
Paper ID #25455

Impact of a Modeling Intervention in an Introductory Programming Course

Dr. Kelsey Joy Rodgers, Embry-Riddle Aeronautical University, Daytona Beach

Kelsey Rodgers is an Assistant Professor in the Engineering Fundamentals Department at Embry-Riddle
Aeronautical University. She teaches a MATLAB programming course to mostly first-year engineering
students. She primarily investigates how students develop mathematical models and computational mod-
els. She also conducts research around effective feedback and nanotechnology education. She graduated
from the School of Engineering Education at Purdue University with a doctorate in engineering educa-
tion. She previous conducted research in Purdue University’s First-Year Engineering Program with the
Network for Nanotechnology (NCN) Educational Research team, the Model-Eliciting Activities (MEAs)
Educational Research team, and a few fellow STEM education graduates for an obtained Discovery, En-
gagement, and Learning (DEAL) grant. Prior to attending Purdue University, she graduated from Arizona
State University with her B.S.E. in Engineering from the College of Technology and Innovation, where
she worked on a team conducting research on how students learn LabVIEW through Disassemble, Ana-
lyze, Assemble (DAA) activities.

Dr. Jaqi C. McNeil, University of Louisville

J.C. McNeil is an Assistant Professor for the Department of Engineering Fundamentals at University of
Louisville. Research interests include diversity in engineering, persistence, retention, and transitions to
and from co-op experiences. Contact email: j.mcneil@louisville.edu

Dr. Matthew A. Verleger, Embry-Riddle Aeronautical University, Daytona Beach

Matthew Verleger is an Associate Professor of Engineering Fundamentals at Embry-Riddle Aeronauti-
cal University in Daytona Beach, Florida. His research interests are focused on using action research
methodologies to develop immediate, measurable improvements in classroom instruction and the use of
Model-Eliciting Activities (MEAs) in teaching students about engineering problem solving. Dr. Verleger
is an active member of ASEE. He also serves as the developer and site manager for the Model-Eliciting
Activities Learning System (MEALearning.com), a site designed for implementing, managing, and re-
searching MEAs in large classes.

Dr. Farshid Marbouti, San Jose State University

Farshid Marbouti is an Assistant Professor of General (interdisciplinary) Engineering at San Jose State
University (SJSU). He is currently the chair of SJSU Senate Student Success Committee. Farshid com-
pleted his Ph.D. in Engineering Education at Purdue University. His research interests center on First-Year
Engineering student success and engineering design.

c©American Society for Engineering Education, 2019

Impact of a Modeling Intervention in an
Introductory Programming Course

Abstract

This complete research paper describes the impact of a modeling intervention on first-year
engineering students’ modeling skills in an introductory computer programming course. Five
sections of the first-year engineering introductory programming course at a private,
STEM+Business institution were revised to center around modeling concepts. These five
sections made up the experimental group for this study. The comparison group consisted of four
sections of the course that were not revised. Students in all these sections were given two
different versions of a modeling problem two times in the semester to test their progress in
gaining modeling skills. Each version required two submissions – a written solution and a coded
solution. The assessment of these four submissions based on the three established dimensions of
modeling were quantitatively analyzed in this study. The three dimensions within mathematical
modeling that were the focus of this study were mathematical model complexity, modifiability,
and reusability. Mathematical model complexity is being able to address the complexity of the
problem. Modifiability addresses the generalizability of the model solution. Reusability is
showing an understanding of the problem and the user. Statistical analysis showed that students
in the experimental group had more gains in their demonstrated modeling abilities across all
three dimensions than the students in the comparison group. This study demonstrated that
intentional and explicit instructional strategies targeting model development resulted in greater
gains in students’ demonstrated modeling skills and both their written and coded solutions to a
complex modeling problem.

Introduction

Engineers must understand how to build, apply, and adapt various types of models, including
mathematical and computational models, to be successful. Throughout undergraduate
engineering education, modeling is fundamental for many core concepts, though it is rarely
explicitly taught [1]. There are many benefits to explicitly teaching modeling, particularly in the
first years of an engineering program [1-3]. There are some well-developed pedagogies that
demonstrate the successes of doing this. Model-eliciting activities (MEAs) are an impactful
example of a pedagogical approach used in first-year engineering to teach mathematical
modeling skills [3]. There is still a significant need for more meaningful ways of explicitly
teaching modeling throughout the engineering curricula and especially in first-year engineering
[1, 4].

There has been an extensive amount of research around modeling interventions within the
Computational Adaptive Expertise (CADEX) [2, 5] and Models and Modeling Perspective
(M&MP) [6] frameworks that have proven successful. Carberry, McKenna, Linsenmeier, and
Cole [7] conducted research within the CADEX framework and found that explicit modeling
interventions caused a significant shift in senior engineering students’ concepts of models and
modeling. Carberry and McKenna [1] expanded their research within the CADEX framework to
gain a greater understanding of modeling conceptions and found more students discussed
mathematical and predictive models when they were taught an explicit mathematical modeling
module. Research efforts within the M&MP have focused around a mathematical modeling
intervention called MEAs [3]. Some of this research has focused on how students develop

mathematical model solutions to MEAs (e.g., [8, 9]), MEA implementation strategies within
engineering courses (e.g., [10, 11]), and the improvement of MEA implementation strategies in
large first-year engineering courses (e.g., [12]) and upper division courses (e.g.,[13, 14]).

According to Lesh and Harel [15] “models are conceptual systems that generally tend to be
expressed using a variety of interacting representational media, which may involve written
symbols, spoken language, computer-based graphics, paper-based diagrams or graphs, or
experience-based metaphors” (p. 159). Physical models (e.g., prototypes, drawings) are the most
common type of models that engineering students identify as a type of model and discuss as a
model used in the design process [1, 16]. Although physical models are one type of model that
engineers use, there are other critical types of modeling, including mathematical models [3, 6,
17] and computational models [18, 19]. Within engineering curricula, various types of models
need to be explicitly introduced to enhance students’ definitional knowledge and implemented to
develop students’ modeling skills. Interventions need to focus on types of models, model
application, and model development in engineering curricula, especially on mathematical and
computational models [1, 3, 4, 19]. Rodgers [20] found that although students participated in
well-developed mathematical modeling activities, they still were unable to demonstrate an ability
to define mathematical models. Rodgers [20] and Carberry and McKenna [1] discussed the
importance of incorporating explicit language that identifies various types of models throughout
engineering courses that incorporate modeling.

For this paper, two types of models were explored; mathematical models and computational
models:

• Mathematical Models: Mathematical models utilize mathematics to explain and enable
exploration of a real-world system. A pedagogical approach that has been extensively
studied to enable students to develop mathematical modeling skills is the use of MEAs
[17]. MEAs are a type of open-ended problem where students create a mathematical
model to meet particular criteria and constraints for a stakeholder based on provided,
relevant data [3].

