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Abstract

The Competition Complexity of an auction setting refers to the number of additional bid-

ders necessary in order for the (deterministic, prior-independent, dominant strategy truthful)

Vickrey-Clarke-Groves mechanism to achieve greater revenue than the (randomized, prior-

dependent, Bayesian-truthful) optimal mechanism without the additional bidders.

We prove that the competition complexity of n bidders with additive valuations over m

independent items is at most n(ln(1 +m/n) + 2), and also at most 9
√
nm. When n ≤ m, the

first bound is optimal up to constant factors, even when the items are i.i.d. and regular. When

n ≥ m, the second bound is optimal for the benchmark introduced in [EFF+17a] up to constant

factors, even when the items are i.i.d. and regular. We further show that, while the Eden et

al. benchmark is not necessarily tight in the n ≥ m regime, the competition complexity of n

bidders with additive valuations over even 2 i.i.d. regular items is indeed ω(1).

Our main technical contribution is a reduction from analyzing the Eden et al. benchmark

to proving stochastic dominance of certain random variables.
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1 Introduction

In the past decade, the TCS community has made radical progress developing the theory of multi-

dimensional mechanism design. In particular, it was previously well-understood the optimal multi-

item auctions are prohibitively complex, even with just m = 2 items, and even subject to fairly

restricted instances [BCKW15, HN13, HR15, Tha04, Pav11, DDT17]. Yet, starting from seminal

work of Chawla, Hartline, and Kleinberg [CHK07], a large body of work now proves that simple

auctions are in fact approximately optimal in quite general settings [CHMS10, CMS15, HN17,

LY13, BILW14, Yao15, RW15, CM16, CZ17, EFF+17b], helping to explain the prevalence of simple

auctions in practice. Still, it would be a reach to claim that this agenda is convincingly resolved.

In particular, the thought of settling for 50% (or even 90%) of the optimal achievable revenue

may be a non-starter for high-stakes auctions. Indeed, there are no hard constraints forcing the

auctioneer to use a simple auction. Still, Prior-independent auctions are desirable since they don’t

require the auctioneer to understand the population from which consumers are drawn. Determin-

istic and Dominant Strategy Truthful auctions are desirable because consumers’ strategic behavior

is easier to predict. Computationally tractable auctions are desirable because they can be efficiently

found. On the other hand, it is hard to imagine that auctioneers stand a hard line on simplicity if

additional market research or outsourcing computation would increase revenues, even modestly.

The resource augmentation paradigm takes a different view: spend effort recruiting additional

bidders rather than carefully designing a superior auction. We are therefore interested in answering

the following question: for a given auction setting, how many additional bidders are necessary for

a simple auction (with additional bidders) to guarantee greater expected revenue than the optimal

(without)? Eden et al. term the answer to this question the competition complexity [EFF+17a].

This question was first studied in seminal work by Bulow and Klemperer in the context of single-

item auctions [BK96]. Remarkably, they show that just a single additional bidder suffices for the

second-price auction to guarantee greater expected revenue than Myerson’s optimal auction [Mye81]

(without the additional bidder), subject to a technical condition on the population called regularity.

For multi-item auctions, similar results have even more bite, as the optimal multi-item auction is

considerably more complex than Myerson’s (which is deterministic, dominant strategy truthful, and

computationally tractable, but not prior-independent). Our main result is optimal bounds on the

competition complexity for the core setting of additive bidders with independent items. Specifically,

Main Result: The competition complexity of n bidders with additive values over m independent

items is at most n(2 + ln(1 + m/n)), and also 9
√
nm. When n ≤ m the first bound is tight (up

to constant factors). When n ≥ m, the second bound is tight (up to constant factors) for any

argument that starts from the benchmark introduced in [EFF+17a].

1.1 Brief Technical Overview

Formally, we consider n bidders drawn independently from a distribution D. We study the now-

standard setting of additive bidders over m independent items: each bidder’s value vj for item j is

drawn independently from some single-variate distribution Dj , and her value for a set S of items is
∑

j∈S vj . The simple mechanism we study is to sell the items separately, either via the second-price

auction in the case of regular distributions, or Myerson’s optimal single-item auction in the general
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case.1 Observe that, since the bidders are additive and values are independent, selling the items

separately is really just m separate single-item problems. We are interested in understanding the

minimum c(n,m) such that selling separately to n+ c(n,m) bidders drawn from D yields greater

expected revenue than the optimal mechanism with n bidders drawn from D for any D = ×m
j=1Dj .

Our approach starts from the benchmark proposed in [EFF+17a]. That is, Eden et al. propose

an upper bound on the optimal achievable revenue with n bidders drawn from D via the duality

framework of [CDW16].2 We defer a definition of this benchmark to Section 2.2: it defines a Vir-

tual Value Φj(~vi) of a bidder with values ~vi for item j, and upper bounds the optimal expected

revenue with E[
∑

j maxi∈[n]{Φj(~vi)}]. We defer most details to the technical sections, but briefly

note that at this point, our analysis diverges from prior work. Eden et al. use an elegant coupling

argument to connect this benchmark to the expected revenue of selling separately with additional

bidders [EFF+17a]. The high-level distinction in our approach is a significantly more in-depth

analysis of this benchmark. In particular, our analysis makes more extensive use of Myersonian

virtual value theory (Sections 3 and 4), which reduces the problem to questions purely regard-

ing whether various methods of drawing correlated values from [0, 1] stochastically dominate one

another (Section 5).

1.2 Connection to Related Works

The two works most directly related to ours are [EFF+17a] and [FFR18]. The one-sentence distinc-

tion between our results and these is that we strictly improve their main results regarding selling

separately to additive bidders with independent items, but do not address alternative settings.

For example, this paper contains no results beyond additive bidders (considered in [EFF+17a]), or

results for mechanisms aside from selling separately (considered in [FFR18]).

“Little n Regime”: For n additive bidders withm = Ω(n) independent items, Eden et al. [EFF+17a]

prove a competition complexity bound of n+ 2(m− 1). Feldman et al. [FFR18] prove that selling

separately to O(n ln(m/n)/ε) additional buyers exceeds a (1 − ε) fraction of the optimal revenue

(without the additional buyers). Our main result essentially achieves the greatly improved bound

of [FFR18] (and improves it further) without losing any revenue: we prove a competition complex-

ity bound of n(2+ ln(1 +m/n)). This guarantee is tight up to constant factors (and remains tight

even if one is willing to lose an ε fraction), due to a lower bound of [FFR18].

“Big n Regime”: For n additive bidders withm = o(n) independent items, Eden et al. [EFF+17a]

prove a competition complexity bound of n+2(m− 1). Feldman et al. [FFR18] prove that for any

ε, there exists a constant δ(ε) such that if n ≥ m/δ(ε), selling separately (without any additional

bidders) achieves a (1−ε) fraction of the optimal revenue. Our main result improves the guarantee

of [EFF+17a] to 9
√
nm and also implies the result of [FFR18] (with δ(ε) = ε2/81). Note in particu-

lar that any sublinear competition complexity bound implies the [FFR18] result for a different δ(·),
1For irregular distributions, it is known that no guarantees are possible with prior-independence, even for a single

item. The example to have in mind is a distribution with a point mass at p with probability 1/p and 0 otherwise: as

p → ∞, any auction that achieves revenue close to optimum must sell the item to the bidder with value p for price

close to p whenever there is exactly one. It is impossible to have a single auction that does this for all p.
2We note that this upper bound can also be derived without duality using techniques of [CMS15].

2



but that linear bounds do not. So our improvement from linear to sublinear is significant in this

regard. Moreover, we show in Section A that this is tight (up to constant factors) for any approach

starting from the benchmark proposed in [EFF+17a]. We further show (also in Section A) that

there does not exist any function only of m upper bounding the competition complexity: as n → ∞
the competition complexity approaches ∞ as well (at a rate of at least Ω(lnn)).

Other works that study the competition complexity of auctions include seminal work of Bu-

low and Klemperer, who study the m = 1 case, work of Liu and Psomas (who study the com-

petition complexity of dynamic auctions) and Roughgarden et al. (who study the unit-demand

setting) [BK96, LP18, RTCY12]. These works are thematically related, but both the results and

techniques have little overlap.

Some of the aforementioned works which prove approximation guarantees for simple mecha-

nisms use similar techniques to derive a tractable benchmark that upper bound on the achievable

revenue [CHK07, CHMS10, CMS15, HN17, LY13, BILW14, Yao15, RW15, CM16, CZ17, EFF+17b].

However, it is worth noting that all of these works proceed by immediately splitting the benchmark

into multiple simpler terms and finding approximately optimal mechanisms to cover each term sep-

arately. The best of those mechanism guarantees approximate optimality to revenue. This greatly

simplifies analysis, at the cost of an additional constant factor. Because competition complexity

results target the full original revenue, losing this initial constant factor can make future analysis

impossible. As a result, while benchmarks may be shared by these lines of work, analysis of the

benchmarks is often quite different.

Finally, it is worth noting that recent work follows two approaches to derive revenue upper

bounds in these works. Some (including this paper) use virtual value theory [CHK07, CHMS10,

RTCY12, CMS15, CDW16, CZ17, EFF+17a, EFF+17b, LP18, FLLT18]. Others use a more direct

probabilitistic approach [HN17, LY13, BILW14, Yao15, RW15, CM16, BGN17, FFR18]. For the

most part, similar approximation guarantees are achievable through both approaches. With respect

to these lines of work, our results (which yield exact competition complexity bounds) in comparison

to those of [FFR18] (which lose an arbitrarily small ε) suggest the virtual value approach may be

desirable if one cares about small losses.

