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Abstract

The Competition Complexity of an auction setting refers to the number of additional bid-
ders necessary in order for the (deterministic, prior-independent, dominant strategy truthful)
Vickrey-Clarke-Groves mechanism to achieve greater revenue than the (randomized, prior-
dependent, Bayesian-truthful) optimal mechanism without the additional bidders.

We prove that the competition complexity of n bidders with additive valuations over m
independent items is at most n(In(1 + m/n) + 2), and also at most 9y/nm. When n < m, the
first bound is optimal up to constant factors, even when the items are i.i.d. and regular. When
n > m, the second bound is optimal for the benchmark introduced in [EFF*17a] up to constant
factors, even when the items are i.i.d. and regular. We further show that, while the Eden et
al. benchmark is not necessarily tight in the n > m regime, the competition complexity of n
bidders with additive valuations over even 2 i.i.d. regular items is indeed w(1).

Our main technical contribution is a reduction from analyzing the Eden et al. benchmark
to proving stochastic dominance of certain random variables.
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1 Introduction

In the past decade, the TCS community has made radical progress developing the theory of multi-
dimensional mechanism design. In particular, it was previously well-understood the optimal multi-
item auctions are prohibitively complex, even with just m = 2 items, and even subject to fairly
restricted instances [BCKW15, HN13, HR15, Tha04, Pavll, DDT17|. Yet, starting from seminal
work of Chawla, Hartline, and Kleinberg [CHKO7], a large body of work now proves that simple
auctions are in fact approximately optimal in quite general settings [CHMS10, CMS15, HN17,
LY13, BILW14, Yaol5, RW15, CM16, CZ17, EFFT17b], helping to explain the prevalence of simple
auctions in practice. Still, it would be a reach to claim that this agenda is convincingly resolved.
In particular, the thought of settling for 50% (or even 90%) of the optimal achievable revenue
may be a non-starter for high-stakes auctions. Indeed, there are no hard constraints forcing the
auctioneer to use a simple auction. Still, Prior-independent auctions are desirable since they don’t
require the auctioneer to understand the population from which consumers are drawn. Determin-
istic and Dominant Strategy Truthful auctions are desirable because consumers’ strategic behavior
is easier to predict. Computationally tractable auctions are desirable because they can be efficiently
found. On the other hand, it is hard to imagine that auctioneers stand a hard line on simplicity if
additional market research or outsourcing computation would increase revenues, even modestly.
The resource augmentation paradigm takes a different view: spend effort recruiting additional
bidders rather than carefully designing a superior auction. We are therefore interested in answering
the following question: for a given auction setting, how many additional bidders are necessary for
a simple auction (with additional bidders) to guarantee greater expected revenue than the optimal
(without)? Eden et al. term the answer to this question the competition complezity [EFFT17a].
This question was first studied in seminal work by Bulow and Klemperer in the context of single-
item auctions [BK96]. Remarkably, they show that just a single additional bidder suffices for the
second-price auction to guarantee greater expected revenue than Myerson’s optimal auction [Mye81]
(without the additional bidder), subject to a technical condition on the population called regularity.
For multi-item auctions, similar results have even more bite, as the optimal multi-item auction is
considerably more complex than Myerson’s (which is deterministic, dominant strategy truthful, and
computationally tractable, but not prior-independent). Our main result is optimal bounds on the
competition complexity for the core setting of additive bidders with independent items. Specifically,

Main Result: The competition complexity of n bidders with additive values over m independent
items is at most n(2 + In(1 + m/n)), and also 9y/nm. When n < m the first bound is tight (up
to constant factors). When n > m, the second bound is tight (up to constant factors) for any
argument that starts from the benchmark introduced in [EFF*17a].

1.1 Brief Technical Overview

Formally, we consider n bidders drawn independently from a distribution D. We study the now-
standard setting of additive bidders over m independent items: each bidder’s value v; for item j is
drawn independently from some single-variate distribution D;, and her value for a set .S of items is
> jes Vi The simple mechanism we study is to sell the items separately, either via the second-price
auction in the case of regular distributions, or Myerson’s optimal single-item auction in the general



case.! Observe that, since the bidders are additive and values are independent, selling the items

separately is really just m separate single-item problems. We are interested in understanding the
minimum c¢(n, m) such that selling separately to n + ¢(n, m) bidders drawn from D yields greater
expected revenue than the optimal mechanism with n bidders drawn from D for any D = x;-”lej.

Our approach starts from the benchmark proposed in [EFF*17a). That is, Eden et al. propose
an upper bound on the optimal achievable revenue with n bidders drawn from D via the duality
framework of [CDW16].2 We defer a definition of this benchmark to Section 2.2: it defines a Vir-
tual Value ®;(v;) of a bidder with values ¢; for item j, and upper bounds the optimal expected
revenue with K[}, max;c(, {®;(¥;)}]. We defer most details to the technical sections, but briefly
note that at this point, our analysis diverges from prior work. Eden et al. use an elegant coupling
argument to connect this benchmark to the expected revenue of selling separately with additional
bidders [EFFt17a]. The high-level distinction in our approach is a significantly more in-depth
analysis of this benchmark. In particular, our analysis makes more extensive use of Myersonian
virtual value theory (Sections 3 and 4), which reduces the problem to questions purely regard-
ing whether various methods of drawing correlated values from [0, 1] stochastically dominate one
another (Section 5).

1.2 Connection to Related Works

The two works most directly related to ours are [EFFT17a] and [FFR18]. The one-sentence distinc-
tion between our results and these is that we strictly improve their main results regarding selling
separately to additive bidders with independent items, but do not address alternative settings.
For example, this paper contains no results beyond additive bidders (considered in [EFF*17al), or
results for mechanisms aside from selling separately (considered in [FFR18]).

“Little n Regime”: For n additive bidders with m = Q(n) independent items, Eden et al. [EFF*17a]
prove a competition complexity bound of n + 2(m — 1). Feldman et al. [FFR18] prove that selling
separately to O(nln(m/n)/e) additional buyers exceeds a (1 — ¢) fraction of the optimal revenue
(without the additional buyers). Our main result essentially achieves the greatly improved bound
of [FFR18] (and improves it further) without losing any revenue: we prove a competition complex-
ity bound of n(2 + In(1 4+ m/n)). This guarantee is tight up to constant factors (and remains tight
even if one is willing to lose an ¢ fraction), due to a lower bound of [FFR18].

“Big n Regime”: For n additive bidders with m = o(n) independent items, Eden et al. [EFFT17a]
prove a competition complexity bound of n + 2(m —1). Feldman et al. [FFR18] prove that for any
g, there exists a constant §(¢) such that if n > m/d(e), selling separately (without any additional
bidders) achieves a (1 —¢) fraction of the optimal revenue. Our main result improves the guarantee
of [EFF*17a] to 9y/nm and also implies the result of [FFR18] (with §(¢) = £2/81). Note in particu-
lar that any sublinear competition complexity bound implies the [FFR18] result for a different d(-),

'For irregular distributions, it is known that no guarantees are possible with prior-independence, even for a single
item. The example to have in mind is a distribution with a point mass at p with probability 1/p and 0 otherwise: as
p — 00, any auction that achieves revenue close to optimum must sell the item to the bidder with value p for price
close to p whenever there is exactly one. It is impossible to have a single auction that does this for all p.

2We note that this upper bound can also be derived without duality using techniques of [CMS15].



but that linear bounds do not. So our improvement from linear to sublinear is significant in this
regard. Moreover, we show in Section A that this is tight (up to constant factors) for any approach
starting from the benchmark proposed in [EFF*17a]. We further show (also in Section A) that
there does not exist any function only of m upper bounding the competition complexity: as n — oo
the competition complexity approaches oo as well (at a rate of at least Q(Inn)).

Other works that study the competition complexity of auctions include seminal work of Bu-
low and Klemperer, who study the m = 1 case, work of Liu and Psomas (who study the com-
petition complexity of dynamic auctions) and Roughgarden et al. (who study the unit-demand
setting) [BK96, LP18, RTCY12]. These works are thematically related, but both the results and
techniques have little overlap.

Some of the aforementioned works which prove approximation guarantees for simple mecha-
nisms use similar techniques to derive a tractable benchmark that upper bound on the achievable
revenue [CHK07, CHMS10, CMS15, HN17, LY 13, BILW14, Yaol5, RW15, CM16, CZ17, EFFT17b].
However, it is worth noting that all of these works proceed by immediately splitting the benchmark
into multiple simpler terms and finding approximately optimal mechanisms to cover each term sep-
arately. The best of those mechanism guarantees approximate optimality to revenue. This greatly
simplifies analysis, at the cost of an additional constant factor. Because competition complexity
results target the full original revenue, losing this initial constant factor can make future analysis
impossible. As a result, while benchmarks may be shared by these lines of work, analysis of the
benchmarks is often quite different.

Finally, it is worth noting that recent work follows two approaches to derive revenue upper
bounds in these works. Some (including this paper) use virtual value theory [CHK07, CHMS10,
RTCY12, CMS15, CDW16, CZ17, EFF*17a, EFFT17b, LP18, FLLT18]. Others use a more direct
probabilitistic approach [HN17, LY13, BILW14, Yaol5, RW15, CM16, BGN17, FFR18]. For the
most part, similar approximation guarantees are achievable through both approaches. With respect
to these lines of work, our results (which yield exact competition complexity bounds) in comparison
to those of [FFR18] (which lose an arbitrarily small €) suggest the virtual value approach may be
desirable if one cares about small losses.

1.3 Roadmap

Our main result tightly characterizes the competition complexity in the litte n regime, and tightly
characterizes the competition complexity in the big n regime among proofs which use the same
benchmark as [EFF*17a].

In Section 2, we provide the necessary preliminaries surrounding the benchmark of [EFF*17a]
and virtual value theory. In Section 3 we provide a near-complete proof of our results when n =1
as a warm-up. In Section 4, we analyze the benchmark and reduce the analysis to proving stochas-
tic dominance of certain correlated random variables drawn from [0,1]. In Section 5 we prove
the required claims regarding stochastic dominance (which at this point are purely mathematical
claims and no longer reference auctions). In Appendix A we: (a) recap the lower bound of [FFR18]
witnessing that our results are tight in the little n regime, (b) provide a lower bound witness-
ing that our results are tight in the big n regime (among proofs which use the same benchmark
as [EFF*17a]), and (c) prove that the competition complexity of n bidders with additive valuations
over m independent items approaches oo as n — oo.



2 Notation and Preliminaries

We consider a setting with n i.i.d. bidders with additive valuations over m independent items.
That is, there are single-variate distributions D; for all j € [m], and bidder i’s value v; for item j
is drawn independently from D;. Bidder i’s value for the bundle S is just Zje gvj. We will use
the following notation:

e REV, (D) to denote the revenue of the optimal (possibly randomized) Bayesian Incentive
Compatible? mechanism when played by n bidders whose values for m items are drawn from
D. In our setting, we will always have D = x;D; for some single-variate distributions D).

e VCG,,(D) to denote the revenue achieved by the VCG mechanism when played by n bidders
whose values for m items are drawn from D. In our setting, the VCG mechanism simply runs
a second-price auction on each item separately with no reserve.

e SREV,(D) to denote the revenue achieved by Myerson’s mechanism run separately on each
item, when played by n bidders whose values for m items are drawn from D. Note that for
all n and distributions D over additive valuations, SREvV, (D) > VCG, (D).