• Computational Models: Computational models, in the context of this work, are often seen
in the form of simulations (e.g., [21-23]). Where computational modeling is often taught
is in the context of programming courses (e.g., [18]), but rarely is it referred to as
computational modeling or simulation. For example, having students develop code that
can respond to a variety of input conditions is a form of simulation, but is typically
referred to as “programming logic”.

Problem solving, design, and introductory computer programming are some fundamental course
content integrated into most first-year engineering courses [4, 24, 25]. All three of these involve
modeling, although it may not be clearly discussed. Mathematical modeling is essential to
engineering problem solving and design in the workforce [4]. Teaching students how to develop
an algorithmic solution (a type of model) is fundamental to programming, although sometimes
there is greater focus on syntax [25]. Most engineering education studies on computer
programming focus on paired programming (e.g., [26]), extreme programming (XP) (e.g., [27]),
or active learning teaching pedagogies [28]. This study focused specifically on modeling
development in a first-year programming course.

Research Purpose and Questions

The focus of this study is on the opportunities that concentration on modeling can present in a
computer programming course, since there are many challenges in teaching students to program.
Introductory programming courses face many challenges in engineering, such as low retention
rates, students entering with extremely different backgrounds in programming and computers,
and overemphasis on syntax over learning programming skills [24, 25].

In this study, we investigated the following research questions: (1) In a computer programming
course, how does the assessment of students’ written and coded solutions to a complex open-
ended problem change over the course of multiple submissions? and (2) How do students’
solutions compare across sections that have an emphasis on modeling and others that do not?

Methods

Setting and Participants

In Fall 2018, 302 students enrolled in an introductory computer programming course for
engineers across 16 sections at a medium-sized, private, STEM+Business only university. The
programming language for the course is MATLAB. All mechanical, civil, and aerospace
engineering students are required to take this course. The electrical and computer engineering
students take a similar course that uses Java as the programming language. This course is open to
other students at the university and required by some non-engineering degree programs, such as
the astronomy and astrophysics program and the unmanned aircraft systems science degree.
Even with these additional requirements, sections are made up of mostly engineering students
and more specifically aerospace engineering students. The focus of the course is to teach
engineering students how to develop effective computer programs for solving problems. The
learning objectives of the course are to:
1. Demonstrate understanding of the role of software design when solving problems using
the computer.

2. Apply knowledge of mathematics and computer programming to communicate ideas
when solving computational problems.

3. Design and implement algorithmic solutions to problems requiring user input/output
(I/O), data processing, control structures, arrays, and file input/output (I/O).

4. Solve problems of intermediate complexity requiring the use of non-numerical data such
as characters and strings.

5. Apply a top-down design methodology to problems of intermediate complexity using
functions.

Five of the 16 sections were taught by two instructors that explicitly incorporated modeling
throughout the course materials by developing various levels of modeling problems for all the
homework assignments and in-class activities. The revised course was designed to scaffold
students from solving more close-ended modeling problems to more open-ended modeling
problems across the semester. The language of the class focused on mathematical and
computational models, in addition to the more common computing language of algorithms and
computer programs. Both instructors used the same homework assignments and exams, but had
some variations in their in-class activities and presentations. There was a total of 82 students
enrolled in these five sections. The other 11 sections taught by three other instructors were not

significantly modified from previous iterations of the course. There was a total of 220 students
enrolled in these 11 sections. These sections focused more on syntax and used close-ended
problems with one correct answer for most of their assignments.

All the students from the 16 sections of the courses were given one common modeling problem
with two different versions to complete individually. Each version consisted of two submissions
– the first submissions were students’ written solutions potentially with tables, figures, and
flowcharts (i.e. their mathematical model) and the second submission were students’ MATLAB
code with comments, as specified (i.e. their computational model).

The modeling problem was developed using the six design principles of the M&MP theoretical
framework [6]. The second version of the problem contained more data than the first version to
prompt the students to reevaluate their solutions. The intention of the second version was also to
ensure more iterations in their model development and capture how their demonstrated modeling
skills developed across the course. The first submission for the problem was similar to a MEA
[3] in that the students had to interpret a problem and data to develop a model. The second
submission followed the concept of a model-adaptation activity (MAA) [3] in that the students
had to apply the model they developed through the first submission.

The modeling problem challenged students to develop a model to predict the probability of a
student team (user) to win in the upcoming Design, Build, Fly competition based on both the past
performance data of teams that competed in previous competitions and the student team’s (user)
tested values for three different missions (i.e., successful flight and landing, fastest flight time,
and largest product of laps flown and cargo carried within a set time frame). The program also
had to provide recommendations to help improve the student team’s (user) chances of winning,
when appropriate based on the team’s inputted tested values. In the first version of the problem,
the students were provided a table of the top four teams’ scores for each mission and overall for
the past four years. In the second version of the problem, the students were provided an
additional data set in Excel that consisted of the top 50 teams’ scores for the most recent
competition. This additional data set complemented the previous one they received. An example
of the problem provided to the students for the first version is provided in Appendix A. Some
minor modifications were made to the problem provided for distribution purposes.

Data Collection

The 82 students in the five sections with the revised modeling curriculum make up the
experimental group for this study. Out of the 11 sections taught by the three instructors (i.e. the
comparison group), only one instructor both implemented the assignment consistent with the
way it was developed and ensured the assessment of the assignment was consistent. This
instructor’s four sections consisting of 88 students is the comparison group that was used for this
study. The data collected for this study were the students submitted solutions for all four of the
modeling problem submissions (summarized in Table 1). Within the experimental group, 79
students submitted at least one submission for the assigned modeling problem. Within the
comparison group, 85 students completed at least one submission for the assigned modeling
problem. All 164 of these students’ submissions (ranging from 1 to 4 submissions per student)
were used to investigate the established research questions.

Table 1: Description of the four submissions for the modeling problem
Submission Modeling Problem Assigned Submission Type
Submission 1 Version 1 (table of data) Written solution
Submission 2 Version 1 (table of data) Coded solution (.m file)
Submission 3 Version 2 (Excel file with a larger data set) Written solution
Submission 4 Version 2 (Excel file with a larger data set) Coded solution (.m file)

Data Analysis

To assess the quality of students’ models in each of the submissions, a rubric was established.
The rubric consisted of items developed based on categories established for assessing students’
solutions to MEAs [8, 29]. The three recognized dimensions focused on were mathematical
model complexity, modifiability, and reusability. The purpose of the mathematical model
complexity dimension is to assess students’ ability to address the complexity of the problem in
an elegant solution [8, 29]. Items related to this category consisted of proper implementation of
relevant equations, appropriately incorporated data, and meaningful potential outputs from the
model. There was a total of nine items developed within this category. The purpose of the
modifiability dimension is to ensure a student’s model is generalizable by evaluating the
student’s rationale for each step in their model [8, 29]. There was a total of five items created
that focused on students’ rationale for five major components of their models. The purpose of the
reusability dimension is to assess students’ understandings of the given problem and their client
or user (i.e., problem scoping) [8, 29]. There was a total of three items developed that focused on
students’ assumptions and understandings of needed information from their client/user.
Shareability, the fourth dimension from the literature [8, 29], was not focused on in the
developing rubric items because strict formatting was not required for the students’ submissions.
These 17 modeling rubric items were assessed in all four submissions.