1.3 Roadmap

Our main result tightly characterizes the competition complexity in the litte n regime, and tightly

characterizes the competition complexity in the big n regime among proofs which use the same

benchmark as [EFF+17a].

In Section 2, we provide the necessary preliminaries surrounding the benchmark of [EFF+17a]

and virtual value theory. In Section 3 we provide a near-complete proof of our results when n = 1

as a warm-up. In Section 4, we analyze the benchmark and reduce the analysis to proving stochas-

tic dominance of certain correlated random variables drawn from [0, 1]. In Section 5 we prove

the required claims regarding stochastic dominance (which at this point are purely mathematical

claims and no longer reference auctions). In Appendix A we: (a) recap the lower bound of [FFR18]

witnessing that our results are tight in the little n regime, (b) provide a lower bound witness-

ing that our results are tight in the big n regime (among proofs which use the same benchmark

as [EFF+17a]), and (c) prove that the competition complexity of n bidders with additive valuations

over m independent items approaches ∞ as n → ∞.
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2 Notation and Preliminaries

We consider a setting with n i.i.d. bidders with additive valuations over m independent items.

That is, there are single-variate distributions Dj for all j ∈ [m], and bidder i’s value vj for item j

is drawn independently from Dj . Bidder i’s value for the bundle S is just
∑

j∈S vj . We will use

the following notation:

• Revn(D) to denote the revenue of the optimal (possibly randomized) Bayesian Incentive

Compatible3 mechanism when played by n bidders whose values for m items are drawn from

D. In our setting, we will always have D = ×jDj for some single-variate distributions Dj.

• VCGn(D) to denote the revenue achieved by the VCG mechanism when played by n bidders

whose values for m items are drawn from D. In our setting, the VCG mechanism simply runs

a second-price auction on each item separately with no reserve.

• SRevn(D) to denote the revenue achieved by Myerson’s mechanism run separately on each

item, when played by n bidders whose values for m items are drawn from D. Note that for

all n and distributions D over additive valuations, SRevn(D) ≥ VCGn(D).

2.1 Myerson’s Lemma, Bulow-Klemperer, and Virtual Values

Here, we briefly recap basic facts about the theory of virtual values due to Myerson [Mye81]. We

include some proofs and sketches in Appendix C, and refer the reader to [Har11] (Definition 3.11)

for a deeper treatment of these concepts (or [CDW16], Definition 8 for discrete distributions). Note

that much of the theory extends to independent (but non-i.i.d.) bidders with slightly more complex

statements. As we only consider i.i.d. bidders, we omit the extra notation. Below, when we write

X+ for a random variable X, we mean max{X, 0}.

Definition 1 (Virtual Values and Ironing [Mye81]). For a continuous single-variate distribution

with CDF F (·) and PDF f(·), the virtual valuation function ϕF (·) satisfies ϕF (v) = v− 1−F (v)
f(v) . If

ϕF (·) is monotone non-decreasing, F is said to be regular. If not, ϕF (·) is the ironed virtual value

function, and is monotone non-deceasing (see [Har11] for a formal definition). When F is regular,

ϕF (·) = ϕF (·).

Theorem 1 ([Mye81]). Let D be any single-variate distribution. Then for all n:

SRevn(D) = Revn(D) = E~v←Dn

[

(

ϕD

(

max
i∈[n]

{vi}
))+

]

, VCGn(D) = E~v←Dn

[(

ϕD

(

max
i∈[n]

{vi}
))]

.

Fact 1. For any single-variate distribution D, and any value v, let D≥v denote the distribution D

conditioned on exceeding v. Then v = Ew←D≥v
[ϕ(w)] ≤ Ew←D≥v

[ϕ(w)].

Finally, we recall the seminal result of Bulow and Klemperer [BK96]:

Theorem 2 ([BK96]). For any regular single-variate distribution D, VCGn+1(D) ≥ Revn(D).
3A mechanism is Bayesian Incentive Compatible if it is in every bidder’s interest to bid truthfully, conditioned on

all other bidders bidding truthfully as well. That is, assuming that all other bidders submit bids drawn from D−i,

bidder i best responds by bidding their true values.
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2.2 Duality Benchmarks

Here we state an upper bound on Revn(D) when D is additive over independent items. The

bound is derived using the duality framework of Cai et al. [CDW16], and first used by Eden et

al. [EFF+17a] (it is also possible to derive this particular bound without duality [CMS15]). When

referring to this benchmark in text, we call it the EFFTW benchmark. Parsing the benchmark

requires additional notation:

• vij denotes the value of bidder i for item j.

• Dj denotes the marginal distribution of item j. We use ϕj(·) to denote ϕDj
(·).

• For a variable X, if X has no point-masses, then we simply define F (x) = Pr[X < x] =

Pr[X ≤ x]. If X = x with strictly positive probability, then we define F (x) to be a random

variable drawn uniformly from the interval [Pr[X < x],Pr[X ≤ x]]. Importantly, note that

the random variable F (X) is drawn uniformly from [0, 1] for any random variable X.

• For a distribution D := ×jDj , we partition the space R
m
+ into m disjoint regions. For each

j ∈ [m], we define Rj := {~vi ∈ R
m
+ | Fj(vij) > Fk(vik) ∀k 6= j}. That is, ~vi is in region Rj if

item j has the highest quantile. Observe that his partition may be randomized if D has point

masses (and is deterministic with probability 1 if D has no point masses).

Theorem 3 ([CDW16, EFF+17a]). Let D be additive over m independent items. Then:

Revn(D) ≤
m
∑

j=1

E~v←Dn

[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj) + vij · I(~vi /∈ Rj)

}

]

.

If we think of the Virtual Value of bidder i for item j as equal to Myerson’s ironed virtual value,

ϕj(vij)
+, if item j has the highest quantile in ~vi, and equal to the value, vij , if not, then Theorem 3

claims that the expected revenue of the optimal mechanism does not exceed the sum over all items

of the expected maximum virtual value for that item. Theorem 3 is an application of Corollary 28

in [CDW16], together with the observation that our defined regions are upwards-closed.

3 Warm-Up: Single Bidder

In this section, we illustrate one portion of our improved anlaysis via the single bidder setting.

This will also help identify one significant point of departure from [EFF+17a]. Observe that the

EFFTW benchmark simplifies significantly for a single bidder, as there is only one element of [n],

and the benchmark simply sums the virtual value of the item with the highest quantile plus the

values of all other items.

3.1 Brief Recap of [EFF+17a]

The main idea in the single-bidder approach of [EFF+17a] is to couple draws of m bidders for

item j with draws of a single bidder for m items via their quantiles. Specifically, they observe the

following: consider fixed quantiles q1, . . . , qm drawn independently. and uniformly from [0, 1].

5



• Benchmark Analysis: Use the quantiles drawn to determine values for each of m items. If

qj is the largest quantile drawn, then item j contributes ϕj(F
−1
j (qj))

+ to the benchmark. If

qj is not the largest quantile drawn, then item j contributes F−1
j (qj) to the benchmark.

• VCG Analysis: Use the quantiles drawn to determine values of each of m bidders for item

j. If qj is the largest quantile drawn, then bidder j contributes ϕj(F
−1
j (qj)) to the virtual

surplus of VCG. If qj is not the largest quantile drawn, then some other bidder wins the

item and pays at least F−1(qj), so at least F−1(qj) is contributed by some bidder 6= j to the

revenue.

The above reasoning is not far from a formal proof that SRevm(D) ≥ Rev1(D). Some care is

required to make sure Theorem 1 is applied correctly (since we wish to count bidder j’s contribution

to the revenue of VCG using her ironed virtual value but the other bidders’ contributions directly

via payments), but the above reasoning is the key step. The main idea is that if we couple the

quantiles drawn for the benchmark with quantiles drawn for selling just item j, then the revenue

achieved from selling just item j to m bidders drawn from Dj exceeds the contribution of item j

to the benchmark for all quantiles drawn.

3.2 Our Analysis

The main challenge that the previous analysis overcomes is the following: the contribution of item j

to the benchmark is sometimes in the form of a virtual value, and sometimes in the form of a value.

There is no “natural” random variable that takes exactly this form, and it is tricky to analyze

directly. So the previous analysis finds a clever way to “recreate” it using this coupling argument.

Unfortunately though, direct coupling arguments like this should not hope to prove a competition

complexity better than m− 1, as there are m random variables that need to be coupled.

Our approach instead is to reason about the contribution of item j to the benchmark exclusively

in terms of virtual values, using Fact 1. Specifically, consider the following proposition, which

rewrites the contribution of item j to the benchmark. Below, XL(1,m) denotes the following

random variable: first, draw one quantile X1,1 uniformly at random from [0, 1]. Then, draw m− 1

quantiles uniformly at random from [0, 1] and label them Y1,m−1 thru Ym−1,m−1. If X1,1 > Yℓ,m−1

for all ℓ, then set XL(1,m) = X1,1. Otherwise, let ℓ∗ denote a uniformly random element from

{ℓ | Yℓ,m−1 > X1,1} and set XL(1,m) = Yℓ∗,m−1.

