Return ⊥
C′

AE ← RF (1, BEC)

If C′
AE ̸= CAE then Return ⊥

KEC ← RF (0, N)

M ← DO(KEC, H,CEC, BEC)

If M = ⊥ then Return ⊥
win← true

Return (M,KEC)

RF (b,X):

If Rb[X] ̸= ⊥:
Return Rb[X]

Y ←$ {0, 1}n

If b = 0 ∧ Y ∈ R0[·] then
bad1 ← true

Y ←$ {0, 1}n \R0[·]
Rb[X]← Y

Figure 25: Further Games for proof of Theorem 13.

62

	Introduction
	Definitions and Preliminaries
	Invisible Salamanders: Breaking Facebook's Franking
	A Simple Attack
	Advanced Variant and Proof of Concept
	Discussion And Mitigation

	A New Primitive: Encryptment
	Security Goals for Encryptment

	On Efficient Fixed-key Blockcipher-Based Encryptment
	Encryptment from Hashing
	Analyzing the HFC Encryptment Scheme

	Compactly Committing AEAD from Encryptment
	ccAEAD Syntax and Correctness
	Security Notions for Compactly Committing AEAD
	Encryptment to ccAEAD Transforms

	Other Applications of Encryptment
	Relationship Between Receiver Binding Notions
	Proofs from Section 4
	Encryptment via Generic Composition
	Stronger Receiver Binding and Robust Encryption
	OCB is Not Binding
	The SHA-3 Duplex Construction
	Davies-Meyer as an RKA-PRF
	Proofs from Section 6
	A Transform from ccAEAD to Encryptment
	Proofs from Section 7
	An Alternate Encryptment-to-ccAEAD Transform