Additional rubric items were developed to assess the quality of students’ programs for each of
the modeling problems. The coding rubric items were only used to assess the second submission
of each problem (i.e. submissions 2 and 4). This portion of the rubric focused more on syntax
errors and was only used for grading purposes in the class. It was not used for this study.

The entire rubric used for the fourth submission is provided in Appendix B. All the scores for the
rubric items shown in the appendix are based on the fourth submission scoring used for assigning
students’ grades. For the data analysis all the rubric items for were assigned a possible score of 1
point. Most of the rubric items consisted of full points for demonstrated or no points for not
demonstrated. For the three rubric items relevant to this study with three possible scoring levels,
the scores were converted to 1 (demonstrated), 0.5 (attempted), and 0 (not demonstrated).

The students’ solutions to the modeling problem that were included in this study were graded by
three student graders. These graders completed a required training that consisted of assessing
multiple sample student solutions using the rubrics to ensure consistency across grading – there
was a separate training for each version of the modeling problem where the application of the
rubric for both the model and code submissions was explained in detail.

The training was completed in an iterative process of the graders evaluating a student’s solution
individually and then discuss the grades until all the graders assessed a student’s work
individually with at least 90% agreement across the three categories and 80% agreement for each

individual category. To capture the graders’ scores and improve agreement across the graders,
each rubric item was discussed one at a time. First the graders’ evaluations were documented and
then their selections were deliberated – all uncertainties and/or disagreements about selections
were discussed until a firm agreement was made. Prior to the training, two researchers had
assessed five potential sample solutions and came to an agreement on the grade for each rubric
item to help guide the graders in the training. There were some cases in the first few rounds of
grading during training for the first version where two graders selected a grade that differed from
the one the researchers agreed upon. In all cases, the graders’ responses were revised to match
the researchers’ conclusion. The graders were quickly able to understand the application of the
rubric. Most of the items only had a yes or no (all or nothing) possible score; this seemed to
make the training process much easier. The first training consisted of four rounds of grading
sample solutions and resulted in 100% agreement by the final round (refer to Table 2). The
second training only consisted of grading two sample solutions since the graders demonstrated a
proficient understanding of the process (refer to Table 3). After each training, the three student
graders each graded students’ solutions for three sections. A grader typically graded all four
submissions for each student, but there were some instances where students received grades from
two different graders across their submissions.

Table 2: Percent agreement for the first version of the modeling problem

Round Mathematical
Model Complexity Modifiability Reusability Overall

1 0.667 0.867 0.556 0.706
2 0.778 0.867 0.556 0.765
3 0.778 0.867 0.778 0.804
4 1.000 1.000 1.000 1.000

Table 3: Percent agreement for the second version of the modeling problem

Round Mathematical
Model Complexity Modifiability Reusability Overall

1 0.778 0.867 0.556 0.765
2 1.000 0.867 1.000 0.961

The resulting assessments of students’ works based on the 17 modeling items of the rubric was
analyzed using descriptive statistics and t-tests [30]. The t-tests were used to determine
statistically significant differences between the experimental and comparisons groups and
between the first and last submission within each group. The t-tests were also used to determine
statistically significant differences between the two instructors in the experimental group.

Findings

Comparing Instructors in Experimental Group

All the students in the experimental group were first compared across the two instructors. Based
on all the students’ submissions, there were no statistically significant differences between the
students’ modifiability and reusability scores for the two different instructors, as show in Table
4. There were statistically significant differences between their students’ mathematical model
complexity scores. Since there were statistically significant differences between their
mathematical model complexity scores, the instructors’ students were not grouped together for

the analysis of this dimension. The instructors’ students were grouped together for the analysis of
the other two dimensions – modifiability and reusability.

Table 4: Experimental group – Difference between instructors
Dimension Instructor N Mean Standard Deviation p-value

Mathematical
Model Complexity

1 188 7.582 1.6835 0.000* 2 95 6.342 1.8655

Modifiability 1 188 2.090 1.6145 0.808 2 95 2.042 1.4941

Reusability 1 188 2.277 0.6359 0.314 2 95 2.195 0.6616
* statistically significant difference between two different instructors

Mathematical Model Complexity – Comparing Instructors

The average scores for all the mathematical model complexity rubric items across all four
submissions for all three instructors (the two making the experimental group and one making the
comparison group) are presented in Figure 1. Along the mathematical model complexity
dimension, the students in both instructors’ courses for the experimental group and the students
in the comparison groups improved their written solutions from the first to the third submissions,
although it is not as visually apparent for the comparison group as it is for both the experimental
group instructors. All the students in both the experimental groups and the comparison groups
also improved their coded solutions from the second to the last submissions, along the
mathematical model complexity dimension. Although the students from the comparison group
received the highest average score on the first submission, the students who took Instructor 1
from the experimental group outperformed the comparison group students on all other
submissions. Instructor 1’s students average scores increased by 1.251 points compared to the
average scores of the students from the comparison group that only increased by 0.384 points.
The students who took Instructor 2 from the experimental group received the lowest average
score on all four submissions, but had the greatest gains across the submissions (with the average
increasing by 1.780 points).

Figure 1: Average of students’ scores on Mathematical Model Complexity items

As demonstrated in Table 5, the students in the comparison group started out with the highest
scores, but they did not maintain the highest scores nor have as much gains as the students from
the experimental group. The students’ scores for the mathematical model complexity dimension
in the experimental group had a statistically significant difference from the first to the last
submission, as shown in Table 5. The students’ scores for the mathematical model complexity
dimension in the comparison group did not have a statistically significant difference from the
first to the last submission, as shown in Table 5.

Table 5: Mathematical model complexity – All instructors – Difference between submissions
Exp. Group Instructor/
Comparison Group Submission N Mean Standard Deviation p-value

Exp. Group Instructor 1 1 52 6.962 1.6828 0.000* 4 47 8.213 1.3259

Exp. Group Instructor 2 1 25 5.320 1.1715 0.000* 4 25 7.100 1.9632

Comparison Group 1 81 7.278 1.5632 0.191 4 68 7.662 2.0064
* statistically significant difference between first and last submissions

Based on the students’ mathematical model complexity scores in the first submission, there was
a statistically significant difference between the two instructors in the experimental group and
between Instructor 2 in the experimental group and the comparison group, as shown in Table 6.
There was not a statistically significant difference between Instructor 1 in the experimental group
and the comparison group for either the first or the last submission. There was still a statistically
significant difference between the two instructors in the experimental group in the last

5

5.5

6

6.5

7

7.5

8

8.5

1 2 3 4

C
um
ul
at
iv
e
Sc
or
e
(P
oi
nt
s)

Submission

Mathematical Model Complexity (out of 9 points)
Change in Means across 4 Submissions

Exp. Group - Instructor 1
Exp. Group - Instructor 2
Comparison Group

submission. There was no longer a statistically significant difference between Instructor 2 in the
experimental group and the comparison group in the last submission, as shown in Table 6.