2.1 Myerson’s Lemma, Bulow-Klemperer, and Virtual Values

Here, we briefly recap basic facts about the theory of virtual values due to Myerson [Mye81]. We
include some proofs and sketches in Appendix C, and refer the reader to [Harl1] (Definition 3.11)
for a deeper treatment of these concepts (or [CDW16], Definition 8 for discrete distributions). Note
that much of the theory extends to independent (but non-i.i.d.) bidders with slightly more complex
statements. As we only consider i.i.d. bidders, we omit the extra notation. Below, when we write
X for a random variable X, we mean max{X,0}.

Definition 1 (Virtual Values and Ironing [Mye81]). For a continuous single-variate distribution
with CDF F(-) and PDF f(-), the virtual valuation function @p(-) satisfies op(v) = v — 1}5}(;)). If
wr(+) is monotone non-decreasing, F is said to be regular. If not, Bp(-) is the ironed virtual value

function, and is monotone non-deceasing (see [Har11] for a formal definition). When F is regular,
?r(-) =¢r().

Theorem 1 ([Mye81]). Let D be any single-variate distribution. Then for all n:

i€[n] i€[n]

J’_
SREV, (D) = REV,(D) =Eg._pn [(@D <mz[mx{vi}>> ] , VCG.,(D)=Ez_pn [((pD <m?x{vi}>>] .
Fact 1. For any single-variate distribution D, and any value v, let D>, denote the distribution D
conditioned on exceeding v. Then v = Ey p. [p(w)] < Eyep., [@(w)].
Finally, we recall the seminal result of Bulow and Klemperer [BK96]:

Theorem 2 ([BK96]). For any reqular single-variate distribution D, VCG41(D) > REV,(D).

3 A mechanism is Bayesian Incentive Compatible if it is in every bidder’s interest to bid truthfully, conditioned on
all other bidders bidding truthfully as well. That is, assuming that all other bidders submit bids drawn from D_;,
bidder ¢ best responds by bidding their true values.



2.2 Duality Benchmarks

Here we state an upper bound on REV, (D) when D is additive over independent items. The
bound is derived using the duality framework of Cai et al. [CDW16], and first used by Eden et
al. [EFFT17a] (it is also possible to derive this particular bound without duality [CMS15]). When
referring to this benchmark in text, we call it the EFFTW benchmark. Parsing the benchmark
requires additional notation:

e v;; denotes the value of bidder ¢ for item j.
e Dj denotes the marginal distribution of item j. We use %;(-) to denote p, (-).

e For a variable X, if X has no point-masses, then we simply define F(x) = Pr[X < z] =
Pr[X < z]. If X = x with strictly positive probability, then we define F(x) to be a random
variable drawn uniformly from the interval [Pr[X < z],Pr[X < z]]. Importantly, note that
the random variable F'(X) is drawn uniformly from [0, 1] for any random variable X.

e For a distribution D := x;D;, we partition the space R’ into m disjoint regions. For each
J € [m], we define R; := {¥; € R} | Fj(vij) > F(vi) Yk # j}. That is, ¥j is in region R; if
item j has the highest quantile. Observe that his partition may be randomized if D has point
masses (and is deterministic with probability 1 if D has no point masses).

Theorem 3 ([CDW16, EFF17a]). Let D be additive over m independent items. Then:

m

REV,(D Z FeDn [max {cpj (vij)" - I(T; € Rj) + vij - 1(¥; ¢ R;)}

If we think of the Virtual Value of bidder 7 for item j as equal to Myerson’s ironed virtual value,
?; (vij)T, if item j has the highest quantile in 7;, and equal to the value, v;;, if not, then Theorem 3
claims that the expected revenue of the optimal mechanism does not exceed the sum over all items
of the expected maximum virtual value for that item. Theorem 3 is an application of Corollary 28
in [CDW16], together with the observation that our defined regions are upwards-closed.

3 Warm-Up: Single Bidder

In this section, we illustrate one portion of our improved anlaysis via the single bidder setting.
This will also help identify one significant point of departure from [EFF*17a]. Observe that the
EFFTW benchmark simplifies significantly for a single bidder, as there is only one element of [n],
and the benchmark simply sums the virtual value of the item with the highest quantile plus the
values of all other items.

3.1 Brief Recap of [EFFT17a]

The main idea in the single-bidder approach of [EFFT17a] is to couple draws of m bidders for
item j with draws of a single bidder for m items via their quantiles. Specifically, they observe the
following: consider fixed quantiles ¢, ..., g, drawn independently. and uniformly from [0, 1].



e Benchmark Analysis: Use the quantiles drawn to determine values for each of m items. If
qj is the largest quantile drawn, then item j contributes P, (F’j_l(qj))Jr to the benchmark. If
gj is not the largest quantile drawn, then item j contributes Fj_l(qj) to the benchmark.

e VCG Analysis: Use the quantiles drawn to determine values of each of m bidders for item
j. If g; is the largest quantile drawn, then bidder j contributes Ej(Fj_l(qj)) to the virtual
surplus of VCG. If ¢; is not the largest quantile drawn, then some other bidder wins the
item and pays at least F'~1(q;), so at least F~!(g;) is contributed by some bidder # j to the
revenue.

The above reasoning is not far from a formal proof that SREV,,(D) > REV{(D). Some care is
required to make sure Theorem 1 is applied correctly (since we wish to count bidder j’s contribution
to the revenue of VCG using her ironed virtual value but the other bidders’ contributions directly
via payments), but the above reasoning is the key step. The main idea is that if we couple the
quantiles drawn for the benchmark with quantiles drawn for selling just item j, then the revenue
achieved from selling just item j to m bidders drawn from D; exceeds the contribution of item j
to the benchmark for all quantiles drawn.

3.2 Our Analysis

The main challenge that the previous analysis overcomes is the following: the contribution of item j
to the benchmark is sometimes in the form of a virtual value, and sometimes in the form of a value.
There is no “natural” random variable that takes exactly this form, and it is tricky to analyze
directly. So the previous analysis finds a clever way to “recreate” it using this coupling argument.
Unfortunately though, direct coupling arguments like this should not hope to prove a competition
complexity better than m — 1, as there are m random variables that need to be coupled.

Our approach instead is to reason about the contribution of item j to the benchmark ezclusively
i terms of virtual values, using Fact 1. Specifically, consider the following proposition, which
rewrites the contribution of item j to the benchmark. Below, X7 (1,m) denotes the following
random variable: first, draw one quantile X ; uniformly at random from [0,1]. Then, draw m — 1
quantiles uniformly at random from [0, 1] and label them Yj ,—1 thru Y1 m—1. If X110 > Y,
for all ¢, then set X1(1,m) = X; ;. Otherwise, let £* denote a uniformly random element from
{1 Yy m—1> X111} and set X7 (1,m) = Yy 1.
Proposition 1. For all D = x;D; and all items j, Egp [@;(v;)T - 1(T € Rj) +v; - 1(T ¢ R;)] <
El; (F (X1(1m))].
Proof. The main idea is to get a lot of mileage from Fact 1: ideally, any time ¥ ¢ R;, rather
than contribute v; to the benchmark, we will contribute the virtual value of a random draw from
D; conditioned on exceeding v;. To begin, let’s couple quantiles drawn for the benchmark with
quantiles drawn for the experiment defining X (1,m) so that Xy, = F;(v;) and Yp,,,—1 = Fy(ve)
for £ < m,l # j, and Y} ym—1 = Fpp(vm) (if j # m, otherwise there is no Y, ,—1 to define). Observe
that indeed the quantiles are all drawn independently and uniformly from [0, 1]. Moreover, we have:

e Whenever v € R;, X1(1,m) = X11 = Fj(vj). Therefore, we conclude that:

Esep [7;(v;)T - 1(T € R;)] =E [@'(Fj_l(XL(Lm))Jr (X L(1,m) = Xq1)| - (1)
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e Conditioned on ¥ ¢ R;, X1 (1, m) is a uniformly random sample from [X 1, 1]. This is because
there is some strictly positive number of /s such that Y,,,_1 > X7 1. Conditioned on being
> X 1, each such value is drawn uniformly from [X; ;1,1]. And then X (1, m) picks one of
them uniformly at random. Using Fact 1, we therefore conclude that:

Esop [ 10 ¢ B)) < Escp [Becn,,, [7,()] 15 ¢ Ry)|

< E 75 (F; 1 (Xe(1,m)) - HX(1,m) # X11)] - 2)

It is now easy to see that the left-hand sides of the two equations sum together to yield item
Jj’s contribution to the benchmark, while the two right-hand sides sum together to yield (at most)
E[p;(F; 1(X(1,m)))T], proving the proposition. O

Proposition 1 gives an upper bound on the contribution of item j to the benchmark written
as the expectation of a virtual value of some distribution (F~!(Xp(1,m))). This is convenient
because we can write the revenue achieved by using Myerson’s optimal auction for selling item j to
1 + ¢ bidders as the expectation of a virtual value of another distribution (the maximum of 1+ ¢
draws from D;). Therefore, if we can relate these two distributions (for instance, by proving that
one stochastically dominates the other), we can relate these two expectations. Below, let Xg(1,¢)
denote the maximum of 1 + ¢ i.i.d. draws from the uniform distribution on [0, 1].

Corollary 1. If Xg(1,c) stochastically dominates X (1,m), then for all D that are additive over
m independent items, SREVi.(D) > REv(D).

Proof. Observe first that by Theorem 1 we have:

SREV1.(D) = E—:<_D1+c [gpj ( max {x2}> +] = ZE [@g(F (Xs(1,0)) ]

- 1€[1+¢] -
J J

By Proposition 1 (and Theorem 3), we have:

m m

Revy (D Z sep [7i(0) 1@ € By) +v; 15 ¢ RBy)] < DB [g,(F (Xp(1Lm)) T

= =1

Observe that @;(-) is a monotone non-decreasing function, and F; ~! is also monotone non-
decreasing. As such, if Xg(1,c¢) stochastically dominates Xr,(1,m), (,DJ(F 1(Xs(1,¢))) stochasti-

cally dominates &;(F; L(X1(1,m))), which allows us to conclude that >,E [gpj( Y Xs(1,e)t ] >

Y E [cp]( YXp(,m))* } Therefore, we may conclude that if Xg(1,c¢) stochastically domi-
nates XL(l,m), SREVi4.(D) > REVy(D). O

At this point, we’ve reduced the problem of deriving competition complexity upper bounds to
a purely mathematical problem relating stochastic dominance of Xg(1,¢) and X (1, m). The proof
of this claim for n = 1 is not an especially instructive special case, so we defer the final step to
Section 5. So we wrap up our warm-up by citing Theorem 8:



Corollary 2 (of Theorem 8). When ¢ > 2+In(m+1), Xg(1,¢) stochastically dominates Xr,(1,m).

Theorem 4. Let D be a distribution that is additive over m independent items. Then SREVy1,(m1) (D)
> REVI(D). If each Dj is regular, then also VCGg i1y (D) = REV(D).