Proposition 1. For all D = ×jDj and all items j, E~v←D

[

ϕj(vj)
+ · I(~v ∈ Rj) + vj · I(~v /∈ Rj)

]

≤
E[ϕj(F

−1
j (XL(1,m)))+].

Proof. The main idea is to get a lot of mileage from Fact 1: ideally, any time ~v /∈ Rj, rather

than contribute vj to the benchmark, we will contribute the virtual value of a random draw from

Dj conditioned on exceeding vj. To begin, let’s couple quantiles drawn for the benchmark with

quantiles drawn for the experiment defining XL(1,m) so that X1,1 = Fj(vj) and Yℓ,m−1 = Fℓ(vℓ)

for ℓ < m, ℓ 6= j, and Yj,m−1 = Fm(vm) (if j 6= m, otherwise there is no Ym,m−1 to define). Observe

that indeed the quantiles are all drawn independently and uniformly from [0, 1]. Moreover, we have:

• Whenever ~v ∈ Rj, XL(1,m) = X1,1 = Fj(vj). Therefore, we conclude that:

E~v←D

[

ϕj(vj)
+ · I(~v ∈ Rj)

]

= E

[

ϕj(F
−1
j (XL(1,m))+ · I(XL(1,m) = X1,1)

]

. (1)
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• Conditioned on ~v /∈ Rj, XL(1,m) is a uniformly random sample from [X1,1, 1]. This is because

there is some strictly positive number of ℓs such that Yℓ,m−1 > X1,1. Conditioned on being

> X1,1, each such value is drawn uniformly from [X1,1, 1]. And then XL(1,m) picks one of

them uniformly at random. Using Fact 1, we therefore conclude that:

E~v←D [vj · I(~v /∈ Rj)] ≤ E~v←D

[

Ex←Dj,≥vj

[

ϕj(x)
]

· I(~v /∈ Rj)
]

≤ E

[

ϕj(F
−1
j (XL(1,m))) · I(XL(1,m) 6= X1,1)

]

. (2)

It is now easy to see that the left-hand sides of the two equations sum together to yield item

j’s contribution to the benchmark, while the two right-hand sides sum together to yield (at most)

E[ϕj(F
−1
j (XL(1,m)))+], proving the proposition.

Proposition 1 gives an upper bound on the contribution of item j to the benchmark written

as the expectation of a virtual value of some distribution (F−1(XL(1,m))). This is convenient

because we can write the revenue achieved by using Myerson’s optimal auction for selling item j to

1 + c bidders as the expectation of a virtual value of another distribution (the maximum of 1 + c

draws from Dj). Therefore, if we can relate these two distributions (for instance, by proving that

one stochastically dominates the other), we can relate these two expectations. Below, let XS(1, c)

denote the maximum of 1 + c i.i.d. draws from the uniform distribution on [0, 1].

Corollary 1. If XS(1, c) stochastically dominates XL(1,m), then for all D that are additive over

m independent items, SRev1+c(D) ≥ Rev1(D).

Proof. Observe first that by Theorem 1 we have:

SRev1+c(D) =
∑

j

E~x←D1+c
j

[

ϕj

(

max
i∈[1+c]

{xi}
)+

]

=
∑

j

E

[

ϕj(F
−1
j (XS(1, c))

+
]

.

By Proposition 1 (and Theorem 3), we have:

Rev1(D) ≤
m
∑

j=1

E~v←D

[

ϕj(vj)
+ · I(~v ∈ Rj) + vj · I(~v /∈ Rj)

]

≤
m
∑

j=1

E

[

ϕj(F
−1
j (XL(1,m)))+

]

.

Observe that ϕj(·) is a monotone non-decreasing function, and F−1
j is also monotone non-

decreasing. As such, if XS(1, c) stochastically dominates XL(1,m), ϕj(F
−1
j (XS(1, c))) stochasti-

cally dominates ϕj(F
−1
j (XL(1,m))), which allows us to conclude that

∑

j E

[

ϕj(F
−1
j (XS(1, c))

+
]

≥
∑m

j=1 E

[

ϕj(F
−1
j (XL(1,m)))+

]

. Therefore, we may conclude that if XS(1, c) stochastically domi-

nates XL(1,m), SRev1+c(D) ≥ Rev1(D).

At this point, we’ve reduced the problem of deriving competition complexity upper bounds to

a purely mathematical problem relating stochastic dominance of XS(1, c) and XL(1,m). The proof

of this claim for n = 1 is not an especially instructive special case, so we defer the final step to

Section 5. So we wrap up our warm-up by citing Theorem 8:
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Corollary 2 (of Theorem 8). When c ≥ 2+ln(m+1), XS(1, c) stochastically dominates XL(1,m).

Theorem 4. Let D be a distribution that is additive over m independent items. Then SRev2+ln(m+1)(D)

≥ Rev1(D). If each Dj is regular, then also VCG3+ln(m+1)(D) ≥ Rev1(D).

Proof. Theorem 3 upper bounds Rev1(D) with the EFFTW benchmark. Proposition 1 further

upper bounds the EFFTW benchmark with
∑

j E[ϕj(F
−1
j (XL(1,m)))+], which is the sum over all

items of the expected virtual value of a quantile drawn from XL(1,m). Corollary 1 argues that

if XL(1,m) is stochastically dominated by XS(1, c) (the maximum of c + 1 i.i.d. draws uniformly

from [0, 1]), then we may replace XL(1,m) with XS(1, c) in the upper bound, which is exactly

SRev1+c(D). Finally, Corollary 2 claims that indeed XS(1, c) stochastically dominates XL(1,m)

when c ≥ 2+ ln(m+1) (and the final +1 when each Dj is regular comes from going from SRev to

VCG using Bulow-Klemperer).

This concludes our exposition for a single bidder. Above we introduced one new idea which

departs from prior work: instead of directly treating the benchmark which involves both values

and virtual values, rewrite the benchmark to involve only virtual values and reduce the problem to

purely mathematical questions about stochastic dominance of XL(1,m) and XS(1, c).

4 Multiple Bidders

In this section, we overview our approach for the general case. The key simplifying feature of the

single-bidder case that allowed us to isolate one key idea is that for each item j, that item has the

highest quantile or it doesn’t. In the multi-bidder case, there are multiple bidders, some of whom

will have their highest quantile for item j, some of whom won’t. So we must actually engage with

the “maxi∈[n]” in the benchmark. Our approach will be different depending on whether n is big or

little relative to m. We begin with the little n case as it is more similar to the single-bidder case.

4.1 Part One: When n ≤ m

Our key step is conceptually similar to Proposition 1, but the random variables involved are nec-

essarily more complex. We first make the following observation (also made in [EFF+17a]). Below,

v(ℓ)j denotes the ℓth highest value for item j (among all bidders). All omitted proofs can be found

in Appendix D.

Observation 1.

E~v←Dn

[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj) + vij · I(~vi /∈ Rj)

}

]

≤ E~v←Dn

[

max
{

v(1)j · I(~v(1) /∈ Rj), ϕj(v(1)j), v(2)j
}]

.

Next, we want to rewrite the right-hand side above using random variables simliar to XL(1,m).

This time, let X ′
L(n,m) denote the following random variable: first, draw n quantiles X1,n, . . . ,Xn,n

independently and uniformly at random from [0, 1]. Relabel them so that X(1),n ≥ . . . ≥ X(n),n.

Then, draw m− 1 quantiles uniformly at random from [0, 1] and label them Y1,m−1 thru Ym−1,m−1.

If X(1),n > Yℓ,m−1 for all ℓ, then set X ′
L(n,m) = X(1),n. Otherwise, let ℓ∗ be a uniformly random

element from {ℓ|Yℓ,m−1 > X(1),n} and set X ′
L(n,m) = Yℓ∗,m−1.
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Proposition 2. For all D = ×jDj , and all items j:

E~v←Dn

[

max
{

v(1)j · I(~v(1) /∈ Rj), ϕj(v(1)j), v(2)j
}]

≤ E

[

max
{

ϕj(F
−1
j (X ′

L(n,m))), F−1
j (X(2),n)

}]

.

Proposition 2 helps us replace any instances of v(1)n in the benchmark with a randomly drawn

virtual value, but we still need to do the same for v(2)n (which so far has essentially just been

rewritten as F−1
j (Fj(v(2)n))). Now, let W2,n be a uniformly random draw from [X(2),n, 1], and

define XL(n,m) = max{X ′
L(n,m),W2,n}. By making use of Fact 1, we can conclude:

Corollary 3.

E

[

max
{

ϕj(F
−1
j (X ′

L(n,m))), F−1
j (X(2),n)

}]

≤ E

[

ϕj(F
−1
j (XL(n,m)))

]

.

Now, we are nearly ready to wrap up the n ≤ m case. Similarly to the single-bidder case, define

XS(n, c) to be the maximum of n+ c i.i.d. draws uniformly form [0, 1].

Corollary 4. If XS(n, c) stochastically dominates XL(n,m), then SRevn+c(D) ≥ Revn(D). If

each Dj is regular, then VCGn+c(D) ≥ Revn(D).

Finally, Theorem 8 claims that when c ≥ n · (2 + ln(1 +m/n)), XS(n, c) indeed stochastically

dominates XL(n,m). Combining Corollary 4 with Theorem 8 therefore concludes:

Theorem 5. For all D that are additive over m independent items, SRevn+n·(2+ln(1+m/n))(D) ≥
Revn(D). If each marginal of Dj is regular, then VCGn+n·(2+ln(1+m/n))(D) ≥ Revn(D).