Table 6: Mathematical model complexity – Differences between instructors
Exp. Group Instructor/
Comparison Group Submission p-value

Exp. Group Instructor 1 vs.
Exp. Group Instructor 2

1 0.000*
4 0.015*

Exp. Group Instructor 1 vs.
Comparison Group

1 0.271
4 0.079

Exp. Group Instructor 2 vs.
Comparison Group

1 0.000*
4 0.232

* statistically significant difference between instructors’ students

Modifiability – Experimental Group vs. Comparison Group

The average scores for all the modifiability rubric items across all four submissions for both the
experimental and comparison groups are presented in Figure 2. The students from the control
group received higher scores than the students from the experimental group on all their
submissions. Although the comparison group outscored the experimental group on every
submission, the experimental group had significant gains between most of their submissions. The
students in the experimental group improved their written solutions from the first to the third
submissions and their coded solutions from the second to the fourth submissions, along the
modifiability dimension. The students in the comparison group on the other hand had declining
scores across their written and coding solutions along the modifiability dimension.

Figure 2: Average of students’ scores on Modifiability items

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

C
um
m
ul
at
iv
e
Sc
or
e
(P
oi
nt
s)

Submission

Modifiability (out of 5 points)
Change in Means across 4 Submissions

Experimental Group

Comparison Group

As demonstrated in Figure 2, the students in the comparison group maintained higher scores on
the modifiability dimension than the students in the experimental group across all four
submissions. Although their scores were higher, the students in the experimental group had
greater gains across the course of the semester. There was a statistically significant difference
between students’ scores on the first and last submissions for the experimental group, as shown
in Table 7. There was not a statistically significant difference between the students’ scores on the
first and last submission for the comparison group.

Table 7: Modifiability – Differences between submissions
Exp./Comp. Submission N Mean Standard Deviation p-value

Experimental Group 1 77 1.065 1.0312 0.000* 4 72 2.611 1.5157

Comparison Group 1 81 3.259 1.5065 0.815 4 68 3.206 1.2762
* statistically significant difference between first and last submissions

The students’ scores for the modifiability dimension in the experimental and comparison groups
had a statistically significant difference for the first submission and maintained a statistically
significant difference in the last submission, as shown in Table 8.

Table 8: Modifiability – Differences between experimental and comparison groups
Submission p-value

1 0.000*
4 0.013*

* statistically significant difference between
experimental and comparison groups

Reusability – Experimental Group vs. Comparison Group

The average scores for the reusability rubric items across the submissions for both experimental
and comparison groups are presented in Figure 3. The students from the comparison group
received higher scores than the students from the experimental group on three submissions.
Although the comparison group outscored the experimental group on most submissions, the
experimental group had greater gains across their submissions. Like the modifiability dimension,
the students’ scores improved across their written and coded solutions for the experimental
group, while students’ scores declined across both solutions for the comparison group.

Figure 3: Average of students’ scores on Reusability items

As demonstrated in Figure 3, the students in the comparison group maintained higher scores on
the reusability dimension than the students in the experimental group across most of the
submissions (all except the third submission). Although their scores were higher for most of
submissions, the students in the experimental group had greater gains across the course of the
semester. There was a statistically significant difference between students’ scores on the first and
last submissions for both the experimental and comparison groups, as shown in Table 9.

Table 9: Reusability – Differences between submissions
Exp./Comp. Submission N Mean Standard Deviation p-value

Experimental Group 1 77 1.968 0.6404 0.000* 4 72 2.472 0.5746

Comparison Group 1 81 2.377 0.6733 0.005* 4 68 2.669 0.5834
* statistically significant difference between first and last submissions

The students’ scores for the modifiability dimension in the experimental and comparison groups
had a statistically significant difference for the first submission and maintained a statistically
significant difference in the last submission, as shown in Table 10.

Table 10: Reusability – Differences between experimental and comparison groups
Submission p-value

1 0.000*
4 0.046*

* statistically significant difference between
experimental and comparison groups

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

1 2 3 4

C
um
m
ul
at
iv
e
Sc
or
e
(P
oi
nt
s)

Submission

Reusability (out of 3 points)
Change in Means across 4 Submissions

Experimental Group

Comparison Group

Summary

As demonstrated in the figures above, the students from the experimental group were
consistently receiving higher scores on each of the rubric categories across their submissions. For
the experimental group, there was a statistically significant difference between students’ scores
on the first and last submissions across all three rubric dimensions.

As demonstrated in the figures above, the students’ scores in the comparison group were not
consistently improving nor declining; their scores typically fluctuated across the four
submissions. For the comparison group, there was a statistically significant difference between
students’ scores on the first and last submissions across the reusability dimension.

Conclusions

The results identified differences that exist in the mathematical and computational model
development between students who were exposed to the revised modeling language and
examples (experimental group) compared to those students who were not (comparison group).
There were three dimensions in the modeling rubric that were analyzed for this study,
mathematical model complexity, modifiability, and reusability [8, 29]. Each dimension of the
rubric was analyzed separately to capture differences in experimental and comparison groups
development. Students in the experimental group, who were exposed to the revised modeling
language and assignments, had significant gains in mathematical model complexity,
modifiability, and reusability. Even though the students in the two different instructors’ courses
within the experimental group started with significantly different scores on the mathematical
model complexity dimensions, both groups had statistically significant gains. This study showed
that the experimental groups did have increases in demonstrated modeling abilities through the
intentional and explicit instructional strategies targeting model development.

The students who were exposed to the revised modeling language and materials had greater gains
across the course of the semester in their ability to address the complexity of the problems
(mathematical model complexity), understand the application of the model and potential for
adaptation (modifiability), and address the users’ anticipated needs (reusability). The students
who were not exposed to the modeling language nor given the opportunity to engage in modeling
activities beyond the assigned modeling problem did not demonstrate as much improvement.
Their completion of the two versions of the one modeling problem did not seem to provide
enough impact on their modeling abilities; the additional course materials seemed to be
fundamental in leading to this success. The comparison group did demonstrate statistically
significant improvement in their ability to understand the user (reusability). This improvement in
both groups could be attributed to the fact that emphasizing writing code for a given user and
understanding your assumptions in solving a problem to know when the solution is applicable is
embedded in the course. These findings help inform other researchers and instructors how to
help students develop modeling skills, specifically modeling skills related to mathematical model
complexity, modifiability, and reusability dimensions. This research will build upon this idea by
further analyzing impact of the revised modeling language in more courses and covering more
types of modeling, including physical and business models.

Acknowledgements

This work was made possible by a collaborative research grant from the National Science
Foundation (DUE 1827392; DUE 1827600; DUE 1827406). Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation.

References

[1] A. R. Carberry and A. F. McKenna, "Exploring student conceptions of modeling and

modeling uses in engineering design," Journal of Engineering Education, vol. 103, no. 1,
pp. 77-91, 2014.

[2] A. McKenna, R. Linsenmeier, and M. Glucksberg, "Characterizing computational
adaptive expertise," in 2008 ASEE Annual Conference and Exposition, 2008.