Proof. Theorem 3 upper bounds REV;(D) with the EFFTW benchmark. Proposition 1 further
upper bounds the EFFTW benchmark with 3, E[@;(F j_l(X £(1,m)))"], which is the sum over all
items of the expected virtual value of a quantile drawn from X (1,m). Corollary 1 argues that
if X1 (1,m) is stochastically dominated by Xg(1,¢) (the maximum of ¢ + 1 i.i.d. draws uniformly
from [0,1]), then we may replace X1(1,m) with Xg(1,c¢) in the upper bound, which is exactly
SREVi4.(D). Finally, Corollary 2 claims that indeed Xg(1,¢) stochastically dominates Xr,(1,m)
when ¢ > 2 +In(m+ 1) (and the final +1 when each D; is regular comes from going from SREV to
VCG using Bulow-Klemperer). O

This concludes our exposition for a single bidder. Above we introduced one new idea which
departs from prior work: instead of directly treating the benchmark which involves both values
and virtual values, rewrite the benchmark to involve only virtual values and reduce the problem to
purely mathematical questions about stochastic dominance of X (1,m) and Xg(1,c).

4 Multiple Bidders

In this section, we overview our approach for the general case. The key simplifying feature of the
single-bidder case that allowed us to isolate one key idea is that for each item j, that item has the
highest quantile or it doesn’t. In the multi-bidder case, there are multiple bidders, some of whom
will have their highest quantile for item j, some of whom won’t. So we must actually engage with
the “max;c[,)” in the benchmark. Our approach will be different depending on whether n is big or
little relative to m. We begin with the little n case as it is more similar to the single-bidder case.

4.1 Part One: When n <m

Our key step is conceptually similar to Proposition 1, but the random variables involved are nec-
essarily more complex. We first make the following observation (also made in [EFF™17a]). Below,
v(p); denotes the ¢t highest value for item j (among all bidders). All omitted proofs can be found
in Appendix D.

Observation 1.
Egepn ma {@;(vij) ™ - 1(; € Rj) + i - 1(T; ¢ Ry)}

< Egepn [max {vq); - 1Ty € Ry), B;(vy;)s v@)}] -

Next, we want to rewrite the right-hand side above using random variables simliar to Xz, (1, m).
This time, let X} (n, m) denote the following random variable: first, draw n quantiles X ..., Xy 5
independently and uniformly at random from [0,1]. Relabel them so that Xyn 2 -+ 2 Xy
Then, draw m — 1 quantiles uniformly at random from [0, 1] and label them Y7 ;1 thru Y, —1 m—1.
If X1y, > Yom-1 for all £, then set X} (n,m) = X(y),. Otherwise, let £* be a uniformly random

element from {([Y,,—1 > X(1),} and set X5 (n,m) =Y 1.

8



Proposition 2. For all D = x;D;, and all items j:

Egpr [max {va); - W01y ¢ R;), 2;(v)), v2); 1] <E [max {@(Fj_l(X/L(n,m))% Fj_l(X(z),n)H :

Proposition 2 helps us replace any instances of v(j),, in the benchmark with a randomly drawn
virtual value, but we still need to do the same for v(g), (which so far has essentially just been
rewritten as Fj_l(Fj(U(2)n)))- Now, let Wy, be a uniformly random draw from [X(y),,1], and
define Xr,(n,m) = max{X} (n,m), Ws,}. By making use of Fact 1, we can conclude:

Corollary 3.

E [max {&; (" (X7 (n.m))), ' (X)) || < E |78 (X (n,m))|

Now, we are nearly ready to wrap up the n < m case. Similarly to the single-bidder case, define
Xs(n,c) to be the maximum of n + ¢ i.i.d. draws uniformly form [0, 1].

Corollary 4. If Xs(n,c) stochastically dominates Xr,(n,m), then SREV,4+.(D) > REvV,(D). If
each Dj is reqular, then VCGy4.(D) > REV, (D).

Finally, Theorem 8 claims that when ¢ > n - (2 4+ 1In(1 +m/n)), Xs(n,c) indeed stochastically
dominates Xr,(n,m). Combining Corollary 4 with Theorem 8 therefore concludes:

Theorem 5. For all D that are additive over m independent items, SREV,, p.(241n(14m/n)) (D) =
REV, (D). If each marginal of D; is regular, then VCGy, o p.(24m(14m/n)) (D) = REV, (D).

When n < m, this is tight up to constant factors, due to a lower bound of [FFR18] (see
Appendix A for the construction). But when n > m, this is still linear in n. We therefore provide
an alternative argument in the following section which achieves the optimal (up to constant factors)
competition complexity that is achievable starting from the EFFTW benchmark of ©(y/nm).

4.2 Part Two: When n>m

At a high level, the main difference between how we should analyze the n < m case and the
n > m is as follows: Observation 1 immediately upper bounds the EFFTW by upper bounding
Pi(v2);)" - LUy € Rj) +v(2); - I(T(2) ¢ R;) with v(z);. When n < m, this upper bound is unlikely
to be much of a relaxation, because it’s likely that v(;); ¢ R; anyway. But when n > m, we're
extremely unlikely to have v(y); ¢ R;, and this upper bound is wasteful. Indeed, this step is what
limits the analysis in [EFF*17a] to Q(n). The first step for the n > m case is to address this.

Proposition 3. For all items j, all ¢ € [n], and all distributions D that are additive over indepen-
dent items:

Eg pn max {@;(vij) " - 1T € Ry) +vij - 1(T; ¢ Rj)}| SE__ nrim-nee— [max {@;(way), weey ] -
KA n J

We now want to take a simliar step to the previous case and replace w(,) with a randomly
drawn virtual value using Fact 1. Here, define the random variable Xp(n,¢) as follows. First, draw
Xin,.-.,Xnn independently and uniformly at random from [0,1]. Then, randomly draw W,
uniformly from [X() ,, 1], and set Xp(n,£) := max{X () ,, Wen}.
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Lemma 1. For any single-dimensional distribution D, and any n/':
Egpr [max {@;(wa)), we}] <E {@j(Fj_l(XB(n/,f))) -

Corollary 5 below follows from Proposition 3 and Lemma 1 with n' :=n+ (m — 1)(¢ — 1).

Corollary 5. If Xg(n,c) stochastically dominates Xp(n + (¢ —1)(m — 1),£), then for any D that
is additive over m independent items, SREV,.(D) > REV, (D). If each marginal D;j is regular,
then VCGp4c(D) > REV, (D).

Finally, Theorem 7 states that Xg(n,c) = Xg(n+({—1)(m—1),c—({—1)(m—1)) stochastically
dominates Xp(n + (¢ — 1)(m — 1),¢) whenever ¢ — ({ — 1)(m — 1) > %. Setting
0:=\/nm+ 1, we get ¢ > /nm + 4y/nm + 4(m — 1).

Theorem 6. For all D that are additive over m independent items, SREV,, 5 mm am—1)(D) =
REV,, (D). If each marginal Dj is regular, then VCG,, 5 i am—1)(D) = REV,(D). In particular,
if n >m, 5y/nm+ 4(m — 1) < 9y/nm.

5 Stochastic Dominance via Additional Samples

In this section, we consider purely questions about whether one distribution stochastically dom-
inates another (Sections 3 and 4 outline the connection between these problems and our main
result). Recall the following ingredients in our experiments:

o Xi,,...,Xp, are n iid. draws from the uniform distribution on [0, 1], and then relabeled
so that X(l),n 2 e Z X(n),n

® Yim—1,...,Ym—1m—1 are m —1 iid. draws from the uniform distribution on [0, 1], and then
relabeled so that (1) ,,—1 > ... = Y1) m—1-

® Zicy...,Zec are c iid. draws from the uniform distribution on [0,1], and then relabeled so
that Z(l),c Z e 2 Z(C)7C.

e Wy, is a random draw from the uniform distribution on [X() ,, 1.
SREV EXPERIMENT(n, ¢): Output Xg(n,c) := max{ X, Z(1),c}-
BIG n BENCHMARK EXPERIMENT(n,£): Output Xp(n, £) := max{X ), Wen}.
LITTLE n BENCHMARK EXPERIMENT(n,m): Let j* be the largest index such that Yii9ym-1 >
X(1),n (if such a j* exists). If no such j* exists, output Xz, (n,m) := max{X),, Wan}. Otherwise,

pick an index j uniformly at random from {1,...,j*} and output max{Y{;,,—1, Wa,n}.

The main results of this section are as follows:
Theorem 7. When ¢ > 4n/({ — 1), Xs(n,c) stochastically dominates Xp(n,t).

Theorem 8. When ¢ > n- (2 +1n(1+m/n)), Xg(n,c) stochastically dominates Xr,(n,m).

10



Intuitively, we might expect Xg(n,c) to stochastically dominate Xp(n,0) right around ¢ = 2n/¥.
This is because E[Z(y) o] = 1—1/(c+1), and E[W, ,,] = (n+1) Of course, this observation doesn’t
come close to proving stochastic dominance, especially because X (1), and Wy, aren’t independent.
But it does give us an idea of the right ballpark to shoot for. The following proposition will be
used in the proof of both theorems.

Proposition 4. Let ¢ > 4n/(¢ — 1). Then for all p, Pr[Z) . > plXyn < p] = Pr[Wg, >
plXyn <pl. When £ =2, this can be improved to ¢ > n.

Before getting into the proof, let’s unpack the role of conditioning on X(y),. Z(1). and X(),
are independent, so Pr[Zy) . > p|X(1), < p| = Pr[Z(y),. > p]. On the other hand, Wy, and Xy,
are positively correlated: the lower bound on the range from which Wy, is drawn is X ,,, which is
positively correlated with X(y),,. So certainly if we could prove the lemma without the conditioning
on X(1),, < p, the desired proposition would hold. This approach works for £ = 2 (and indeed shows
up in our proof as a base case), but without conditioning the conclusion is otherwise false for larger

l.

Proof. The proof will proceed by induction on n,f. We begin with the base case, £ = 2. Z) is
easy to reason about: Z(y) . is just the maximum of ci.i.d. draws uniformly from [0, 1]. So:

Pr(Zy) e > plX)n <pl =Pr[Zy) . >p|=1-p" (3)

Now we turn to Wa,,. As referenced in the foreword to the proof, for this case the proposition
statement holds even without conditioning on X(y),, < p. Indeed, observe that without conditioning
on X1y, < p, X(2),n is just the second-highest of n i.i.d. draws uniformly from [0, 1], and Wa,,
is drawn uniformly from [0, 1], but conditioned on exceeding X2)n- That is, Wy, is actually
identically distributed to X(y),, and is distributed according to the maximum of n i.i.d. draws
uniformly from [0,1]. Therefore, when ¢ = n, W, is identically distributed to Z) ., and the
conclusion holds. That is:

Pr[Wa, > p| Xy, <p] < Pr[Wa, >p/=1-p" (4)

As such, we have proved the base case (in fact, a slightly stronger claim): for all n, and ¢ = 2
when ¢ > n = n/(¢ — 1), Zy), stochastically dominates W5,. Now we turn to the inductive
step, which is significantly more involved. As referenced in the foreword, we must take a different
approach for larger ¢, as the desired claim is false if we remove conditioning on Xy, < p.