When n ≤ m, this is tight up to constant factors, due to a lower bound of [FFR18] (see

Appendix A for the construction). But when n ≥ m, this is still linear in n. We therefore provide

an alternative argument in the following section which achieves the optimal (up to constant factors)

competition complexity that is achievable starting from the EFFTW benchmark of Θ(
√
nm).

4.2 Part Two: When n ≥ m

At a high level, the main difference between how we should analyze the n ≤ m case and the

n ≥ m is as follows: Observation 1 immediately upper bounds the EFFTW by upper bounding

ϕj(v(2)j)
+ · I(~v(2) ∈ Rj) + v(2)j · I(~v(2) /∈ Rj) with v(2)j . When n ≤ m, this upper bound is unlikely

to be much of a relaxation, because it’s likely that v(1)j /∈ Rj anyway. But when n ≫ m, we’re

extremely unlikely to have v(1)j /∈ Rj, and this upper bound is wasteful. Indeed, this step is what

limits the analysis in [EFF+17a] to Ω(n). The first step for the n ≥ m case is to address this.

Proposition 3. For all items j, all ℓ ∈ [n], and all distributions D that are additive over indepen-

dent items:

E~v←Dn

[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj) + vij · I(~vi /∈ Rj)

}

]

≤ E
~w←D

n+(m−1)(ℓ−1)
j

[

max
{

ϕj(w(1)), w(ℓ)

}]

.

We now want to take a simliar step to the previous case and replace w(ℓ) with a randomly

drawn virtual value using Fact 1. Here, define the random variable XB(n, ℓ) as follows. First, draw

X1,n, . . . ,Xn,n independently and uniformly at random from [0, 1]. Then, randomly draw Wℓ,n

uniformly from [X(ℓ),n, 1], and set XB(n, ℓ) := max{X(1),n,Wℓ,n}.
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Lemma 1. For any single-dimensional distribution D, and any n′:

E~w←Dn′

[

max
{

ϕj(w(1)), w(ℓ)

}]

≤ E

[

ϕj(F
−1
j (XB(n

′, ℓ)))
]

.

Corollary 5 below follows from Proposition 3 and Lemma 1 with n′ := n+ (m− 1)(ℓ − 1).

Corollary 5. If XS(n, c) stochastically dominates XB(n+ (ℓ− 1)(m− 1), ℓ), then for any D that

is additive over m independent items, SRevn+c(D) ≥ Revn(D). If each marginal Dj is regular,

then VCGn+c(D) ≥ Revn(D).

Finally, Theorem 7 states that XS(n, c) = XS(n+(ℓ−1)(m−1), c−(ℓ−1)(m−1)) stochastically

dominates XB(n + (ℓ − 1)(m − 1), ℓ) whenever c − (ℓ − 1)(m − 1) ≥ 4n+4(ℓ−1)(m−1)
ℓ−1 . Setting

ℓ :=
√
nm+ 1, we get c ≥ √

nm+ 4
√
nm+ 4(m− 1).

Theorem 6. For all D that are additive over m independent items, SRevn+5
√
nm+4(m−1)(D) ≥

Revn(D). If each marginal Dj is regular, then VCGn+5
√
nm+4(m−1)(D) ≥ Revn(D). In particular,

if n ≥ m, 5
√
nm+ 4(m− 1) ≤ 9

√
nm.

5 Stochastic Dominance via Additional Samples

In this section, we consider purely questions about whether one distribution stochastically dom-

inates another (Sections 3 and 4 outline the connection between these problems and our main

result). Recall the following ingredients in our experiments:

• X1,n, . . . ,Xn,n are n i.i.d. draws from the uniform distribution on [0, 1], and then relabeled

so that X(1),n ≥ . . . ≥ X(n),n.

• Y1,m−1, . . . , Ym−1,m−1 are m− 1 i.i.d. draws from the uniform distribution on [0, 1], and then

relabeled so that Y(1),m−1 ≥ . . . ≥ Y(m−1),m−1.

• Z1,c, . . . , Zc,c are c i.i.d. draws from the uniform distribution on [0, 1], and then relabeled so

that Z(1),c ≥ . . . ≥ Z(c),c.

• Wℓ,n is a random draw from the uniform distribution on [X(ℓ),n, 1].

SRev Experiment(n, c): Output XS(n, c) := max{X(1),n, Z(1),c}.

Big n Benchmark Experiment(n, ℓ): Output XB(n, ℓ) := max{X(1),n,Wℓ,n}.

Little n Benchmark Experiment(n,m): Let j∗ be the largest index such that Y(j∗),m−1 >

X(1),n (if such a j∗ exists). If no such j∗ exists, output XL(n,m) := max{X(1),n,W2,n}. Otherwise,

pick an index j uniformly at random from {1, . . . , j∗} and output max{Y(j),m−1,W2,n}.

The main results of this section are as follows:

Theorem 7. When c ≥ 4n/(ℓ− 1), XS(n, c) stochastically dominates XB(n, ℓ).

Theorem 8. When c ≥ n · (2 + ln(1 +m/n)), XS(n, c) stochastically dominates XL(n,m).
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Intuitively, we might expectXS(n, c) to stochastically dominate XB(n, ℓ) right around c = 2n/ℓ.

This is because E[Z(1),c] = 1−1/(c+1), and E[Wℓ,n] = 1− ℓ
2(n+1) . Of course, this observation doesn’t

come close to proving stochastic dominance, especially because X(1),n and Wℓ,n aren’t independent.

But it does give us an idea of the right ballpark to shoot for. The following proposition will be

used in the proof of both theorems.

Proposition 4. Let c ≥ 4n/(ℓ − 1). Then for all p, Pr[Z(1),c > p|X(1),n < p] ≥ Pr[Wℓ,n >

p|X(1),n < p]. When ℓ = 2, this can be improved to c ≥ n.

Before getting into the proof, let’s unpack the role of conditioning on X(1),n. Z(1),c and X(1),n

are independent, so Pr[Z(1),c > p|X(1),n < p] = Pr[Z(1),c > p]. On the other hand, Wℓ,n and X(1),n

are positively correlated: the lower bound on the range from which Wℓ,n is drawn is X(ℓ),n, which is

positively correlated with X(1),n. So certainly if we could prove the lemma without the conditioning

on X(1),n < p, the desired proposition would hold. This approach works for ℓ = 2 (and indeed shows

up in our proof as a base case), but without conditioning the conclusion is otherwise false for larger

ℓ.

Proof. The proof will proceed by induction on n, ℓ. We begin with the base case, ℓ = 2. Z(1),c is

easy to reason about: Z(1),c is just the maximum of c i.i.d. draws uniformly from [0, 1]. So:

Pr[Z(1),c > p|X(1),n < p] = Pr[Z(1),c > p] = 1− pc. (3)

Now we turn to W2,n. As referenced in the foreword to the proof, for this case the proposition

statement holds even without conditioning onX(1),n < p. Indeed, observe that without conditioning

on X(1),n < p, X(2),n is just the second-highest of n i.i.d. draws uniformly from [0, 1], and W2,n

is drawn uniformly from [0, 1], but conditioned on exceeding X(2),n. That is, W2,n is actually

identically distributed to X(1),n, and is distributed according to the maximum of n i.i.d. draws

uniformly from [0, 1]. Therefore, when c = n, W2,n is identically distributed to Z(1),c, and the

conclusion holds. That is:

Pr[W2,n > p|X(1),n < p] ≤ Pr[W2,n > p] = 1− pn. (4)

As such, we have proved the base case (in fact, a slightly stronger claim): for all n, and ℓ = 2

when c ≥ n = n/(ℓ − 1), Z(1),c stochastically dominates W2,n. Now we turn to the inductive

step, which is significantly more involved. As referenced in the foreword, we must take a different

approach for larger ℓ, as the desired claim is false if we remove conditioning on X(1),n < p.

To this end, we’ll first observe that when p = 1, Pr[Z(1),c > 1] = Pr[Wℓ,n > 1|X(1),n < 1] = 0,

and when p → 0, Pr[Z(1),c > p] = Pr[Wℓ,n > p|X(1),n < p] = 1. So the desired inequalities hold at

both endpoints of [0, 1], and we’d like to reason about p ∈ (0, 1). To accomplish this, it will actually

be easier to compare Pr[Z(1),c > p] · Pr[X(1),n < p] to Pr[Wℓ,n > p ∧X(1),n < p] (observe that this

simply multiplies both conditional probabilities in our original comparison by Pr[X(1),n < p]), and

consider the derivative with respect to p.

So let f1,n(·) denote the density ofX(1),n. Then Pr[Wℓ,n > p∧X(1),n < p] =
∫ p
0 f1,n(q)·Pr[Wℓ,n >
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p|X(1),n = q]dq. By Leibniz’ rule, the derivative of this with respect to p is:

∂ Pr[Wℓ,n > p ∧X(1),n < p]

∂p

=
∂
∫ p
0 f1,n(q) · Pr[Wℓ,n > p|X(1),n = q]dq

∂p

=f1,n(p) · Pr[Wℓ,n > p|X(1),n = p] +

∫ p

0
f1,n(q) ·

∂ Pr[Wℓ,n > p|X(1),n = q]

∂p
dq.

Let’s first unpack the left-most term with the following lemma.