[3] J. S. Zawojewski, H. A. Diefes-Dux, and K. J. Bowman, Models and modeling in
engineering education: Designing experiences for all students. Sense Publishers, 2008.

[4] J. Gainsburg, "Learning to model in engineering," Mathematical Thinking and Learning,
vol. 15, no. 4, pp. 259-290, 2013.

[5] A. F. McKenna, "Adaptive expertise and knowledge fluency in design and innovation,"
in Cambridge handbook of engineering education research: Cambridge University Press,
2015.

[6] R. Lesh, H. M. Doerr, G. Carmona, and M. Hjalmarson, "Beyond constructivism,"
Mathematical thinking and learning, vol. 5, no. 2-3, pp. 211-233, 2003.

[7] A. R. Carberry, A. F. McKenna, R. A. Linsenmeier, and J. Cole, "Exploring senior
engineering students' conceptions of modeling," in 118th ASEE Annual Conference and
Exposition, 2011.

[8] H. A. Diefes-Dux, M. A. Hjalmarson, and J. S. Zawojewski, "Student Team Solutions to
an Open-Ended Mathematical Modeling Problem: Gaining Insights for Educational
Improvement," Journal of Engineering Education, vol. 102, no. 1, pp. 179-216, 2013.

[9] H. A. Diefes-Dux, K. Bowman, J. S. Zawojewski, and M. Hjalmarson, "Quantifying
aluminum crystal size part 1: The model-eliciting activity," Journal of STEM Education:
Innovations and Research, vol. 7, no. 1/2, p. 51, 2006.

[10] H. A. Diefes-Dux, M. A. Hjalmarson, T. K. Miller, and R. Lesh, "Chapter 2: Model-
eliciting activities for engineering education," Models and modeling in engineering
education: Designing experiences for all students, pp. 17-35, 2008.

[11] E. Hamilton, R. Lesh, F. Lester, and M. Brilleslyper, "Model-Eliciting Activities (MEAs)
as a Bridge between Engineering Education Research and Mathematics Education
Research," Advances in Engineering Education, vol. 1, no. 2, p. n2, 2008.

[12] H. A. Diefes-Dux and P. Imbrie, "Chapter 4: Modeling activities in a first-year
engineering course," Models and modeling in engineering education: Designing
experiences for all students, pp. 37-92, 2008.

[13] R. M. Clark, L. J. Shuman, and M. Besterfield-Sacre, "In-Depth Use of Modeling in
Engineering Coursework to Enhance Problem Solving," in Modeling Students'
Mathematical Modeling Competencies: Springer, 2010, pp. 173-188.

[14] T. P. Yildirim, L. Shuman, M. Besterfield-Sacre, and T. Yildirim, "Model eliciting
activities: assessing engineering student problem solving and skill integration processes,"
International Journal of Engineering Education, vol. 26, no. 4, pp. 831-845, 2010.

[15] R. Lesh and G. Harel, "Problem solving, modeling, and local conceptual development,"
Mathematical thinking and learning, vol. 5, no. 2-3, pp. 157-189, 2003.

[16] A. R. Carberry and A. F. McKenna, "Engineering student's conceptions of model uses in
design," in 2011 Research in Engineering Education Symposium, REES 2011, 2011.

[17] R. Lesh, M. Hoover, and A. Kelly, "Equity, assessment, and thinking mathematically:
Principles for the design of model-eliciting activities," Developments in school
mathematics education around the world, vol. 3, pp. 104-130, 1993.

[18] O. B. J. Daniel K. Howe, "Developing an Interactive Computer Program to Enhance
Student Learning of Dynamical Systems," in 2016 ASEE Annual Conference &
Exposition, 2017.

[19] A. J. Magana, "Modeling and Simulation in Engineering Education: A Learning
Progression," Journal of Professional Issues in Engineering Education and Practice, vol.
143, no. 4, p. 04017008, 2017.

[20] K. J. Rodgers, H. A. Diefes-Dux, M. Zielinski, and K. Madhavan, "Students’ definitional
knowledge of mathematical models," Journal manuscript in preparation.

[21] A. J. Magana, S. P. Brophy, and G. M. Bodner, "Instructors' intended learning outcomes
for using computational simulations as learning tools," Journal of Engineering
Education, vol. 101, no. 2, pp. 220-243, 2012.

[22] A. Stefan, "A Computer Model of Cell Dynamics Using Agents," in American Society for
Engineering Education, 2010: American Society for Engineering Education.

[23] J. P. A. Omer Farook, Athula Kulatunga, Ashfaq Ahmed P.E., Wangling Yu, Yoonill
Lee, Hassan Abdullah Alibrahim, "Freshman Experience Course in Electrical and
Computer Engineering Technology Emphasizing Computation, Simulation, Mathematical
Modeling, and Measurements," in 2017 ASEE Annual Conference & Exposition, 2017.

[24] A. El-ZEin, T. Langrish, and N. Balaam, "Blended Teaching and Learning of Computer
Programming Skills in Engineering Curricula," Advances in Engineering Education, vol.
1, no. 3, p. n3, 2009.

[25] H. Fangohr, "A comparison of C, MATLAB, and Python as teaching languages in
engineering," in International Conference on Computational Science, 2004: Springer, pp.
1210-1217.

[26] C. McDowell, L. Werner, H. E. Bullock, and J. Fernald, "The impact of pair
programming on student performance, perception and persistence," in Software
Engineering, 2003. Proceedings. 25th International Conference on, 2003: IEEE, pp. 602-
607.

[27] L. Williams and R. Upchurch, "Extreme programming for software engineering
education?," in Frontiers in Education Conference, 2001. 31st Annual, 2001, vol. 1:
IEEE, pp. T2D-12.

[28] J. McNeil, A. Thompson, and N. Hawkins, "A Comparison of Students Learning
Programming with Online Modules, Instruction, and Team Activities " presented at the
2018 ASEE Annual Conference & Exposition Salt Lake City, Utah, 2018. [Online].
Available: https://peer.asee.org/29665.

[29] H. A. Diefes-Dux, J. S. Zawojewski, and M. A. Hjalmarson, "Using educational research
in the design of evaluation tools for open-ended problems," International Journal of
Engineering Education, vol. 26, no. 4, p. 807, 2010.

[30] J. M. Stonehouse and G. J. Forrester, "Robustness of the t and U tests under combined
assumption violations," Journal of Applied Statistics, vol. 25, no. 1, pp. 63-74, 1998.

Appendix A. Modeling Problem Assignment (Version 1 – Submission 1 and 2)

Modeling Problem – Design, Build, Fly – Version 1
Problem:

At this institution, there are many different organizations and competitions that you can
participate in. Design, Build, Fly is one competition that our institution regularly competes in.
In this competition, students must design, document, fabricate, and demonstrate the aircraft
they determine to be capable of achieving the highest score on the three specified missions.
Mission scores are based on the demonstrated mission performance obtained during the contest
and calculated based on given formulas. You can find out more information about the actual
competition at: https://www.aiaadbf.org/.
In this problem you will develop a computational model that will output to the user (a team

using their test flight data) their final predicted scores, their chances of winning the upcoming competition, and
recommendations of how to increase their odds of winning based on how the team’s aircraft is preforming (data from
the user) and how the winning teams preformed at previous competitions (data provided in tables in theory section).
Please note there are some modifications to how the competition works for this problem. There are some assumptions
that are not valid to the real competition rules.