To this end, we'll first observe that when p = 1, Pr[Zy) . > 1] = Pr[Wy,, > 1| X, < 1] =0,
and when p — 0, Pr[Z(y) . > p|] = Pr[Wy,, > p|X(1),, < p] = 1. So the desired inequalities hold at
both endpoints of [0, 1], and we’d like to reason about p € (0,1). To accomplish this, it will actually
be easier to compare Pr[Z(}) . > p] - Pr[X(1), < p| to Pr[Wy, > p A X1y, < p] (observe that this
simply multiplies both conditional probabilities in our original comparison by Pr[X W < p]), and
consider the derivative with respect to p.

Solet f1,,(-) denote the density of X(y),,. Then Pr[Wy,, > pA X, fo fin(q)-Pr[We,,
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plX(1),n = qldg. By Leibniz’ rule, the derivative of this with respect to p is:

OPr[Wypn >p A X1y, <D
01)
_ 0y frn(@) - PrWen > plX ()0 = qldg
dp

P OPr[Wyp > pl Xy =4
fl n ) ’

=f1n(p) - Pr[We, > plX() ap

dq.

Let’s first unpack the left-most term with the following lemma.

Lemma 2. For all {,n > 1, Pr[Wy, > p|X(1), = p|l = Pr[We_11 > p|X(1)n—1 <l

Proof. Observe that, conditioned on X(1y,, = p, X2)n;---,X(n)n are n — 1 (sorted) i.i.d. draws
uniformly at random from [0, p, and Xy, is the (£ — 1)™" highest of them. Put another way, X ©),n
conditioned on Xy, = p is identically distributed to X(y_1),—1 conditioned on Xy ,_; < p. This
therefore implies that W), conditioned on X(l),n = p and Wy_q 1 conditioned on X(l),n_l <p
are identically distributed as well. O

Now we turn to the right-most term.

Lemma 3. For all p,{,n,q, O Pr{We, ";‘;'X(l) n=q _ —Pr[Wyp > pl X1y, =4ql/(1 —p).

Proof. Let’s first expand Pr[Wy, > p|X(), = ¢] by letting f/ (-) denote the density of X,
conditioned on Xy, = ¢.

Pr[Wipn > plXyn = / fén 1= r

This is simply because, conditioned on X (¢),n = 7, the probability that Wy, (a uniformly random

draw from [r,1]) exceeds p is exactly . Taking now the derivative with respect to p (again by
Leibniz’ rule), we see that:

aPr[WZ,n > p’X n o Q] q
o) :—/’ﬁnrArwwwz—mem>mxmm=dm1—m.

dp

Using Lemma 3, we can now rewrite:

p OPr[Wy, > pl Xy,
/0 1,n Q) :

=q —-1 7
dg = (@) - Pr[Wen > plX 110 = gld
- 0= 1= | $1l@) - Prl Wi > X0 = ald

- Pr[Wg,n >pA X(l),n < p
L—p
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And using both Lemmas 2 and 3 we can now simplify (the second equality follows by recalling
that f1,,(-) is the density of X(y),):

aPr[W&n >pAXyn < p] PY[W&n >pAXyn < p]
0 = fra(®) - PrWe—10-1 > plX ()01 < 9] — o
Op 1—p
(5)
Pr[ng >pA X(l)ﬂ < p]

=np" " PrWi_1 -1 > p| X1y no1 <) —

I—-p
(6)

From here we’ll show that whenever Pr[Wp,, > pA X(1),, <p] > Pr[Zy . > pA Xy, <p] (e

whenever what we'’re trying to prove at p is violated), then the derivative trends towards satisfying
our desired claim.

Lemma 4. If Pr[W;,, >p A Xy, <p] > Pr[Zyy . >pAXa)yn <pl, then:

OPr[Z1y e > P A Xy <pl = Pr[Wen >pA Xy, <pl
dp

> 0.

Proof. Observe first that Pr[Zy. > p A Xy, < p] = p" - (1 —p°). As such, we also have
8Pr[Z(1),C>p/\X(1)7n<p}

o = np" (1 — p°) — cp™te7L. So if the hypotheses of the lemma are satisfied,
then by Equation (5) we can write:

OPr[Zq)c>pAXuyn <pl —Pr[Wen >pAXayn <pl
dp

. . e . Pr[Wen > p A Xay, <p
=np" (1 —p) —ep"T! - (np L PrWisi -1 > plX (1)1 <Pl — = >

I—p
> npn—l(l o pC) _ cpn+c—1 _ npn—l . (1 _ p4(n—1)/(f—2)) + pn(l —pc) )
= T »

In the inequality, we have used two facts. First, we have used the inductive hypothesis,
which claims that Pr[Wg_lm_l > p|X(1),n_1 < p] < Pr[Z(1)74(n_1)/(Z_2) > p|X(1),n_1 < pl =
1 — p*(n=1/(=2) " Second, we have used the hypothesis of the lemma statement. Next, we can

substitute (1 —p°) = (1 +p+...+p° 1) - (1 —p) (and make some other algebraic simplifications)
to get:

OPr[Zy e >pAXayn <pl = Pr[Wen >pA Xy, <pl

dp
c—1
> _(n + C)pn+c—1 + npn—1+4(n—1)/(f—2) +pn . Zp]
=0

Recall again that we are hoping to prove that the above term is > 0. As p > 0, the above term
is > 0 if and only if (dividing all terms by p"~! and rearranging):

nptnED LS i > (4 . (7)
j=1
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To conclude that Equation (7) indeed holds for all p € [0,1], consider the convex function
f(x) := p®, and the random variable A where A = j with probability 1/(n+c) for all j € {1,...,¢},
and A = 4(n—1)/(¢—2) with probability n/(n+c). Then the left-hand side of the equation above is
exactly (n+c)-E[f(A)]. Therefore, we may conclude by Jensen’s inequality that the left-hand side

4(n=1)n/(€—2)+c(c+1)/2 4(n—1)n/(L—2)+c(c+1)/2
excoeds (n-+¢) F(ELA]) = (n+c)-p L5 Ty (0. 1], (o) p LS
(n + ¢)p® if and only if 4n=1)n/ (i_fc)“(cﬂ)/ 2 < ¢. So finally, our only remaining job is to see what

values of ¢ satisfy:
4(n —1)n L cle+1)
{—2 2
Indeed, observe that when ¢ = 4n/(¢ — 1), we get:

< ne+ 2. (8)

dn—1)n  clc+1) ?

79 + 5 §nc+c2
4 4 42 4 2.4 42
£—2_n(£—2)+2(£—1)2+2n(£—1)—£—1+(£—1)2
2(6—1)2—2(6—1)2/n+4(€—2)+(€—2)(€—1)/n;2(6—2)(6—1)+2-4~(€—2)
Gl—1)— Ul —1)/n<4-((—2)
(-1 —1) 7
=2 =2 =1

The last inequality indeed holds as £ > 3.
O

Now we are ready to wrap up the proof of the proposition. We have just shown (Lemma 4) that
for all p, either Pr[Z(y) . > pA X (1) < p] = Pr[Wen > pA Xy, < p) > 0, or 20 P00 <h]

P
6 n n . . . .
PriWen>pAXa).n <Pl > 0. We now are ready to claim that this implies that Pr[Z(;) . > p A Xq), <

0
p] — Pr[Wivn >p A Xy, <p]>0forall pel0,1].

Indeed, define G(p) := Pr[Z(1y. > p A X1y, < p] — Pr[Wy,, > p A X1y, < p]. Then we have
shown that for all p, either G(p) > 0 or G’(p) > 0. Moreover, we know that G(0) =0—0 = 0. So
assume for contradiction that there exists some p with G(p) < 0. Then because G(-) is continuous
(and G(0) = 0), there exists some open interval (¢, p) such that G(x) < 0 on (g, p), while G(q) = 0.
But now we have a contradiction: By Lemma 4, G'(z) > 0 on (¢, p), and G(¢q) = 0. Therefore, we
must also have G(x) > 0 on (g, p), contradicting our initial assumption.

Therefore, we cannot have G(r) < 0 anywhere on [0, 1], meaning that Pr[Z) . > p A X1y, <
p] = Pr[Wy, > pA Xy, < p] > 0. This is identical to the claim that Pr[Z) . > p[Xq), < p] >
Pr[Wy, > p|X)n < p]. This completes the proof of the proposition.

O

Theorem 7 now follows nearly directly from Proposition 4.
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Proof of Theorem 7. We can directly compute Pr[Xg(n,c) > p] = Pr[X(), > p| + Pr[Zy). >
Pl Xy < pl-Pr[Xa), < pl|. Similarly, Pr[Xpg(n,?) > p| = Pr[X(y), > p] + Pr[We, > p[ Xy, <
p] - Pr[X(y), < p|. By Proposition 4, when ¢ > 4n/(¢ — 1), we get:

Pr(Zn) e > plX1)n < pl = Pr[Weyn > plXa)n <pl
Therefore,

[(Xayn >0l +Pr[Za) e > plXq)m <pl-PriXuy, <pl
> Pr[X(l),n > p] + Pr[Wf,n > p|X(1),n < p] ’ Pr[X(l),n < p]'

This implies
Pr[Xs(n,c) > p| > Pr[W;,, > p|.

As the above holds for all p € [0, 1], this proves that Xg(n, ¢) stochastically dominates Xpg(n,¢).
O

Theorem 8 will require one more similar proposition.

Proposition 5. Letc > n-(1+In(1+m/n)), then for all p, Pr[Z ) . > p|Xq)n < p] > Pr[Y, 1 >
p|X(1),n < p|, where Y, m—1 18 the random variable equal to 0 if Y1,m—1 < X(1),, and is otherwise
equal to Yj 1 for a uniformly random j € {j|Yjm-1 > X(1yn}-

Proof. The proof of Proposition 5 is more direct than that of Proposition 4. This time, we can
just directly compute Pr[Y,y,, ; > p|X(1), < p|. We again begin by observing that Pr[Z() . >
plXayn <pl=PrZa). >p]=1-p"

We now turn to Y7, ;. Observe first that Y,*,,_; = 0, conditioned on X), = ¢, with
probability exactly ¢"~!. This is because Y, m—1 18 0 whenever each of m —11.i.d. draws uniformly
from [0,1] are all < g. Now, conditioned on Y,7,, | >0 (and also X(y),, = ), observe that Y,
is just a random draw from the uniform distribution on [X(l)m, 1]. This is because, conditioned
onYy, 1>0and Xy, =¢ Y,

nm—1 Simply picks uniformly at random among some number of

iid. random variables drawn uniformly from [X(j),,1]. Therefore, conditioned on Yo mo1 >0,
and X (1), = ¢, Y, ,,_1 exceeds p with probability exactly }%Z. Therefore, we can compute (below,

let f1(-) denote the density of X(y),, and Fi(-) denote the CDF):
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Pr[Y;,m—l > p’X(l),n < p]

_ [? 19

o Fi(p)
n—1

P 1
:/ M (1 g g
o p" I—gq

) e L

’ Pr[Y;,m—l > 0|X(1),n = Q] ’ Pr[Yrj,m—l > p|Y1;m—1 >0A X(l),n = Q]dq

p" 0 1—¢q
’I’L(l—p) . P n—1 = i
— /0 q (i:0 q')dg
m—2 p
_n(lpz p) . [Z qH"/(n—i—z)
1=0 0
m—2
_’I’L(l ;p) . Z pi—l-n/(n —I—Z)
p i=0
m—2 '
=n(1 —p) p'/(n+1i)
=0
m—2
=1—np™ ' /(n+m—2)+n- > p1/(n+i)—1/(n+i-1))
i=1
m—2
=1 —np™ ) (n4+m—2)— np'/(n+i)(n+i—1)
i=1

Before proceeding, we quickly observe that the sums of the coefficients of non-zero powers of p
is —1 (that is, n/(n + m — 2) + 22_12 n/(n+i)(n+i—1) =1). This is because the third-from-
the-bottom equality is clearly equal to 0 when p = 1, and so the bottom equality must be equal to
0 when p =1 as well.