Lemma 2. For all ℓ, n > 1, Pr[Wℓ,n > p|X(1),n = p] = Pr[Wℓ−1,n−1 > p|X(1),n−1 < p].

Proof. Observe that, conditioned on X(1),n = p, X(2),n, . . . ,X(n),n are n − 1 (sorted) i.i.d. draws

uniformly at random from [0, p], and X(ℓ),n is the (ℓ−1)th highest of them. Put another way, X(ℓ),n

conditioned on X(1),n = p is identically distributed to X(ℓ−1),n−1 conditioned on X(1),n−1 < p. This

therefore implies that Wℓ,n conditioned on X(1),n = p and Wℓ−1,n−1 conditioned on X(1),n−1 < p

are identically distributed as well.

Now we turn to the right-most term.

Lemma 3. For all p, ℓ, n, q,
∂ Pr[Wℓ,n>p|X(1),n=q]

∂p = −Pr[Wℓ,n > p|X(1),n = q]/(1 − p).

Proof. Let’s first expand Pr[Wℓ,n > p|X(1),n = q] by letting f q
ℓ,n(·) denote the density of X(ℓ),n

conditioned on X(1),n = q.

Pr[Wℓ,n > p|X(1),n = q] =

∫ q

0
f q
ℓ,n(r) ·

1− p

1− r
dr.

This is simply because, conditioned onX(ℓ),n = r, the probability thatWℓ,n (a uniformly random

draw from [r, 1]) exceeds p is exactly 1−p
1−r . Taking now the derivative with respect to p (again by

Leibniz’ rule), we see that:

∂ Pr[Wℓ,n > p|X(1),n = q]

∂p
= −

∫ q

0
f q
ℓ,n(r)/(1− r)dr = −Pr[Wℓ,n > p|X(1),n = q]/(1− p).

Using Lemma 3, we can now rewrite:

∫ p

0
f1,n(q) ·

∂ Pr[Wℓ,n > p|X(1),n = q]

∂p
dq =

−1

1− p

∫ p

0
f1,n(q) · Pr[Wℓ,n > p|X(1),n = q]dq

=
−Pr[Wℓ,n > p ∧X(1),n < p]

1− p

12



And using both Lemmas 2 and 3 we can now simplify (the second equality follows by recalling

that f1,n(·) is the density of X(1),n):

∂ Pr[Wℓ,n > p ∧X(1),n < p]

∂p
= f1,n(p) · Pr[Wℓ−1,n−1 > p|X(1),n−1 < p]−

Pr[Wℓ,n > p ∧X(1),n < p]

1− p
(5)

= npn−1 · Pr[Wℓ−1,n−1 > p|X(1),n−1 < p]−
Pr[Wℓ,n > p ∧X(1),n < p]

1− p
(6)

From here we’ll show that whenever Pr[Wℓ,n > p∧X(1),n < p] ≥ Pr[Z(1),c > p∧X(1),n < p] (i.e.

whenever what we’re trying to prove at p is violated), then the derivative trends towards satisfying

our desired claim.

Lemma 4. If Pr[Wℓ,n > p ∧X(1),n < p] ≥ Pr[Z(1),c > p ∧X(1),n < p], then:

∂ Pr[Z(1),c > p ∧X(1),n < p]− Pr[Wℓ,n > p ∧X(1),n < p]

∂p
≥ 0.

Proof. Observe first that Pr[Z(1),c > p ∧ X(1),n < p] = pn · (1 − pc). As such, we also have
∂ Pr[Z(1),c>p∧X(1),n<p]

∂p = npn−1(1 − pc) − cpn+c−1. So if the hypotheses of the lemma are satisfied,

then by Equation (5) we can write:

∂ Pr[Z(1),c > p ∧X(1),n < p]− Pr[Wℓ,n > p ∧X(1),n < p]

∂p

= npn−1(1− pc)− cpn+c−1 −
(

npn−1 · Pr[Wℓ−1,n−1 > p|X(1),n−1 < p]−
Pr[Wℓ,n > p ∧X(1),n < p]

1− p

)

≥ npn−1(1− pc)− cpn+c−1 − npn−1 · (1− p4(n−1)/(ℓ−2)) +
pn(1− pc)

1− p
.

In the inequality, we have used two facts. First, we have used the inductive hypothesis,

which claims that Pr[Wℓ−1,n−1 > p|X(1),n−1 < p] ≤ Pr[Z(1),4(n−1)/(ℓ−2) > p|X(1),n−1 < p] =

1 − p4(n−1)/(ℓ−2). Second, we have used the hypothesis of the lemma statement. Next, we can

substitute (1 − pc) = (1 + p+ . . .+ pc−1) · (1− p) (and make some other algebraic simplifications)

to get:

∂ Pr[Z(1),c > p ∧X(1),n < p]− Pr[Wℓ,n > p ∧X(1),n < p]

∂p

≥ −(n+ c)pn+c−1 + npn−1+4(n−1)/(ℓ−2) + pn ·
c−1
∑

j=0

pj.

Recall again that we are hoping to prove that the above term is ≥ 0. As p ≥ 0, the above term

is ≥ 0 if and only if (dividing all terms by pn−1 and rearranging):

np4(n−1)/(ℓ−2) +

c
∑

j=1

pj ≥ (n+ c)pc. (7)
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To conclude that Equation (7) indeed holds for all p ∈ [0, 1], consider the convex function

f(x) := px, and the random variable A where A = j with probability 1/(n+c) for all j ∈ {1, . . . , c},
and A = 4(n−1)/(ℓ−2) with probability n/(n+c). Then the left-hand side of the equation above is

exactly (n+ c) ·E[f(A)]. Therefore, we may conclude by Jensen’s inequality that the left-hand side

exceeds (n+c) ·f(E[A]) = (n+c) ·p
4(n−1)n/(ℓ−2)+c(c+1)/2

n+c . As p ∈ [0, 1], (n+c) ·p
4(n−1)n/(ℓ−2)+c(c+1)/2

n+c ≥
(n+ c)pc if and only if 4(n−1)n/(ℓ−2)+c(c+1)/2

n+c ≤ c. So finally, our only remaining job is to see what

values of c satisfy:

4(n − 1)n

ℓ− 2
+

c(c + 1)

2
≤ nc+ c2. (8)

Indeed, observe that when c = 4n/(ℓ− 1), we get:

4(n− 1)n

ℓ− 2
+

c(c+ 1)

2

?
≤ nc+ c2

4

ℓ− 2
− 4

n(ℓ− 2)
+

42

2(ℓ− 1)2
+

4

2n(ℓ− 1)

?
≤ 4

ℓ− 1
+

42

(ℓ− 1)2

2(ℓ− 1)2 − 2(ℓ− 1)2/n + 4(ℓ− 2) + (ℓ− 2)(ℓ − 1)/n
?
≤ 2(ℓ− 2)(ℓ − 1) + 2 · 4 · (ℓ− 2)

2(ℓ− 1)− ℓ(ℓ− 1)/n
?
≤ 4 · (ℓ− 2)

2
ℓ− 1

ℓ− 2
− ℓ(ℓ− 1)

(ℓ− 2)n

?
≤ 4

The last inequality indeed holds as ℓ ≥ 3.

Now we are ready to wrap up the proof of the proposition. We have just shown (Lemma 4) that

for all p, either Pr[Z(1),c > p∧X(1),n < p]−Pr[Wℓ,n > p∧X(1),n < p] ≥ 0, or
∂ Pr[Z(1),c>p∧X(1),n<p]

∂p −
∂ Pr[Wℓ,n>p∧X(1),n<p]

∂p ≥ 0. We now are ready to claim that this implies that Pr[Z(1),c > p ∧X(1),n <

p]− Pr[Wℓ,n > p ∧X(1),n < p] ≥ 0 for all p ∈ [0, 1].

Indeed, define G(p) := Pr[Z(1),c > p ∧X(1),n < p] − Pr[Wℓ,n > p ∧X(1),n < p]. Then we have

shown that for all p, either G(p) ≥ 0 or G′(p) ≥ 0. Moreover, we know that G(0) = 0− 0 = 0. So

assume for contradiction that there exists some p with G(p) < 0. Then because G(·) is continuous
(and G(0) = 0), there exists some open interval (q, p) such that G(x) < 0 on (q, p), while G(q) = 0.

But now we have a contradiction: By Lemma 4, G′(x) ≥ 0 on (q, p), and G(q) = 0. Therefore, we

must also have G(x) ≥ 0 on (q, p), contradicting our initial assumption.

Therefore, we cannot have G(x) < 0 anywhere on [0, 1], meaning that Pr[Z(1),c > p ∧X(1),n <

p] − Pr[Wℓ,n > p ∧X(1),n < p] ≥ 0. This is identical to the claim that Pr[Z(1),c > p|X(1),n < p] ≥
Pr[Wℓ,n > p|X(1),n < p]. This completes the proof of the proposition.

Theorem 7 now follows nearly directly from Proposition 4.
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Proof of Theorem 7. We can directly compute Pr[XS(n, c) > p] = Pr[X(1),n > p] + Pr[Z(1),c >

p|X(1),n < p] · Pr[X(1),n < p]. Similarly, Pr[XB(n, ℓ) > p] = Pr[X(1),n > p] + Pr[Wℓ,n > p|X(1),n <

p] · Pr[X(1),n < p]. By Proposition 4, when c ≥ 4n/(ℓ− 1), we get:

Pr[Z(1),c > p|X(1),n < p] ≥ Pr[Wℓ,n > p|X(1),n < p].