Submissions:
Please note that the submission for this assignment may be different from any of your homework assignments. A
written model (or algorithm) will be due for this problem in about one week and then your code for your solution will
be due about one week later (refer to online course materials for exact dates).

• Your model (or algorithm) – you must complete the steps below on paper. Keep in mind assumptions will
be very important for your user to understand the constraints and limitations for using your solution. For your
solution step (Step 5), you must write out clear directions of how you will code your solution. This can be in
the form of a flow chart, bullet point steps, or paragraph format. Be sure that any method you choose is clear.
In addition to your steps, you must justify each step – meaning you must explain your reasoning for designing
the step the way that you did (refer to the example provided in the bullet point below). In addition to your
written model, you must provide the outputs of your model for three test cases (set of sample inputs).

o Example of some steps and justifying them (keep in mind some parts of this example are not good solutions
to this problem): (EXAMPLE 1) First I am going to ask the user their empty aircraft weight and wing span
to calculate their RAC using the provided formula. If their RAC is less than 10, then I am going to end the
program and tell them they have a 0% chance of winning and they need to increase their aircraft’s weight
and/or wing span. I think any plane that has too small of a weight and/or wing span will not be capable of
flying and completing the missions, so I don’t want to waste time asking the rest of the questions and doing
any more calculations. (EXAMPLE 2) I am going to use the user’s time flown and the fastest time flown
from the most recent competition to calculate the user’s mission 2 score using the provided equation. I am
going to use the fastest time flown from the most recent competition because I believe all other times are
outdated and not relevant.

• Your code (or computational model) will be based on the model that you submit. It is natural to modify your
model throughout the process of coding it. Be sure to document changes and comment in justifications for
new steps implemented in your revised model.

Solution: Below are the 7 steps of the engineering process discussed in the course. Remember these steps are used
to guide you through solving a problem. Keep in mind sometimes these steps are iterative.

1. Decipher Problem Statement
The first step is to decipher the problem and identify the information (or variables) given and what information you
need to find (or display to the user at the end of your program).

Givens (Inputs):
Keep in mind that you may not have to ask the user all these questions every time. Think about what you need to ask
when and why. Think about how you will use these inputs.

• The team’s mission 1 results:
o Successful landing?
o Completed three laps in 5 minutes?

• The team’s mission 2 results:
o Successful landing?
o How many seconds to fly 3 laps?

• The team’s mission 3 results:
o Successful landing?
o How many passengers?
o How many payload blocks?
o How many laps flown in 10 minutes?

• The team’s Rated Aircraft Cost:
o Empty Aircraft Weight (oz.)
o Aircraft Wing Span (in.)

Finds (Outputs):

• The team’s predicted final score. (Number)
• The team’s probability of winning based on their test flight data. (Percentage)
• Recommendations to improve the team’s odds of winning. (Statements)

2. Draw a Diagram

Sometimes the problem will include a diagram; be sure to still draw your own diagram(s). This step will help you
better decipher the problem by visualizing it.
No diagram required with this submission, but draw one if it helps you visualize your solution.

3. Identify Relevant Theory
After determining the information that you know and need to find and drawing a diagram, you should start to have an
idea what theory and/or background information you need to solve the problem. In this step you will identify the
information (e.g., formulas, data, conversions) that you will need to create a solution to the given problem.
Units of Measure: The units of measure for scoring will be based on the US English system (time – seconds, length
– inches, weight – ounces or pounds). All times or physical measurements will be rounded to two decimal places.
Conventional rounding will be implemented (<0.5 à round down, >= 0.5 à round up).
Final Score: Final score is calculated based on all the mission scores and the rated aircraft cost (RAC) based on weight
and wing span; it is calculated using the following equations.

𝑭𝒊𝒏𝒂𝒍	𝑺𝒄𝒐𝒓𝒆 =
𝑴𝟏 +𝑴𝟐+𝑴𝟑

𝑹𝒂𝒕𝒆𝒅	𝑨𝒊𝒓𝒄𝒓𝒂𝒇𝒕	𝑪𝒐𝒔𝒕	(𝑹𝑨𝑪)

𝑹𝑨𝑪 = 	𝑬𝒎𝒑𝒕𝒚	𝑨𝒊𝒓𝒄𝒓𝒂𝒇𝒕	𝑴𝒂𝒙𝒊𝒎𝒖𝒎	𝑾𝒆𝒊𝒈𝒉𝒕	(𝒍𝒃𝒔.) ∗ 𝑾𝒊𝒏𝒈	𝑺𝒑𝒂𝒏	(𝒇𝒕.)
Maximum aircraft empty weight recorded after each successful mission in ounces (oz.); aircraft empty weight does
not include the payload but does include any payload supports or restraints and batteries. The highest of these three
weights is used to calculate the RAC. For this competition, the maximum legal weight for the aircraft including any
cargo (e.g., payload, passengers) is 55 pounds. Wing span is the longest distance between wingtips measured
perpendicular to the axis of the fuselage in inches (in). For this competition, the maximum wing span is seven feet.
Mission requirements for all missions: Must complete a successful landing to get a score. A lap is complete when
the aircraft passes over the start/finish line in the air (the landing is not part of any time requirements). Any incomplete
missions are a 0. The score for each mission is calculated as described in the equations below. Some final scores that
teams received in past competitions are shown in Table 1. The top scores for missions 2 and 3 in past competitions
are shown in Table 2.
Mission 1 (M1) – no payload – 3 lap timed flight (timed in seconds)

• Teams must complete 3 laps within the flight window (5 minutes)
𝑴𝟏 = 𝟎. 𝟎	𝒇𝒐𝒓	𝒖𝒏𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍	𝒎𝒊𝒔𝒔𝒊𝒐𝒏
𝑴𝟏 = 𝟏. 𝟎	𝒇𝒐𝒓	𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒇𝒖𝒍	𝒎𝒊𝒔𝒔𝒊𝒐𝒏

Mission 2 (M2) – set payload – 3 lap timed flight (timed in seconds)
• The fastest time flown is based on the team that received the fastest flight time that year (this is unknown

until all of the teams finish this mission). Therefore, the team that receives the fastest time that year will
receive the highest possible score on Mission 2 of 4.

𝑴𝟐 = 	𝟒 ∗ J
𝒇𝒂𝒔𝒕𝒆𝒔𝒕	𝒕𝒊𝒎𝒆	𝒇𝒍𝒐𝒘𝒏	

𝒕𝒊𝒎𝒆	𝒇𝒍𝒐𝒘𝒏 L

Mission 3 (M3) – long haul of passengers and additional payload
• The score will be a function of the number of passengers and number of payload blocks carried times the

number of laps completed (within 10 minutes).
• Each payload unit is a one-ounce block.