?
Pr[Z(l),c > p’X(l),n < p] 2 Pr[Yrj,m—l > p’X(l),n < p]

? w2
1—p°>1—np™ Y/ (n+m—2)— anl/(n—l—i)(n—i—i—l)
1=1
? ez
pe<np™ H(n+m—2)+ an’/(n—i—i)(n—i—i— 1)
i=1

From here, we again apply Jensen’s inequality. Let f(z) := p® (which is convex), and let A
denote the random variable which is equal to m — 1 with probability n/(n + m — 2) and equal to
i with probability n/(n +i)(n +¢—1) for all ¢ € {1,...,m — 2}. By reasoning in the previous
paragraph (that the coefficients of non-zero powers of p sum to —1), this is indeed a distribution.
Then Jensen’s inequality asserts that E[f(A)] > f(E[A]). Moreover, the right-hand side above is
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exactly E[f(A)]. As such, we get that:

m—2
npm—l/(n +m— 2) + Z npl/(n + z)(n +i— 1) > pn(m—l)/(n+m—2)+2?;712 ni/(n—l—i)(n—l—i—l)'

i=1

As p € [0,1], this means that our desired inequality is satisfied as long as ¢ > n(m —1)/(n +
m—2)+ 22_12 ni/(n+1i)(n+1i—1). But now observe that:

= . o m-1 = i
n(m—l)/(n—l—m—2)—|—;nz/(n—l—z)(n—l—z—l)—n(m—l— 2 (n—l—z’)(n—l—i—l))

m—2

<n- <1+ > 1/(n+z‘))
=1

<n. <1+1n(”+Tm_2)>

Sn-(l—l—ln(l—l—%)).

O

And now we can prove Theorem 8, which essentially combines Proposition 4 and Proposition 5
(with some extra work).

Proof of Theorem 8. We again directly compute Pr[Xg(n,c) > p] = Pr[X(, > p] + Pr[Zq),. >
plX)n < pl. Similarly, Pr[Xy(n,m) > p] = Pr[Xq), > p] + Pr[Wa, > p| X1y, <pl-Pr[Xg), <
pl +Pr[Yy, 1 > pl Xy, < p AWy < pl-Pr[Xgy, < pA Wy, < p], where again Y, 4
is defined to be 0 if Y1 ,,—1 < X(1),, and otherwise equal to Yj,,—; for a uniformly random
3 € {ilYjm—1> Xa)n}t-

By Proposition 4 we have that Pr[Wa,, > p|X (1), < p] < Pr[Zy), > p]. Now we need to reason
about Y, _; conditioned on X1, < p and Wy, < p, which is not directly related to any previous
propositions. However, we claim that V", and Wy, are positively correlated, conditioned on
X <P

Lemma 5. Pr[Y,y, 1 > p|Xy, <pAWay, <p] <Pr[Yy, 4 >plXqy, <pl|

Proof. For this proof, for random variables A, B, C, when we say A and B are conditionally inde-
pendent, conditioned on C' we mean that for all ¢, the random variables A and B are conditionally
independent, conditioned on the event C' = ¢. We use this shorthand to avoid cumbersome notation.

The proof consists of three steps: (a) we first show Y,*, | and Wy, are conditionally inde-
pendent, conditioned on X(y) p, (b) we show that, conditioned on Xyn <P Yo
correlated with Xy ,,, and (c), Wa,y, is positively correlated with X(1),n- Together, this essentially
lets us claim that additionally conditioning on W2, < p only serves to lower X(y),, which lowers
the probability that Y7, _; > p.

Observe first that conditioned on X(1) ..., X(n)ms Yy o1 and Wy, are independent (this
is just by definition: they are drawn independently, but the distributions from which they are

drawn depend on X(y,,...,X(,),). However, observe that the distribution from which Y,*

is positively

m—1
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is independently drawn can be defined as a function only of X(j),,. This means that, conditioned
on X1y, X(2), and Y7, are conditionally independent. Similarly, the distribution from which
Wa,, is independently drawn from can be described as a function only of X(y),, which we just
claimed is conditionally independent of Y, ., conditioned on X(i) ,. Therefore, Y¥, _, and Wy,
are conditionally independent, conditioned on X(l),n.‘l

Next, we want to claim that, for all r < ¢ < p, Pr[Y,) . 1 > p|X), = q > Pr[Y,),,; >
p\X(l),n = r]. To see this, observe the following equivalent method for drawing Y, 1t First, draw
Yim—t1,---s Ym—1m—1 ii.d. from the uniform distribution on [0,1]. Permute them into random
order.® Then, let j be the smallest index such that Yjm-1 > Xy, If no such j exists, set
Y, -1 = 0. Otherwise, set Y,*, _, =
X(l)m = ¢ and X(l)m = r by fixing the values Y7 ;,—1,...,Y;—1,m—1 and the random permutation.
Then think of Y conditioned on Xy),, = r (respectively, X(;), = q) as scanning the values

,m—1
sequentially until it hits one whose value exceeds r (respectively, q).

Yjm—1. Now, let’s couple draws for V" ,_; conditioned on

e If the (permuted) sequence Y} p—1,...,Ym—1m—1 has no values > p, we have Y;m_l < pin
both cases.

e If the sequence has values > p, but a value € (¢,p) precedes all values > p, then again
Y, -1 <p in both cases. This is because both scans stop at the value € (g, p) which is not
> p.

e If the sequence has value > p, and the first one is not preceded by any value € (r,p), then
Y, ,n—1 > p in both cases. This is because both scans stop at a value > p and output it.

e If the sequence has a value > p, but a value € (r,q) precedes all values > p but no value
€ (q,p) precedes the first value > p: then Y, m—1 > p when conditioned on X(1), = ¢, but
Y, n—1 < p when conditioned on Xy, = r. This is because the X(y), = ¢ scan skips over
the value € (r,q), and stops at the value > p, whereas the X(1),n = 7 scan stops at the value
€ (r,q).

This covers all cases, and proves that for all r < ¢ <p, Pr[Y,y 1 > p|X1), =¢q] > Pr[Y,,, 4 >
p‘X(l),n = 7’].

Finally, we make the same claim for Wy : for all r < q, Pr[Wy, > p|X(y),, = q] > Pr[Ws, >
p|X(1),n = r]. This claim is more straight-forward: Wy, is drawn from a uniform distribution on
[X(2),0, 1] So clearly, Pr[Wa > p|X(9),, = q] = Pr[Wa > p|X(9) ,, = r] whenever r < q. Moreover,
X(2),n is distributed according to the maximum of n — 1 ii.d. uniform draws from [0, X(y) ,,], so the
distribution of X(y), conditioned on X (i), = ¢ stochastically dominates that of X ),, conditioned
on X(1),, = r whenever ¢ > r. Both observations together allow us to conclude that for all r < g,
PI‘[WQ’E > p‘X(l),n = q] > Pr[WZ( > p\X(l),n = 7’].

Now we may put all three claims together to prove the lemma. O

Now with Lemma 5, we can wrap up the proof. We now know that:

“Note that Y, m—1 and W2, are not conditionally independent, conditioned on X(),, < p. They are only
conditionally independent, conditioned on Xy, = ¢ (for some gq).
5Actually, this step is not necessary, but it helps the analogy to state it.
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Pr[X7,(n,m) > p] = Pr[X(1), > p| + Pr[Wa, > p| X1y, < p]-Pr[Xn), <p

+ Pr n,m—1 >p’X <p/\W2,n<p]'Pr[X(l),n <p/\W2,n<p]
< Pr[Xq), > pl + Pr(Way, > pl X1y, < p) - Pr[X gy, <pl
< Pr[X(l),n > p] + Pr[Ws n > p|X p] : Pr[X(l),n < p]

[
Yo,
W
+ Pr[Yy 1 > plX n <] Pr[X), <pA W, <p
[
+ PrZ) n(+in(14m/m)) > PIX@)n <Pl PrXa), <p AWy, <pl
[

< Pr[Xay,n > pl +PriWay >0V Z0y n(i4in(4m/n)) > PIX(1)n <p) - Pr[X),, <p]

At this point, observe that the random variables Wy, and Z(1) j(141n(14m/n)) are independent
(and also conditionally independent, conditioned on X W)n < p). Therefore:

Pr[Wa, <p A Zaym(i4+in(4m/n)) < PIX1)0 <P
=Pr[Wan < plX1yn <] PrlZayntin4m/m)) < 2IX1)n <Dl

By Proposition 4, we know that Pr[Wa,, < p[X(), < p| > Pr[Z), < p[Xq), < p|. Therefore,
we get that:

Pr[Wan <p A Za) n4in(i+m/n)) < PIX )0 <P

PrZy,n < plXayn <p- Pr[Z(l),n(l—l—ln(l—l—m/n)) <plXyn <1l
Pr[Z)n < Pl PrlZ) n4m+m/m)) <P

Pr[Z1) n24n(14m/m)) <Pl

v

Therefore,
Pr[Z 1) n@tin(4m/m)) > Pl = Pr{Wan > pV Zy n1in(i1m/m)) > PIX )0 < pl-
So substituting all the way back, we get that:

[XL(n,m) > p] < Pr[X gy, > p| + PrlZa) ne@sin(4m/m)) > Pl PriX ). <pl
= Pr[Xs(n,n(2 +In(1 +m/n))) > p.

This completes the proof. O
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A Lower Bound Examples

In this section, we analyze a new lowerbound in detail, and remind the reader of a lower bound
from [FFR18].

A.1 Theorem 5 is tight [FFR18]

Here, we sketch the construction from [FFR18]. There be n bidders and m > ¢ - n items for some
absolute constant c¢. Recall that ER" denotes the distribution over values for m items for which
each value is drawn i.i.d. from the equal revenue curve with revenue equal to 1. Then consider the
posted-price mechanism which visits each buyer sequentially (in arbitrary order) and offers her the
option to buy any set of 7* remaining items for price 7 = % - (In(m/n) + 1). Feldman et al. prove
the following:

Proposition 6 ([FFR18]). The posted-price mechanism described above achieves expected revenue
Q(m -n(1+1In(m/n))) for n buyers whose values for the m items are drawn i.i.d. from ER™.

On the other hand, the revenue achieved by selling a single item to n buyers whose values are
drawn i.i.d. from ER is well-understood. For the sake of completeness we repeat a proof below.