Therefore,

[X(1),n > p] + Pr[Z(1),c > p|X(1),n < p] · Pr[X(1),n < p]

≥Pr[X(1),n > p] + Pr[Wℓ,n > p|X(1),n < p] · Pr[X(1),n < p].

This implies

Pr[XS(n, c) > p] ≥ Pr[Wℓ,n > p].

As the above holds for all p ∈ [0, 1], this proves that XS(n, c) stochastically dominates XB(n, ℓ).

Theorem 8 will require one more similar proposition.

Proposition 5. Let c ≥ n·(1+ln(1+m/n)), then for all p, Pr[Z(1),c > p|X(1),n < p] ≥ Pr[Y ∗
n,m−1 >

p|X(1),n < p], where Y ∗
n,m−1 is the random variable equal to 0 if Y1,m−1 < X(1),n, and is otherwise

equal to Yj,m−1 for a uniformly random j ∈ {j|Yj,m−1 > X(1),n}.

Proof. The proof of Proposition 5 is more direct than that of Proposition 4. This time, we can

just directly compute Pr[Y ∗
n,m−1 > p|X(1),n < p]. We again begin by observing that Pr[Z(1),c >

p|X(1),n < p] = Pr[Z(1),c > p] = 1− pc.

We now turn to Y ∗
n,m−1. Observe first that Y ∗

n,m−1 = 0, conditioned on X(1),n = q, with

probability exactly qm−1. This is because Y ∗
n,m−1 is 0 whenever each of m−1 i.i.d. draws uniformly

from [0, 1] are all < q. Now, conditioned on Y ∗
n,m−1 > 0 (and also X(1),n = q), observe that Y ∗

n,m−1

is just a random draw from the uniform distribution on [X(1),n, 1]. This is because, conditioned

on Y ∗
n,m−1 > 0 and X(1),n = q, Y ∗

n,m−1 simply picks uniformly at random among some number of

i.i.d. random variables drawn uniformly from [X(1),n, 1]. Therefore, conditioned on Y ∗
n,m−1 > 0,

and X(1),n = q, Y ∗
n,m−1 exceeds p with probability exactly 1−p

1−q . Therefore, we can compute (below,

let f1(·) denote the density of X(1),n, and F1(·) denote the CDF):
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Pr[Y ∗
n,m−1 > p|X(1),n < p]

=

∫ p

0

f1(q)

F1(p)
· Pr[Y ∗

n,m−1 > 0|X(1),n = q] · Pr[Y ∗
n,m−1 > p|Y ∗

n,m−1 > 0 ∧X(1),n = q]dq

=

∫ p

0

nqn−1

pn
· (1− qm−1) · 1− p

1− q
dq

=
n(1− p)

pn
·
∫ p

0
qn−1 · 1− qm−1

1− q
dq

=
n(1− p)

pn
·
∫ p

0
qn−1 · (

m−2
∑

i=0

qi)dq

=
n(1− p)

pn
·
[

m−2
∑

i=0

qi+n/(n + i)

]p

0

=
n(1− p)

pn
·
m−2
∑

i=0

pi+n/(n + i)

=n(1− p) ·
m−2
∑

i=0

pi/(n+ i)

=1− npm−1/(n +m− 2) + n ·
m−2
∑

i=1

pi(1/(n + i)− 1/(n + i− 1))

=1− npm−1/(n +m− 2)−
m−2
∑

i=1

npi/(n+ i)(n + i− 1)

Before proceeding, we quickly observe that the sums of the coefficients of non-zero powers of p

is −1 (that is, n/(n +m − 2) +
∑m−2

i=1 n/(n + i)(n + i − 1) = 1). This is because the third-from-

the-bottom equality is clearly equal to 0 when p = 1, and so the bottom equality must be equal to

0 when p = 1 as well.

Pr[Z(1),c > p|X(1),n < p]
?
≥ Pr[Y ∗

n,m−1 > p|X(1),n < p]

1− pc
?
≥ 1− npm−1/(n+m− 2)−

m−2
∑

i=1

npi/(n + i)(n + i− 1)

pc
?
≤ npm−1/(n +m− 2) +

m−2
∑

i=1

npi/(n+ i)(n + i− 1)

From here, we again apply Jensen’s inequality. Let f(x) := px (which is convex), and let A

denote the random variable which is equal to m− 1 with probability n/(n +m − 2) and equal to

i with probability n/(n + i)(n + i − 1) for all i ∈ {1, . . . ,m − 2}. By reasoning in the previous

paragraph (that the coefficients of non-zero powers of p sum to −1), this is indeed a distribution.

Then Jensen’s inequality asserts that E[f(A)] ≥ f(E[A]). Moreover, the right-hand side above is

16



exactly E[f(A)]. As such, we get that:

npm−1/(n+m− 2) +
m−2
∑

i=1

npi/(n + i)(n+ i− 1) ≥ pn(m−1)/(n+m−2)+
∑m−2

i=1 ni/(n+i)(n+i−1).

As p ∈ [0, 1], this means that our desired inequality is satisfied as long as c ≥ n(m − 1)/(n +

m− 2) +
∑m−2

i=1 ni/(n+ i)(n + i− 1). But now observe that:

n(m− 1)/(n +m− 2) +

m−2
∑

i=1

ni/(n+ i)(n + i− 1) = n

(

m− 1

n+m− 2
+

m−2
∑

i=1

i

(n+ i)(n + i− 1)

)

≤ n ·
(

1 +

m−2
∑

i=1

1/(n + i)

)

≤ n ·
(

1 + ln(
n+m− 2

n
)

)

≤ n ·
(

1 + ln(1 +
m

n
)
)

.

And now we can prove Theorem 8, which essentially combines Proposition 4 and Proposition 5

(with some extra work).

Proof of Theorem 8. We again directly compute Pr[XS(n, c) > p] = Pr[X(1),n > p] + Pr[Z(1),c >

p|X(1),n < p]. Similarly, Pr[XL(n,m) > p] = Pr[X(1),n > p] + Pr[W2,n > p|X(1),n < p] · Pr[X(1),n <

p] + Pr[Y ∗
n,m−1 > p|X(1),n < p ∧ W2,n < p] · Pr[X(1),n < p ∧ W2,n < p], where again Y ∗

n,m−1

is defined to be 0 if Y1,m−1 < X(1),n, and otherwise equal to Yj,m−1 for a uniformly random

j ∈ {j|Yj,m−1 > X(1),n}.
By Proposition 4 we have that Pr[W2,n > p|X(1),n < p] ≤ Pr[Z(1),n > p]. Now we need to reason

about Y ∗
n,m−1 conditioned on X(1),n < p and W2,n < p, which is not directly related to any previous

propositions. However, we claim that Y ∗
n,m−1 and W2,n are positively correlated, conditioned on

X(1),n < p.

Lemma 5. Pr[Y ∗
n,m−1 > p|X(1),n < p ∧W2,n < p] ≤ Pr[Y ∗

n,m−1 > p|X(1),n < p].

Proof. For this proof, for random variables A,B,C, when we say A and B are conditionally inde-

pendent, conditioned on C we mean that for all c, the random variables A and B are conditionally

independent, conditioned on the event C = c. We use this shorthand to avoid cumbersome notation.

The proof consists of three steps: (a) we first show Y ∗
n,m−1 and W2,n are conditionally inde-

pendent, conditioned on X(1),n, (b) we show that, conditioned on X(1),n < p, Y ∗
n,m−1 is positively

correlated with X(1),n, and (c), W2,n is positively correlated with X(1),n. Together, this essentially

lets us claim that additionally conditioning on W2,n < p only serves to lower X(1),n, which lowers

the probability that Y ∗
n,m−1 > p.

Observe first that conditioned on X(1),n, . . . ,X(n),n, Y ∗
n,m−1 and W2,n are independent (this

is just by definition: they are drawn independently, but the distributions from which they are

drawn depend on X(1),n, . . . ,X(n),n). However, observe that the distribution from which Y ∗
n,m−1
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is independently drawn can be defined as a function only of X(1),n. This means that, conditioned

on X(1),n, X(2),n and Y ∗
n,m−1 are conditionally independent. Similarly, the distribution from which

W2,n is independently drawn from can be described as a function only of X(2),n, which we just

claimed is conditionally independent of Y ∗
n,m−1, conditioned on X(1),n. Therefore, Y

∗
n,m−1 and W2,n

are conditionally independent, conditioned on X(1),n.
4

Next, we want to claim that, for all r ≤ q ≤ p, Pr[Y ∗
n,m−1 > p|X(1),n = q] ≥ Pr[Y ∗

n,m−1 >

p|X(1),n = r]. To see this, observe the following equivalent method for drawing Y ∗
n,m−1: First, draw

Y1,m−1, . . . , Ym−1,m−1 i.i.d. from the uniform distribution on [0, 1]. Permute them into random

order.5 Then, let j be the smallest index such that Yj,m−1 > X(1),n. If no such j exists, set

Y ∗
n,m−1 = 0. Otherwise, set Y ∗

n,m−1 = Yj,m−1. Now, let’s couple draws for Y ∗
n,m−1 conditioned on

X(1),n = q and X(1),n = r by fixing the values Y1,m−1, . . . , Ym−1,m−1 and the random permutation.