• The largest total of cargo and laps is based on the team that received the highest total that year (this is
unknown until all the teams finish this mission). Therefore, the team that receives the highest total that year
will receive the highest possible score on Mission 3 of 6.

𝑴𝟑 = 𝟒 ∗
#	𝒐𝒇	𝒑𝒂𝒔𝒔𝒆𝒏𝒈𝒆𝒓𝒔 ∗ #	𝒐𝒇	𝒑𝒂𝒚𝒍𝒐𝒂𝒅	𝒃𝒍𝒐𝒄𝒌𝒔 ∗ #	𝒐𝒇	𝒍𝒂𝒑𝒔

(𝒍𝒂𝒓𝒈𝒆𝒔𝒕	𝒕𝒐𝒕𝒂𝒍	𝒐𝒇	𝒄𝒂𝒓𝒈𝒐	𝒂𝒏𝒅	𝒍𝒂𝒑𝒔) + 𝟐

Table 1. Top 4 teams’ scores over the past 4 years

Team Name: Mission 1
Scores

Mission 2
Scores*

Mission 3
Scores* RAC (lb. in.) Final Score

2018:
2018_Fly 1.0 1.62 0.0 4.84 0.54
2018_Air 1.0 2.94 2.53 28.71 0.23
2018_Plane 1.0 3.35 4.46 43.56 0.20
2018_Cargo 1.0 3.01 6.00 53.28 0.19
2017:
2017_Captain 1.0 2.49 4.32 16.53 0.47
2017_Crew 1.0 2.71 2.53 20.95 0.30
2017_Flight 1.0 3.96 3.99 32.78 0.27
2017_AE 1.0 2.93 5.39 42.66 0.22
2016:
2016_Aerospace 1.0 2.93 1.89 18.48 0.31
2016_Engineer 1.0 3.63 2.43 25.02 0.28
2016_Build 1.0 2.52 4.85 35.26 0.24
2016_Design 1.0 2.79 3.65 36.00 0.21
2015:
2015_Airplane 1.0 2.74 3.27 19.85 0.35
2015_Flying 1.0 3.33 4.65 28.71 0.31
2015_Jet 1.0 3.78 5.43 42.66 0.24
2015_Aero 1.0 4.00 4.26 39.56 0.23

Table 2. Fastest time flown for Mission 2 and largest total of cargo and laps for Mission 3 for past 4 years

Year
Mission 2

Fastest Time Flown
(seconds)

Mission 3
Largest Total of Cargo and Laps

(# of passengers * # of payload * # of laps)
2018 110.12 s. (1 pass*1 block*9 laps) = 9
2017 106.80 s. (1 pass*2 block*5 laps) = 10
2016 121.23 s. (2 pass*1 block*4 laps) = 8
2015 115.36 s. (1 pass*1 block*8 laps) = 8

4. Assumptions

In this step you will communicate some ideas that you have assumed to simplify the problem. These are things that
you may try to address later on to make your solution address a more realistic scenario. It is okay if you cannot
envision how you would solve the problem without the assumption, but try to think about this for each assumption that
you write.
Write at least 3 assumptions; most likely you will have more.

5. Solution Steps
This step requires solving for the finds using the givens and theory. For this step you will create equations to solve
the problem, but you will not plug in any numbers yet. Be sure to base your equations on variables and NOT numeric
values (unless they are a constant, such as 4 in the second mission equation). Be sure to also refer to your diagram
and assumptions to help you through this step. At some points in this step you may find it useful to go back and draw
another diagram or necessary to use another formula.
Be sure to make your solution adaptable as possible. How can you modify it if the missions get changed? How can
you modify it, if the data set gets larger or changes in any other way?

6. Identify Results and Verify Accuracy
Now that you have solve the problem without plugging in values, you will plug in values for this step to verify if your
problem is accurate or not.
For submission 1: Test your model for various potential inputs. Do the results make sense? If not, how can you modify
your model?

• Submit outputs of your model for at least the 3 test cases provided.
For submission 2: Test your code for various potential inputs. Do the results make sense? If not, how can you modify
your code?

• Submit outputs of your code for at least the 3 test cases provided. You can add these outputs as comments
at the bottom of your code or a separate file.

Three Test Cases: I recommend using more test cases than just the ones provided, especially for testing your code.
Test Case 1:

• The team’s mission 1 results – successful landing and completed the 3 laps within 5 minutes.
• The team’s mission 2 results – successful landing and flew the 3 laps in 160.92 seconds
• The team’s mission 3 results – successful landing and flew 1 passenger and 1 payload block for 2 complete

laps in 10 minutes
• The team’s Rated Aircraft Cost:

o Empty Aircraft Weight (oz.): 30.26 oz.
o Aircraft Wing Span (in.): 14.25 in.

Test Case 2:

• The team’s mission 1 results – successful landing and completed the 3 laps within 5 minutes.
• The team’s mission 2 results – successful landing and flew the 3 laps in 118.56 seconds
• The team’s mission 3 results – successful landing and flew 1 passenger and 1 payload block for 5 complete

laps in 10 minutes
• The team’s Rated Aircraft Cost:

o Empty Aircraft Weight (oz.): 51.26 oz.
o Aircraft Wing Span (in.): 20.08 in.

Test Case 3:

• The team’s mission 1 results – successful landing and completed the 3 laps within 5 minutes.
• The team’s mission 2 results – successful landing and flew the 3 laps in 128.34 seconds
• The team’s mission 3 results – unsuccessful mission
• The team’s Rated Aircraft Cost:

o Empty Aircraft Weight (oz.): 63.8 oz.
o Aircraft Wing Span (in.): 29.68 in.

7. Algorithm and Code

Your solution steps will lay out the process that you will need to code. In complex problems that require conditionals
and/or repetition, it may be beneficial to draw out a flowchart, concept map, etc. or write out bullet point or numbered
steps. Doing this step can ensure you understand the flow of your code before you start writing code in MATLAB.
Your first submission will be all about showing your work through the first six steps and the developed algorithm for
this submission.

Keep in mind coding will be required for the second submission, but not the first submission. When you are coding
this solution, you can use any coding techniques that you see fit. If you want to stick to if statements and loops you
can. If you want to use arrays or programmer-defined functions, you can also do that. Use the code necessary to
develop your computational model. Keep in mind you must validate (or error check) all user inputs for appropriate
values; be sure to comment the values that you consider valid and why you chose these values.

Appendices B. Modeling Problem Rubric (Submission 4)

Criteria Ratings Pts

(MODEL)
Reusability: User Inputs
How well does the solution address what user inputs are needed for the
model? all addressed: M1 result (either pass/fail, yes/no, land/not land
and/or time for flight - some way to evaluate pass/fail), M2 result (time
for flight - not score since fastest time for 2019 competition is
unknown), M3 result (number of passengers, payload, and number of
laps - not score since largest total for 2019 competition is unknown),
wingspan and empty aircraft weight (used to calculate RAC)

2.0 pts
Full Marks

0.0 pts
No Marks

2.0 pts

(CODE) User Inputs
Are the user inputs coded correctly? 2.0 pts

Full Marks
0.0 pts
No Marks

2.0 pts

(MODEL) Reusability: User Inputs - Error Check
Does the student state what values will be considered valid and what
will not? Does the student explain why they have determined these
values acceptable?