Proposition 7 (Folklore). REV,(ER) = n.

Proof. Tt is clear that REv;(ER) = 1: for any price p, the revenue achieved by setting price p is
p-1/p = 1. This immediately implies that REV, (ER) < n: even if the auctioneer had n copies of
the item for sale, they would still not get revenue more than n.

Moreover, here is an auction that guarantees revenue approaching n as p — oo: post price p on
the item, and sell to the lexicographically first bidder whose value exceeds p. Then the probability
ofsaleis 1—(1—1/p)" > n/p— (g) /p?. So the revenue is at least n — (g) /p, which approaches n as
p — oo. The second-price auction is optimal for n bidders drawn from £R, and achieves revenue
n (one could separately verify this by directly computing the expected second-highest value of n
i.i.d. draws from ER, if desired). O

Together, these propositions claim that REv,,(ER™) = Q(m-n(In(m/n)+1)), yet also VCG,,4-(ER™)
= m-(n+ c). Therefore, in order to possibly have VCG,,4.(ER™) > REV,(ER™) we need to have
¢ = Q(nln(m/n)). We therefore conclude:

Corollary 6 ([FFR18]). The competition complexity of n bidders with additive valuations over m
i.i.d., reqular items is at least Q(nIn(m/n)).

A.2 Theorem 6 is tight for the EFFTW benchmark

In this section, we prove that any analysis starting from the EFFTW benchmark can prove at
best a competition complexity of \/nm. Again, consider the distribution ER™. For the subsequent
analysis, it will be helpful to instead think of replacing ER by a distribution with CDF F(z) =
1—1/x for x € [1,p), and F(p) = 1 (that is, an equal revenue curve truncated at p) for p — oc.
We will not explicitly replace ER with this distribution, and we will always think of p — oo in the
subsequent analysis.
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Our first lemma states that when considering ER™, max of sums in the EFFTW benchmark
can be replaced by a sum of maxes. Observe that Lemma 6 does not generally hold for distributions
other than ER™, and moreover that generally swapping the max and sum results in a benchmark
that is unachievable with any finite competition complexity (just consider distributions that are
point-masses at 1). But for equal revenue curves, this equation holds.

Lemma 6.

ZEI_R—(SR"L)” |:maX {(pj(?]ij)+ . ]I(UZ S R]) + Vij - H(@; Qé R])}:|
j=1

i€[n]

M-

Ege (ermyn [max {@j(vi))* - 1(T; € Rj)} + max {vij - 1(0; ¢ Rj)}]

1€[n]

<.
Il
-

=nm+ Y Eg(ermyn [?é% {vi - I(v; ¢ Rj)}
j=1

Proof. The intuition is roughly as follows: for a single value drawn from the equal revenue curve
truncated at p, we have p(v) = 0 when v < p and ¢(p) = p. So the distribution of virtual values is
0 with probability 1 — 1/p, and p with probability 1/p. One can therefore informally think of the
untruncated equal revenue curve as having virtual value distribution that is 0 with probability 1,
and +oo with probability 0 (yielding an expected value of 1). Therefore, the argmaximum in the
benchmark is some ¢ with 7; ¢ R; with probability 1, and with probability 0 the argmaximum is
some 4 with 7; € R; and ¢;(v;j) = +00. As the ¢ term only interferes with probability 0, we can
simply sum the terms instead. Of course, this is quite informal, but provides good intuition for
where the proof is going (and why we need to consider ER truncated at p for p — oo to be formal).

To begin the proof, observe first that whenever ¢;(v;;)™ > 0, we have ¢;(v;;)T = p > vy, for
all /. That is, whenever a virtual value is non-zero, it is at least as large as any value (because
the virtual value is only non-zero when it is equal to p, the maximum possible value). Now, let
f*(-) denote the density of max;c(, {vij - I(v; ¢ R;)}, and let P*(x) denote the probability that
max;cp, {@;(vij) " - I(¥; € R;)} = 0, conditioned on max;c, {vij - (% ¢ R;)} = . Then we can
write:

> Egegrmyn [Q% {j(vig)™ - 1(3; € Ry) + vy - 1(7; ¢ Rj)}]
j=1
= (i Prlmax(vy 16, ¢ R)) =1 P
p
+/ z-f*(x) - P*(x)dx
0
+p-Pr [mﬁ{%(viyfr 1(W; € Rj)} > OD :
1en
The left two terms sum the expected contribution from bidders ¢ R;, and the last term covers

the contribution from bidder € R;. Let’s begin with the left-most term. We claim here that
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the left-most term approaches 0 as p — oo. To see this, observe that in order to possibly have
max;e(,) {vij - I(%; ¢ R;)} = p, there must exist two pairs (4,7) for which v;; > p. This is because
in order to have ¥; ¢ R;, and v;; = p, we must have v,y > p for some j" # j. Observe that the
probability that this happens is at most ( ) /p?. This yields:

i - Prfmax(os 105 ¢ ) =51 P'0) < p- (7)1 = 0.

p—yoo 2

Let’s now analyze the integral. Here, we will simply claim that as p — oo, P*(x) — 1 for all
x. To see this, let’s first understand how conditioning on max;cp, {vi; - I(¥; ¢ R;)} = = affects the
distribution of max;cp, {¢;(vi;)" - 1(7; € R;)}. Observe that conditioning on max;ep,{vi; - 1(7; ¢
R;)} = x may bias the distribution of the number of indices for which ¥; € R;. For example, if
maX;e [, {vij - (i ¢ R;)} = 0, then we know that @; € R; for all i. Similarly, if max;cp, {vi; - [(7; ¢
R;)} is large, then it is more likely that @; ¢ R; for many i (because then more terms in the
max are non-zero). But this conditioning does not bias the distribution of ¢;(v;;) for those indices
(conditioned on v; € R;). That is, once we condition in a set S of bidders with #; € R; for all
i € S, the distribution of max;cs{;(vi;)} is independent of max;ep,{vi; - 1(v; ¢ R;}. So certainly
1— P*(x) is at most the probability that n independent draws from ¢;(v;;), conditioned on 7; € R;,
are all less than p, as for all « there are at most n indicies for which #; € R; (simply because there
are n bidders). Observe further that the distribution of ¢;(v;;), conditioned on v; € Rj, is simply
the maximum of m ii.d. draws from ER (truncated at p). So the probability that a single one
of these draws exceeds p is at most m/p by the union bound. Again taking a union bound over
the n draws, the probability that any exceed p is at most mn/p. As p — oo, this approaches 0.
Therefore, as p — 0o, P*(x) — 1. Observe that we’ve now shown that:

lim m - (p . Pr[?el%({wj -I(7; & Rj)} =p]- P*(p) +/0 x-f*(x) -P*(a:)da:) = 0+m/0 x-f*(z)dx

p—00
Z e (ER™)" [?é%f]( {vij - 1(7; ¢ Rj)}] :

We now turn to the final term. First, consider all nm i.i.d. draws from ER. There are two ways
in which we can have max;cp,{;(vij)" - 1(7; € R;)} > 0. First, maybe the maximum of these nm
draws is some bidder i’s value for item j, and this v;; = p. Or, maybe the maximum of these nm
draws is some bidder i’s value for some other item ;' # j, but there is another bidder whose value
for item j exceeds p (implying that there are at least two of the nm draws that exceed p).

For the first case, the probability that the maximum is some bidder ¢’s value for item j is
exactly 1/m. Independently, the probability that this value exceeds pis 1 —(1—1/p)™™ € [nm/p—
("m) /p?,mm/p]. For the second case, the probability that at least two of the nm draws exceed p is
at most ( )/102 Therefore, we get that:

Pr [max{gpj (vi)) - 1(T € Ry)} > 0} € n/p— <”;”>/( 2),n/p+ ( >/p ]

i€[n]

And therefore
- Pr [?;%( {o;(0)" - 1(5 € R))} > o] e ln— (n;rL)/(mp),n + (”;”) /p).
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Implying that:

lim p- Pr [max{gpj (vij)* - 1(T; € R))} > 0} =

p—00 1€[n]

This completes the analysis of the right-most term, as now:

lim m-p-Pr mz[mx{goj (vij)* - 1(¥; € Rj)} > 0] = Eg(grm)n [m?}]{{%(vij)+ I(3; € Rj)}| =nm.
€ 1en

pP—00

Putting both parts together proves the lemma.
O

Now, we just need to analyze Z;nzl Eg(ermn [maxie[n} {vij - 1(0; ¢ Rj)}].

Proposition 8. Let n > 4m. Then:

= N my/mn
> Egegrmyr [lin;%{vij-l(vmél%j)} =2
j=1

Proof. We begin by considering the probability that the ¢ highest of nm draws from ER (or any

distribution) is some bidder ’s value for item j, and 0; ¢ R; and for all ¢/ < {, either it is some
bidder i"’s value for an item j° # j, or vy € R;. That is, we are interested in computing the
probability that the £** highest of the nm i.i.d. draws is the maximum value (times I(7; ¢ R;)) for
item j. Observe that this probability is well-defined: it does not depend on the particular values for
the nm draws (and does not even depend on the distribution from which they are drawn). Indeed,
whether the desired event occurs or not is only a function of how the draws are permuted among
the nm values of bidders for items.

So denote by P, the probability that the %" highest of nm draws is some bidder i’s value for
item j and U; ¢ R; and for all ¢/ < {, either it is some bidder ¢’s value for an item j' # j, or
Uy € R;. Let Ej denote the event that the ¢*h highest is some bidder’s value for item j. Let Es
denote the probability that v ¢ R;(s), where the ¢t highest is assigned to bidder i(¢) and item
Jj(€). Let E3 denote the event that for all £/ < £, either j(¢') # j(£) or ¥y € Rj(p. Then it is easy
to see that Pr[E] = 1/m. Moreover, events Fy and E3 only involve where the highest £ — 1 draws
go. In particular, observe that both Fs and Fj3 are independent of Fy. Moreover, observe that Fs
is only more likely to occur conditioned on F; and Es: if one of the top £ — 1 draws is for the same
bidder as the ¢", it is necessarily not for the same item j, and also necessarily not helping to put
some other 7y ¢ R; (by being larger than vy ;) (hence making it more likely that all of the top £ —1
draws are permuted to some item other than j, and also that those values which are still permuted
to item j are € R;). Therefore:

= Pr[E1] - Pr[E2|E4] - Pr[E3|Ey A E]
= Pr[E] - Pr[Es] - Pr[Es|Ey A E4]

> Pr[Ey] - Pr[Es] - Pr[Es]

= Pr[E5 A Eq] - Pr[E3].
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Let’s first analyze the probability of Fy. Observe that event Ey does not happen only if each
of the top £ — 1 draws are permuted to a different bidder than ¢. So:

Pr[E2]:1—<1— m 1 >-<1— m_12>-----<1 L”) € [1—(1— m_ll)e—l,(e—n/n].