Then think of Y ∗
n,m−1, conditioned on X(1),n = r (respectively, X(1),n = q) as scanning the values

sequentially until it hits one whose value exceeds r (respectively, q).

• If the (permuted) sequence Y1,m−1, . . . , Ym−1,m−1 has no values > p, we have Y ∗
n,m−1 < p in

both cases.

• If the sequence has values > p, but a value ∈ (q, p) precedes all values > p, then again

Y ∗
n,m−1 < p in both cases. This is because both scans stop at the value ∈ (q, p) which is not

> p.

• If the sequence has value > p, and the first one is not preceded by any value ∈ (r, p), then

Y ∗
n,m−1 > p in both cases. This is because both scans stop at a value > p and output it.

• If the sequence has a value > p, but a value ∈ (r, q) precedes all values > p but no value

∈ (q, p) precedes the first value > p: then Y ∗
n,m−1 > p when conditioned on X(1),n = q, but

Y ∗
n,m−1 < p when conditioned on X(1),n = r. This is because the X(1),n = q scan skips over

the value ∈ (r, q), and stops at the value > p, whereas the X(1),n = r scan stops at the value

∈ (r, q).

This covers all cases, and proves that for all r ≤ q ≤ p, Pr[Y ∗
n,m−1 > p|X(1),n = q] ≥ Pr[Y ∗

n,m−1 >

p|X(1),n = r].

Finally, we make the same claim for W2,ℓ: for all r ≤ q, Pr[W2,ℓ > p|X(1),n = q] ≥ Pr[W2,ℓ >

p|X(1),n = r]. This claim is more straight-forward: W2,ℓ is drawn from a uniform distribution on

[X(2),ℓ, 1]. So clearly, Pr[W2,ℓ > p|X(2),n = q] ≥ Pr[W2,ℓ > p|X(2),n = r] whenever r ≤ q. Moreover,

X(2),n is distributed according to the maximum of n−1 i.i.d. uniform draws from [0,X(1),n], so the

distribution of X(2),n conditioned on X(1),n = q stochastically dominates that of X(2),n conditioned

on X(1),n = r whenever q ≥ r. Both observations together allow us to conclude that for all r ≤ q,

Pr[W2,ℓ > p|X(1),n = q] ≥ Pr[W2,ℓ > p|X(1),n = r].

Now we may put all three claims together to prove the lemma.

Now with Lemma 5, we can wrap up the proof. We now know that:

4Note that Y ∗
n,m−1 and W2,n are not conditionally independent, conditioned on X(1),n < p. They are only

conditionally independent, conditioned on X(1),n = q (for some q).
5Actually, this step is not necessary, but it helps the analogy to state it.
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Pr[XL(n,m) > p] = Pr[X(1),n > p] + Pr[W2,n > p|X(1),n < p] · Pr[X(1),n < p]

+ Pr[Y ∗
n,m−1 > p|X(1),n < p ∧W2,n < p] · Pr[X(1),n < p ∧W2,n < p]

≤ Pr[X(1),n > p] + Pr[W2,n > p|X(1),n < p] · Pr[X(1),n < p]

+ Pr[Y ∗
n,m−1 > p|X(1),n < p] · Pr[X(1),n < p ∧W2,n < p]

≤ Pr[X(1),n > p] + Pr[W2,n > p|X(1),n < p] · Pr[X(1),n < p]

+ Pr[Z(1),n(1+ln(1+m/n)) > p|X(1),n < p] · Pr[X(1),n < p ∧W2,n < p]

≤ Pr[X(1),n > p] + Pr[W2,n > p ∨ Z(1),n(1+ln(1+m/n)) > p|X(1),n < p] · Pr[X(1),n < p]

At this point, observe that the random variables W2,n and Z(1),n(1+ln(1+m/n)) are independent

(and also conditionally independent, conditioned on X(1),n < p). Therefore:

Pr[W2,n < p ∧ Z(1),n(1+ln(1+m/n)) < p|X(1),n < p]

=Pr[W2,n < p|X(1),n < p] · Pr[Z(1),n(1+ln(1+m/n)) < p|X(1),n < p]

By Proposition 4, we know that Pr[W2,n < p|X(1),n < p] ≥ Pr[Z(1),n < p|X(1),n < p]. Therefore,

we get that:

Pr[W2,n < p ∧ Z(1),n(1+ln(1+m/n)) < p|X(1),n < p]

≥Pr[Z(1),n < p|X(1),n < p] · Pr[Z(1),n(1+ln(1+m/n)) < p|X(1),n < p]

=Pr[Z(1),n < p] · Pr[Z(1),n(1+ln(1+m/n)) < p]

=Pr[Z(1),n(2+ln(1+m/n)) < p].

Therefore,

Pr[Z(1),n(2+ln(1+m/n)) > p] ≥ Pr[W2,n > p ∨ Z(1),n(1+ln(1+m/n)) > p|X(1),n < p].

So substituting all the way back, we get that:

[XL(n,m) > p] ≤ Pr[X(1),n > p] + Pr[Z(1),n(2+ln(1+m/n)) > p] · Pr[X(1),n < p]

= Pr[XS(n, n(2 + ln(1 +m/n))) > p].

This completes the proof.
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A Lower Bound Examples

In this section, we analyze a new lowerbound in detail, and remind the reader of a lower bound

from [FFR18].

A.1 Theorem 5 is tight [FFR18]

Here, we sketch the construction from [FFR18]. There be n bidders and m > c · n items for some

absolute constant c. Recall that ERm denotes the distribution over values for m items for which

each value is drawn i.i.d. from the equal revenue curve with revenue equal to 1. Then consider the

posted-price mechanism which visits each buyer sequentially (in arbitrary order) and offers her the

option to buy any set of m
4n remaining items for price π = m

8 · (ln(m/n) + 1). Feldman et al. prove

the following:

Proposition 6 ([FFR18]). The posted-price mechanism described above achieves expected revenue

Ω(m · n(1 + ln(m/n))) for n buyers whose values for the m items are drawn i.i.d. from ERm.

On the other hand, the revenue achieved by selling a single item to n buyers whose values are

drawn i.i.d. from ER is well-understood. For the sake of completeness we repeat a proof below.

Proposition 7 (Folklore). Revn(ER) = n.

Proof. It is clear that Rev1(ER) = 1: for any price p, the revenue achieved by setting price p is

p · 1/p = 1. This immediately implies that Revn(ER) ≤ n: even if the auctioneer had n copies of

the item for sale, they would still not get revenue more than n.

Moreover, here is an auction that guarantees revenue approaching n as p → ∞: post price p on

the item, and sell to the lexicographically first bidder whose value exceeds p. Then the probability

of sale is 1− (1−1/p)n ≥ n/p−
(n
2

)

/p2. So the revenue is at least n−
(n
2

)

/p, which approaches n as

p → ∞. The second-price auction is optimal for n bidders drawn from ER, and achieves revenue

n (one could separately verify this by directly computing the expected second-highest value of n

i.i.d. draws from ER, if desired).

Together, these propositions claim thatRevn(ERm) = Ω(m·n(ln(m/n)+1)), yet alsoVCGn+c(ERm)

= m · (n+ c). Therefore, in order to possibly have VCGn+c(ERm) ≥ Revn(ERm) we need to have

c = Ω(n ln(m/n)). We therefore conclude:

Corollary 6 ([FFR18]). The competition complexity of n bidders with additive valuations over m

i.i.d., regular items is at least Ω(n ln(m/n)).

A.2 Theorem 6 is tight for the EFFTW benchmark

In this section, we prove that any analysis starting from the EFFTW benchmark can prove at

best a competition complexity of
√
nm. Again, consider the distribution ERm. For the subsequent

analysis, it will be helpful to instead think of replacing ER by a distribution with CDF F (x) =

1 − 1/x for x ∈ [1, p), and F (p) = 1 (that is, an equal revenue curve truncated at p) for p → ∞.

We will not explicitly replace ER with this distribution, and we will always think of p → ∞ in the

subsequent analysis.
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Our first lemma states that when considering ERm, max of sums in the EFFTW benchmark

can be replaced by a sum of maxes. Observe that Lemma 6 does not generally hold for distributions

other than ERm, and moreover that generally swapping the max and sum results in a benchmark

that is unachievable with any finite competition complexity (just consider distributions that are

point-masses at 1). But for equal revenue curves, this equation holds.

Lemma 6.

m
∑

j=1

E~v←(ERm)n

[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj) + vij · I(~vi /∈ Rj)

}

]

=

m
∑

j=1

E~v←(ERm)n

[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj)

}

+max
i∈[n]

{vij · I(~vi /∈ Rj)}
]

=nm+

m
∑

j=1

E~v←(ERm)n

[

max
i∈[n]

{vij · I(~vi /∈ Rj)}
]

Proof. The intuition is roughly as follows: for a single value drawn from the equal revenue curve

truncated at p, we have ϕ(v) = 0 when v < p and ϕ(p) = p. So the distribution of virtual values is

0 with probability 1 − 1/p, and p with probability 1/p. One can therefore informally think of the

untruncated equal revenue curve as having virtual value distribution that is 0 with probability 1,

and +∞ with probability 0 (yielding an expected value of 1). Therefore, the argmaximum in the

benchmark is some i with ~vi /∈ Rj with probability 1, and with probability 0 the argmaximum is

some i with ~vi ∈ Rj and ϕj(vij) = +∞. As the ϕ term only interferes with probability 0, we can

simply sum the terms instead. Of course, this is quite informal, but provides good intuition for

where the proof is going (and why we need to consider ER truncated at p for p → ∞ to be formal).