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(CODE) Error Check
Are the error checks coded correctly? 3.0 pts

Full
Marks

1.5 pts
some errors
in code

0.0 pts
No
Marks

3.0 pts

(CODE) Share-ability: User Inputs and Error Check
Does the program clearly communicate to the user what data they need
for each input (with the units, where relevant)? Does the program
clearly communicate the range of valid inputs in input or error
messages?

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(MODEL)
Reusability: Assumptions
Does the solution have at least 3 clearly communicated assumptions?
There should be significantly more, but 3 is the minimum. (Reminder:
Assumptions are not facts. Assumptions are things assumed to solve the
problem - information that needs to be addressed to move forward, but
was not given.)

1.0 pts
Full
Marks

0.5 pts
include 3 bad
"assumptions",
OR include
less than 3
assumptions,
but have at
least 1 valid
assumption

0.0 pts
No
Marks

1.0 pts

(MODEL) Mathematical Model Complexity: Mission 1 Equation
M1 = 1.0 for successful mission (Teams must complete 3 laps and land
within 5 minutes to be successful for this mission.)

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(CODE) Mission 1 1.5 pts
Full Marks

0.0 pts
No Marks

1.5 pts

(MODEL) Mathematical Model Complexity: Mission 2 Equation
M2 = 4 * ((fastest time flown)/(time flown)) (The time it takes a team to
complete 3 laps and land is timed in seconds. The fastest time recorded
for that year's competition is used for fastest time flown.)

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

Criteria Ratings Pts

(MODEL) Mathematical Model Complexity: Mission 2 Equation -
Fastest Time Flown
The solution addresses what time they will use for fastest time flown. (Is
this based on one fastest time flown? Is this based on an array of
possible fastest times flown? Is this based on a predicted future fastest
time flown based on the data set?)

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(MODEL) Modifiability: Mission 2 Equation - Fastest Time Flown
The student clearly communicates where the fastest time flown used
came from and why they chose that fastest time. If it was one selected,
which one and why? If it was a calculated value, how and why?

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(CODE) Mission 2 – Equation implemented correctly and successfully
calculates a Mission 2 score. 2.0 pts

Full Marks
0.0 pts
No Marks

2.0 pts

(MODEL) Mathematical Model Complexity: Mission 3 Equation
M3 = 4*(((number of passengers)*(total payload - oz.)*(number of
laps))/((the highest overall value)))+2 (The number of laps completed
within 10 minutes is multiplied by the number of passengers and the
total payload the plane carries. This highest overall value is the largest
value calculated for that year's competition.)

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(MODEL) Mathematical Model Complexity: Mission 3 Equation –
largest total for cargo and laps (highest overall value)
The solution addresses what total they will use for max total or highest
overall value. (Is this based on one max total? Is this based on an array
of possible max total? Is this based on a predicted future max total based
on the data set?)

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(MODEL) Modifiability: Mission 3 Equation - Max Total (highest
overall value)
The student clearly communicates where the max total used came from
and why they chose that value. If it was one selected, which one and
why? If it was a calculated value, how and why?

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(CODE) Mission 3 – Equation implemented correctly and successfully
calculates a Mission 3 score. 2.0 pts

Full Marks
0.0 pts
No Marks

2.0 pts

(MODEL) Mathematical Model Complexity: Final Score
Final Score = (M1 + M2 + M3)/((empty aircraft maximum
weight)*(wing span))

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(CODE) Final Score – Equation implemented correctly and successfully
calculates the final score. 2.0 pts

Full Marks
0.0 pts
No Marks

2.0 pts

(MODEL) Mathematical Model Complexity: Data Set
The student took all the available data into account. A significant
amount of the data was used to help them evaluate the probability of the
user winning.

3.0 pts
Full
Marks

1.5 pts
Minimal data
used (less than
half of the
data was taken
into account or
at least
discussed).

0.0 pts
No
Marks

3.0 pts

Criteria Ratings Pts

(MODEL) Modifiability:
They clearly communicated what data they were using and what data
they were not. The student clearly communicated why they were or
were not using different parts of the data. They student clearly
communicated why they decided to use the data the way they did.

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(CODE) data file implemented in code correctly
Data set is uploaded into code correctly (used xlsread function with
correct return variables). The data types are handled in code
appropriately (example: working with cell arrays).

3.0 pts
Full
Marks

1.5 pts
some minor
errors

0.0 pts
No
Marks

3.0 pts

(MODEL) Mathematical Model Complexity: Calculate Probability
There is a system of determining the odds of the user winning. When
evaluating the odds of past winners, the results make sense. There is a
fairly large range of possible outcomes based on different inputs. (Not
just 0, 50, 100 or something way too over simplified.) There is not ever
more than 100% probability of winning. There probably shouldn't ever
be 100% probability of winning because there is no guarantee that
someone else won't show up and perform better at next year's
competition.

3.0 pts
Full
Marks

1.5 pts
Simplified
solution. OR
Probability
can be over
100% OR less
than 0%.

0.0 pts
No
Marks

3.0 pts

(MODEL) Modifiability: Calculating Probability
Does the student clearly communicate how and why they chose the
various steps for calculating probability?

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(CODE) Calculate and Report out Probability (sample possible errors: at
some point two probability values are added together, but one is in a
decimal form and the other a percentage so it throws off the final
probability; the equation the student developed in their model is clearly
different than what they implemented without explanation and it appears
the equation was coded wrong because the values are way off.)

5.0 pts
Full
Marks

2.5 pts
some errors in
calculating
probability.

0.0 pts
No
Marks

5.0 pts

(MODEL) Mathematical Model Complexity: Recommendations for
Improvement
There is a system to present recommendations based on the user's
provided inputs. What if the team fails a mission? What if the aircraft
weight is heavy or wing span long? What if the team has great
probability of winning? What about almost none?

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(MODEL) Modifiability: Recommendations and Improvements
Does the student clearly communicate how and why they chose the
various recommendations they did based on the user data?

1.0 pts
Full Marks

0.0 pts
No Marks

1.0 pts

(CODE) Determine Recommendations and Report them out 2.0 pts
Full Marks

0.0 pts
No Marks

2.0 pts

(CODE) Share-ability: Outputs
Does the program clearly communicate to the user what the results are
(predicted final score, probability, and recommendations) (with the
units, where relevant)?

2.5 pts
Full Marks

0.0 pts
No Marks

2.5 pts

(CODE) Sample Calculations/Outputs
 (CODE) The sample outputs for the test cases are provided as
comments in the code.

2.0 pts
Full Marks

0.0 pts
No Marks

2.0 pts

Total Points: 50.0