mn — 1 mn — _mn—€+1 mn —

To see the first equality, observe that r’:ﬁ:}, is the probability that the ¢*-highest draw is
permuted to a different bidder than the /%", conditioned on the first thru (¢ — 1) draws all being
permuted to a different bidder than the ¢*". This is because there are m — 1 items left for the same
bidder, and mn — ¢’ remaining (bidder, item) pairs in total. To see the upper bound, observe that
the probability that a single ¢’ < ¢ is permuted to the same bidder as ¢ is exactly (m —1)/(mn—1).
So taking a union bound over all ¢ < ¢, we get an upper bound on the probability that any ¢ is
permuted to the same bidder as £ is at most ({—1)(m—1)/(mn—1) < ({—1)m/(mn) = ({—1)/n.
The lower bound follows by just observing that there are £ — 1 terms in the product, and each term
is at most (1 — 2L,

Finally, we prove one minor technical lemma to argue that when /—1 < n/2, 1—(1—

(1-In(2))-(£—1)/(2n).
Lemma 7. Let { — 1 <n/2 andn > 2. Then 1— (1 —-Z=Ly=1 > (1 —In(2))- (¢ —1)/(2n).

mn

—1 \¢—1
1) 2

Proof. We start by searching for a constant ¢ such that for all x € [0,1/2], and all y such that
xzy € [0,1/2], we have 1 — (1 — )Y > caxy. We will then use this constant to prove the lemma
statement. Let’s first fix z and ¢, and minimize 1 — (1 — )Y — czy over all y € [1,1/(2x)] (this
search is well-defined unless x = 0, in which case 1 — (1 — z)¥ — cxy = 0 for all y). The derivative
with respect to y is —In(1 — 2)(1 — 2)¥ — cz, and the second derivative is In(1 — z)2(1 — z)¥ > 0.
So if the first derivative is positive at y = 1, it is positive on the entire interval [1,1/(2z)]. So now
we wish to see how small the first derivative can be, as a function of x, when y = 1.

This is again single-variate optimization: minimize —In(1 — z) - (1 — x) — ¢z on [0,1/2]. The
derivative is 1 + In(1 — x) — ¢. Observe that if ¢ < 1 — In(2), then the derivative is > 0 on the
entire range (0,1/2). This means that for ¢ < 1 — In(2), the minimizer occurs at = = 0, which is
—In(1) -1 —¢-0 = 0. So at this point, we conclude that when ¢ < 1 —In(2), the first derivative
with respect to y is non-negative at y = 1, and therefore positive on the entire interval [1,1/(2z)).
This means that the minimum occurs at y = 1 (and we will restrict ourselves from now on to
c<1-—1In(2)).

Now that we know the minimum occurs at y = 1, our remaining minimization is trivial: mini-
mize 1—(1—x)—cx = (1—c)z, which is achieved at = 0, and indeed ¢-0 > 0. So we have proven that
when ¢ < 1—1n(2), the minimum value for 1 — (1 —2)¥ —cay over all z € [0,1/2] and y € [1,1/(2z))
occurs at z = 0, y = 1, and the value is > 0. This proves that 1 —(1—z)¥ > (1 —1n(2))zy whenever
x €[0,1/2] and zy € [0,1/2].

Now we wish to apply the above fact when z = 2—L and y =¢—1 < n/2. Indeed, observe first

mn—1

that when n > 2, we have that 2 < 1/2. Moreover, when y < n/2 we have z -y = Jm— < 1/2.

Applying the previous work gives 1 — (1 — T,Tn—__ll)é_l >(1—-In(2)-(£-1)- nTn—__ll Note that for
m > 2,

ﬁn__ll > 1/(2n). Therefore we can conclude the lemma statement. O
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Now with Lemma 7, we can conclude that when ¢ — 1 < n/2, we have:

Pr(Es] € [(1 —In(2))(¢ = 1)/(2n), (£ = 1)/n].

Now, let’s analyze the probability of E5 A Ej. Observe that first, Pr[E;] = 1/m, and E5 and
E; are independent. So let’s look at Pr[E3|E;]. Observe that Py is exactly the probability that Es
does not occur, conditioned on Ej, because the £/** highest value has j(¢') = j(¢) and Uiy & Rj(er)-
If none of these events occur, then certainly event F3 occurs. Therefore:

PF[E3|E1] >1-— Z Pgl,PI‘[Eg A El] > (1 - Z Pg/)/m.
o<t <t

And therefore we can conclude that:

P, > Pr[E; A B3] - Pr[Es] > 1/m - <1 = Pg/) (1 =1n(2)) (£ —1)/(2n). (9)

o<t

Observe also that Py < Pr[Ey A Eo] = Pr[Ey]-Pr[Es] < &1 In particular, we can use this upper
bound on Py, ¢’ < ¢ to derive a cleaner lower bound on Py. Indeed, for any ¢ < \/mn < n/2 (the
last inequality is because we assume that n > 4m. This is the only place we use this assumption,
but it is a key step), we have that:

S h< Y (1) fmn < Y

o<t o </mn

=1/2.

By plugging the above in inequality 9 we can conclude that for all £ < \/mn, we have:

ps 0 _1n€237; (t-1)

To recap: we have now shown that, independent of the particular values drawn, the ¢** highest
of nm draws is equal to max;e[, {vi; - I(v; € R;)} with probability at least P, > %, for
all £ < /mn. So the only remaining step is to compute the expected value of the /** highest of nm

draws from ER.
Lemma 8. Let V., denote the z'" highest of y i.i.d. draws from ER. Then E[V, ] =y/(z —1).5

Proof. One approach would be to explicitly write out the integral for the x* highest of y draws.
This is tedious. Instead, we will count the revenue of an auction in two different ways. Consider
an (z — 1)-unit auction with z — 1 copies of the same item. There are y unit-demand bidders with
values drawn i.i.d. from ER. Then as all virtual values are non-negative and there is no ironing,
the revenue-optimal auction is to set the 2! highest bid as the price and let the (z — 1) highest
bidders get the item. The expected revenue of this auction is exactly V., - (z — 1).

On the other hand, we claim that the optimal revenue for this setting is exactly y. To see this,
observe that clearly the optimal revenue is at most y, as even with y copies of the item, we could
not get revenue more than 1 per bidder. On the other hand, consider the mechanism that posts a

5Observe that when x = 1, the expected value of the highest of > 1 draws from ER is indeed 4oo.
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price p and lets any bidder willing to pay p get the item, for p — oc. Then the probability that at
least one bidder chooses to pay is at least y/p — (g) /p%. So the revenue is at least y — (g) /p, which
approaches y as p — co. So the optimal revenue for this setting is indeed y.

Therefore, we get that y =V, ,, - (v — 1) and V., = %=, O

r—1

Now we can put everything together. We have argued that max;cp, {vij - I(7; ¢ R;)} is equal to
the ¢** highest of nm draws with probability P, > % for all ¢ < \/mn, and also argued

mn

that the expected value of the ¢*" highest of mn draws is 7=7- Therefore, for all j we get:

(1-In(2)(¢-1) nml > /1A,

dnm {—

Ege(ermn [né?f{wj-ﬂ(mé&)}} > Y PEVim] > )
e 1<y/nm 2<y/nm

Summing over all j yields the proposition statement. O

Now with Lemma 6 and Proposition 8, we can conclude the following:

ZE&—(ER"L)" |:H€1?}ji {90]‘ (Uij)+ . ]1(1_)}' € Rj) + Vg5 - ]1(1_)}' ¢ Rj)} > nm + m\/nm/lél.
]:1 e|n

This immediately implies the following corollary:

Corollary 7. If one compares to the EFFTW benchmark (which upper bounds the expected revenue)
instead of the expected revenue, then the competition complexity of n bidders with additive valuations
over m < n/4 i.i.d., reqular items is at least \/nm/14.

Proof. Simply recall that REV,,1.(ER) = n+c¢, and VCG,4(ER™) = m-REV,4+.(ER) = m(n+c).
So in order to have VCG,,1(ER™) > nm + /nm/14, we must have ¢ > /nm/14. O

B Competition complexity is not independent of n.

In this section, we show that while indeed the “true” competition complexity in the big-n case may
be better than what is achievable by comparing to the EFFTW benchmark, it is not independent
of n. Specifically, we will argue that for all n and m = 2 items, the optimal mechanism for (ER™)™
achieves revenue at least 2n + In(n)/10.

Proposition 9. REV,(ER?) > 2n + In(n)/10.
Proof. Consider the following mechanism:
e Bidders select whether to be “high”, “low”, or “medium”.

e First, all high bidders are processed in random order. When processed, a high bidder can get
both remaining items for price p.

e Next, all medium bidders are processed in random order. When processed, a medium bidder
will get a random remaining item for price q.
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e Low bidders get no items.

We will think of p — oo, and take ¢ := y/n. First, it is easy to see that any bidder who values
the grand bundle (of both items) at least as 2¢ will choose to be a high or medium bidder. Let’s
now count the expected number of such bidders.

Lemma 9.

2 g—3)-In(2¢g—1) —g¢
Pr [v1 +v2 > 2¢] = ( 2)2 ( )
(vl,vg)(—E’RQ 2q —1 q (2q - 1)
Proof. There are two ways that that we can have vy + vy > 2¢. First, maybe vq1 > 2¢ — 1. In this

case, as vg > 1, surely v +v9 > 2¢q. Second, maybe v1 < 2¢—1 and vy > 2q —v1. So the probability

of both cases together is: 2(1%1 + f12q_1 . 2q1_mda:. Also:

2q—1 1 1
. d
/1 22 2q—=x v

1 [mln(2q —12)+2¢—zlnz]™

-1

4 q?x L
1 [(2¢—(2¢—1)-In(2¢—1) In(2¢—1)+2q
:_1.< ?(2¢ — 1) - ¢ >
1 —q+q2¢—1)+(2¢—1)-In(2¢ — 1)
2 ¢*(2¢ - 1)
=g+ (g—5HM2g-1)
a q*(2q — 1)
Adding back in the Tl—lv we get the lemma statement. O

We will want to take ¢ small enough so that in expectation n!) bidders wish to be medium /high.
This will let us claim that he expected number of medium/high bidders concentrates around its
expectation. But we also want ¢ to be big enough so that we can get some revenue from these
cases.

Lemma 10. Consider any set of n — 1 bidders, and let 100 < q < \/n and p — oo. Then with
probability at least 1 — e~nn*(0)/(128¢%) — 1 _ o(1/n), none of these bidders are high, and at least

a7t ng;(zq) are medium.
Proof. The number of bidders with v; 4+ v9 exceeding 2¢ is a sum of independent {0,1} random
variables whose expected value exceeds % + ";r;(zq). (We have assumed ¢ > 100 in order to simplify

the second term).

We therefore wish to understand the probability that the actual number of medium /high bidders

nln(q)
8q

w> % and § < %. So the probability of this deviation is at most e~nn%(0)/(128¢%)  When q < +/n,
this probability is o(1/n).

Now we just need to recall that this is the probability that at least % + %(f) bidders are high
or medium. Observe further that the probability that any are high bidders is at most 4n/p (some

is at least its expectation minus . This is a simple application of the Chernoff bound with
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bidder must value some item at at least p/2, which occurs with probability at most 4n/p by union
bound), which approaches 0 as p — oo. O

Now, let’s see what value a bidder would need to have in order to prefer to be high instead of
medium.

Lemma 11. Assuming that all other bidders are medium or low, and there are k — 1 medium
bidders, a bidder with vi + vy > pzjq chooses to be a high bidder instead of medium.

Proof. 1f the bidder chooses to be medium, then they will get each item with probability 1/k, and
pay 2¢q/k in expectation. If they choose to be high, they will get each item with probability 1,
and pay p. So in order to prefer this, they would need to have (v; + va) - (1 — 1/k) > p — 2q/k.
Rearranging yields the lemma. ]

Now we analyze the revenue from two possible cases. Below for notational simplicity, define
k=24 &({1).

q 8q

e Case One: Some bidder has v; + vy > pk/(k — 1). In this case, with probability at least
1 —o0(1/n), there are no high bidders and at least & medium bidders among the other n — 1.
Conditioned on this, the bidder will choose to be high, and we get revenue p. The probability
that this case occurs is at least 2n(1 — 1/k)/p — (22")(1 — 1/k)?/p? (as it occurs whenever
anyone values some item above p). Conditioned on this, with further probability 1 — o(1/n),
this buyer chooses to be high and we get revenue p. So the total revenue from these cases
is at least: (1 —o(1/n))-(p-(2n(1 —1/k)/p — (22”)(1 —1/k)?/p?)) = 2(1 — 1/k)n — o(1) as
p — 0.

e Case Two: no bidder has v; +vy > pk/(k—1). In this case, we know that with probability
1 —o0(1/n), there are at least two (in fact, many more) bidders who are medium. So we get
revenue 2q in these cases. Observe that as p — oo, we are in this case with probability
approaching 1, so the total revenue from these cases is 2¢- (1 —o0(1/n)) = 2¢—o0(1) as p — oc.

So our revenue is 2n(1 — 1/k) +2q — o(1). Recall that k := 7 + ";‘;(2‘1) = 8"(1;221]“(‘1). Therefore

our revenue is:

_— 16nq¢> 16ng® + 2nqln(q)
8ng + nln(q) 8ng + nln(q)
2¢In(g)

87+ (g > 2n + In(q) /5.

Recall that we required ¢ < y/n in order for our calculations to be valid, so by setting ¢ := \/n,
our revenue is at least 2n + In(n)/10.
O

And now we can conclude that the competition complexity cannot be independent of n:

Corollary 8. The competition complexity of n bidders with additive valuations over m = 2 i.i.d.,
reqular items is at least In(n)/10. In particular, there exists no function f(-) only of m such that
the competition complexity of n bidders with additive valuations over m i.i.d. items is f(m).
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C Omitted Proofs from Section 2

Proof of Fact 1. The proof follows quickly from Myerson’s lemma, stated below:

Lemma 12 (Myerson’s Lemma [Mye81]). Consider any Bayesian Incentive Compatible mechanism
for a single item with payment rule P(-) and allocation rule X (-). That is, on bids U, the mechanism
charges bidder i P;(U) and awards bidder i the item with probability X;(v). Then for all i, the
expected payment made by bidder i is equal to bidder i’s expected virtual welfare. That is:

Egpn [Pi(0)] = Egpn [Xs(V) - op(v3)],

Egepn [Pi(V)] < Egpn [Xi() - Bp(vi)] -

Now, consider the single-bidder auction that simply sets a price of v. Then it’s expected revenue
is simply v - Pryp[w > v]. The expected virtual welfare is Ey« p[ep(w) - I(w > v)]. Therefore,
by Myerson’s Lemma:

Ewep [pp(w) - I(w > v)]
v = L];I"WD—D [w > 0] =Eyeps, [pp(w)].

The proof for ironed virtual values follows identically, after replacing the left-most equality with
inequality. O

D Omitted Proofs from Section 4

D.1 Little n proofs

Proof of Observation 1. For all v, if vy ¢ R, then both random variables inside the expectation
take value v(y);. If (1) € R;, then the random variable for the left-hand expectation is at most
max{wj(v(l)j),fu@)j} (note that the T is no longer necessary as we're taking a maximum with
v(@2); > 0 anyway). The right-hand expectation is exactly this. Because the right-hand random
variable is larger for all ¥, the expectation is larger as well. O

Proof of Proposition 2. We again begin with a coupling. First, couple the draws X;, := Fj(v;j)
for all i. Next, couple the quantiles Yy, 1 = Fy(v(1ye) for £ <m, £ # j, and Yj 1 = Fin(v(rym) (if
J # m, otherwise there is no Y, ,,—1 to define). Crucially, observe that this is a valid coupling, as
values for items are drawn independently (in particular, conditioned on drawing v;; for all j, the
quantiles Fy(v;¢) are still i.i.d. and uniform from [0, 1]). Observe now the following:

o Always, v(y); = Fj_l(X(g)m) for all £.

e Whenever 9,y € R;j, Xj(n,m) = X(y),. Therefore:
Egepn [max{vy; - 1V ¢ R;), B;(v01);): v} - LTy € Rj)]

= E [max{;(F} ' (Xp,(n,m)), Fy (Xay0)} - I (mm) = X(1),0)]

29



e Conditioned on ¥y ¢ Rj, X7 (n,m) is a uniformly random sample from [X(),,1]. This is
because there is some strictly positive number of ¢ such that Yy ,,—1 > X(q,. Conditioned
on being > X, each such value is drawn uniformly from [X),,,1]. And then X} (n,m)
picks one of them uniformly at random. Using Fact 1, we get:

Egep [v - 10y ¢ Ry)] < E |75 (XL (n,m))) - H(XE(nym) # Xayn)|

Summing the left-hand side of both equations is exactly Egpn [max {v(); - [Ty ¢ R;), Ej (vy;),v@); -
Summing the right-hand side is clearly upper bounded by E [max {gpj( YXS (n,m))), FH(X @) )H

For subsequent proofs, we will need one basic fact about maximums of random variables:

Fact 2. For any three random variables X,Y,Y' such that for all z, E[Y'|Y =y, X = 2| > vy,
Emax{X,Y’}] > Emax{X,Y}].

Proof. In fact, we show that for all y,z, Emax{X,Y’}|Y =y, X = 2] > max{z,y}, which implies
the desired statement. There are two cases to consider. First, perhaps z > y. In this case, we
clearly have max{z,Y’} > x with probability 1. Therefore, Emax{X,Y'}|Y =y, X = z] > = as
well. Second, perhaps y > . In this case, by hypothesis we have E[Y'|Y =y, X = z] > y. So
clearly E[max{X,Y’}|Y =y, X = z] > y. This covers both cases and proves the fact. O

Proof of Corollary 3. We first consider the three random variables X = @, (F; Y(X (n,m))),Y =
Fj_l(X( )Y = P(F Y(Wa,,)). Then indeed, conditioned on X = z and Y =y, Wa, is a
uniformly random draw from [X(3),,1]. Fact 1 therefore concludes that E[Y'|X = 2,V = y] =

y, allowing an application of Fact 2 to conclude E {max {cp]( LX) (n,m))), -_I(X(g),n)}] <
E [max {cp]( LX) (n,m))), ?;(F; LW, n))}] The corollary follows by observing that

ma {5 (Fy (X (n,m))), 35 (F. <W2n>>}:@(max{xz(n,m),wz,n})=@<XL<n,m>>. 0

Proof of Corollary 4. The proof is nearly-identical to that of Corollary 1 and omitted (the only
difference is that we save a “41” in the regular case because our current benchmark no longer has
the “T” on the virtual values). O

D.2 Big n proofs

Proof of Proposition 8. Consider drawing quantiles q1, . .., ¢,, and also {qg,k}z’e[e—l],ke[m—l]- Couple

n+(0—1)(m—1)

draws from ¥ from D™ and @ from D as follows:

o Set v;; = w;; = Fj_ (g;) for all i. Relabel the indices so that v(1);

P2 V@ = 2 Y

J ey
W) Z W) Z - Z Wyj and ) 2 4@) Z - Z G-

e For i € [ — 1], set vy, = Fk_l(q;k) for all k& # j. Set v(), = F,,'(¢;;) (unless j = m, in
which case v(;),, is already set, and there is no qgm)
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e For i € [( — 1], set wgy, = Fj_l(qgvk) for all k # j. Set w(, = Fj_l(qg’j) (unless j = m, in
which case w;),, is already set, and there is no qgm) As all ws are drawn from D, interpret
all n + (¢ — 1)(m — 1) such draws as values of a single bidder for item j. Let w, denote the
0th Jargest of these draws.

e Observe that wyy > w); = v(p);-

Now, we consider the random variables inside the left-hand and right-hand expectations. Let
now i* denote the minimum i such that v;) ¢ R;. Observe that when * < ¢, this is also the
minimum 4 such that there exists a k # j W1th Fj(we;) < Fj(w ()k).7 Therefore, i* > ¢ only if
no i, k exists for which Fjj(w;);) < Fj(w)). So first, consider the possibility that 7* > £. In this
case, the contribution to the benchmark is upper bounded by max{®;(v(1);), v(s);}. But we have
that @;(w(1)) > B,(vq);), and also w(g) > v(g);. Therefore, we can conclude that:

Ese o [(max (7, (o))" -1 € Ry) + vy - 15 ¢ Rj)}> A > e)}

€[n]
S Egpreemone-n [(max {B(wa) we}) - 160 2 0]

Now, consider the case that ¢* < £. In this case, the contribution to the benchmark is exactly
max{p,;(v(1);), v();}- We now wish to argue that, conditioned on i*, v(s); and v(y);, the expected
contribution to the right-hand side exceeds this. Indeed, observe that there exists at least one k for
which q£*7k > q(s+)- Conditioned on q(;+) (and v(y;, which has no effect), q;k is simply a uniformly
random draw from [g(;+), 1]. That is, w(), (where &' = k if k # j and k' = m if k = j) is simply
a draw from Dj, conditioned on exceeding w(;+);. Therefore, E[@;(w()p)wi=); = T, Wy >
w(+y;] = x (by Fact 1). We can now apply Fact 2 to conclude that E[max{®;(v(1);), v(ix);} - 1(i* <
0)] < Elmax{®;(va);), maxp{@;(w=y)}} - 17" < £)]] < E[@;(wqy) - 17" < £)]]. The last inequality
follows simply because w1y > v(1); and also w1y > maxg {w(«)}-

Egzpn [(Hé?x {@;(vij)™ - I(¥; € R;) + vij - 1(T; ¢ Rj)}> T < E)}
S E g pprm-nen [@5(w) 160 < 0]
Summing up the two left-hand sides yields item j’s contribution to the EFFTW benchmark.

Summing up the two right-hand sides lower bounds the desired right-hand side.
O

Proof of Lemma 1. Again couple draws so that w; = Fj_l(Xi’n/). Then ,;(X(1)n) = ?j(w())-
Additionally, E[@;(W )| Xy =, Xgn) = y] < Fj_l(y) = w(y) by Fact 1. So the hypotheses of
Fact 2 are satisfied, and we get that

Gepn [max {7 (way), we t] <E [max{%( HX 1)) 25 j_l(WZ,n’))}}

= E [, (F; (max{ X1y, Wew))| = E [, (5 (X5(0',0))]
O

If D; has no point masses, we could instead just write w;); < w()x, but we write it like this to be careful in the
case of point masses.
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