To begin the proof, observe first that whenever ϕj(vij)
+ > 0, we have ϕj(vij)

+ = p ≥ vi′j for

all i′. That is, whenever a virtual value is non-zero, it is at least as large as any value (because

the virtual value is only non-zero when it is equal to p, the maximum possible value). Now, let

f∗(·) denote the density of maxi∈[n] {vij · I(~vi /∈ Rj)}, and let P ∗(x) denote the probability that

maxi∈[n]{ϕj(vij)
+ · I(~vi ∈ Rj)} = 0, conditioned on maxi∈[n] {vij · I(~vi /∈ Rj)} = x. Then we can

write:

m
∑

j=1

E~v←(ERm)n

[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj) + vij · I(~vi /∈ Rj)

}

]

=m ·
(

p · Pr[max
i∈[n]

{vij · I(~vi /∈ Rj)} = p] · P ∗(p)

+

∫ p

0
x·f∗(x) · P ∗(x)dx

+p · Pr
[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj)

}

> 0

])

.

The left two terms sum the expected contribution from bidders /∈ Rj , and the last term covers

the contribution from bidder ∈ Rj. Let’s begin with the left-most term. We claim here that
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the left-most term approaches 0 as p → ∞. To see this, observe that in order to possibly have

maxi∈[n] {vij · I(~vi /∈ Rj)} = p, there must exist two pairs (i, j) for which vij ≥ p. This is because

in order to have ~vi /∈ Rj , and vij = p, we must have vij′ ≥ p for some j′ 6= j. Observe that the

probability that this happens is at most
(

nm
2

)

/p2. This yields:

lim
p→∞

p · Pr[max
i∈[n]

{vij · I(~vi /∈ Rj)} = p] · P ∗(p) ≤ p ·
(

nm

2

)

/p2 = 0.

Let’s now analyze the integral. Here, we will simply claim that as p → ∞, P ∗(x) → 1 for all

x. To see this, let’s first understand how conditioning on maxi∈[n]{vij · I(~vi /∈ Rj)} = x affects the

distribution of maxi∈[n] {ϕj(vij)
+ · I(~vi ∈ Rj)}. Observe that conditioning on maxi∈[n]{vij · I(~vi /∈

Rj)} = x may bias the distribution of the number of indices for which ~vi ∈ Rj . For example, if

maxi∈[n]{vij · I(~vi /∈ Rj)} = 0, then we know that ~vi ∈ Rj for all i. Similarly, if maxi∈[n]{vij · I(~vi /∈
Rj)} is large, then it is more likely that ~vi /∈ Rj for many i (because then more terms in the

max are non-zero). But this conditioning does not bias the distribution of ϕj(vij) for those indices

(conditioned on ~vi ∈ Rj). That is, once we condition in a set S of bidders with ~vi ∈ Rj for all

i ∈ S, the distribution of maxi∈S{ϕj(vij)} is independent of maxi∈[n]{vij · I(~vi /∈ Rj}. So certainly

1−P ∗(x) is at most the probability that n independent draws from ϕj(vij), conditioned on ~vi ∈ Rj ,

are all less than p, as for all x there are at most n indicies for which ~vi ∈ Rj (simply because there

are n bidders). Observe further that the distribution of ϕj(vij), conditioned on ~vi ∈ Rj, is simply

the maximum of m i.i.d. draws from ER (truncated at p). So the probability that a single one

of these draws exceeds p is at most m/p by the union bound. Again taking a union bound over

the n draws, the probability that any exceed p is at most mn/p. As p → ∞, this approaches 0.

Therefore, as p → ∞, P ∗(x) → 1. Observe that we’ve now shown that:

lim
p→∞

m ·
(

p · Pr[max
i∈[n]

{vij · I(~vi /∈ Rj)} = p] · P ∗(p) +
∫ p

0
x·f∗(x) · P ∗(x)dx

)

= 0+m

∫ ∞

0
x·f∗(x)dx

=

m
∑

j=1

E~v←(ERm)n

[

max
i∈[n]

{vij · I(~vi /∈ Rj)}
]

.

We now turn to the final term. First, consider all nm i.i.d. draws from ER. There are two ways

in which we can have maxi∈[n]{ϕj(vij)
+ · I(~vi ∈ Rj)} > 0. First, maybe the maximum of these nm

draws is some bidder i’s value for item j, and this vij = p. Or, maybe the maximum of these nm

draws is some bidder i’s value for some other item j′ 6= j, but there is another bidder whose value

for item j exceeds p (implying that there are at least two of the nm draws that exceed p).

For the first case, the probability that the maximum is some bidder i’s value for item j is

exactly 1/m. Independently, the probability that this value exceeds p is 1− (1−1/p)nm ∈ [nm/p−
(nm

2

)

/p2, nm/p]. For the second case, the probability that at least two of the nm draws exceed p is

at most
(nm

2

)

/p2. Therefore, we get that:

Pr

[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj)

}

> 0

]

∈ [n/p−
(

nm

2

)

/(mp2), n/p +

(

nm

2

)

/p2].

And therefore

p · Pr
[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj)

}

> 0

]

∈ [n−
(

nm

2

)

/(mp), n +

(

nm

2

)

/p].
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Implying that:

lim
p→∞

p · Pr
[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj)

}

> 0

]

= n.

This completes the analysis of the right-most term, as now:

lim
p→∞

m ·p ·Pr
[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj)

}

> 0

]

= E~v←(ERm)n

[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj)

}

]

= nm.

Putting both parts together proves the lemma.

Now, we just need to analyze
∑m

j=1 E~v←(ERm)n
[

maxi∈[n] {vij · I(~vi /∈ Rj)}
]

.

Proposition 8. Let n ≥ 4m. Then:

m
∑

j=1

E~v←(ERm)n

[

max
i∈[n]

{vij · I(~vi /∈ Rj)}
]

=≥ m
√
mn

14
.

Proof. We begin by considering the probability that the ℓth highest of nm draws from ER (or any

distribution) is some bidder i’s value for item j, and ~vi /∈ Rj and for all ℓ′ < ℓ, either it is some

bidder i′’s value for an item j′ 6= j, or vi′ ∈ Rj. That is, we are interested in computing the

probability that the ℓth highest of the nm i.i.d. draws is the maximum value (times I(~vi /∈ Rj)) for

item j. Observe that this probability is well-defined: it does not depend on the particular values for

the nm draws (and does not even depend on the distribution from which they are drawn). Indeed,

whether the desired event occurs or not is only a function of how the draws are permuted among

the nm values of bidders for items.

So denote by Pℓ the probability that the ℓth highest of nm draws is some bidder i’s value for

item j and ~vi /∈ Rj and for all ℓ′ < ℓ, either it is some bidder i′’s value for an item j′ 6= j, or

~vi′ ∈ Rj. Let E1 denote the event that the ℓth highest is some bidder’s value for item j. Let E2

denote the probability that ~vi(ℓ) /∈ Rj(ℓ), where the ℓth highest is assigned to bidder i(ℓ) and item

j(ℓ). Let E3 denote the event that for all ℓ′ < ℓ, either j(ℓ′) 6= j(ℓ) or ~vi(ℓ′) ∈ Rj(ℓ). Then it is easy

to see that Pr[E1] = 1/m. Moreover, events E2 and E3 only involve where the highest ℓ− 1 draws

go. In particular, observe that both E2 and E3 are independent of E1. Moreover, observe that E3

is only more likely to occur conditioned on E1 and E2: if one of the top ℓ− 1 draws is for the same

bidder as the ℓth, it is necessarily not for the same item j, and also necessarily not helping to put

some other ~vi′ /∈ Rj (by being larger than vi′j) (hence making it more likely that all of the top ℓ−1

draws are permuted to some item other than j, and also that those values which are still permuted

to item j are ∈ Rj). Therefore:

Pℓ = Pr[E1] · Pr[E2|E1] · Pr[E3|E2 ∧E1]

= Pr[E1] · Pr[E2] · Pr[E3|E2 ∧ E1]

≥ Pr[E1] · Pr[E2] · Pr[E3]

= Pr[E3 ∧ E1] · Pr[E2].
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Let’s first analyze the probability of E2. Observe that event E2 does not happen only if each

of the top ℓ− 1 draws are permuted to a different bidder than ℓ. So:

Pr[E2] = 1−
(

1− m− 1

mn− 1

)

·
(

1− m− 1

mn− 2

)

·· · ··
(

1− m− 1

mn− ℓ+ 1

)

∈ [1−(1− m− 1

mn− 1
)ℓ−1, (ℓ−1)/n].

To see the first equality, observe that mn−1
mn−ℓ′ is the probability that the ℓ′th-highest draw is

permuted to a different bidder than the ℓth, conditioned on the first thru (ℓ′ − 1)th draws all being

permuted to a different bidder than the ℓth. This is because there are m− 1 items left for the same

bidder, and mn− ℓ′ remaining (bidder, item) pairs in total. To see the upper bound, observe that

the probability that a single ℓ′ < ℓ is permuted to the same bidder as ℓ is exactly (m−1)/(mn−1).

So taking a union bound over all ℓ′ < ℓ, we get an upper bound on the probability that any ℓ′ is
permuted to the same bidder as ℓ is at most (ℓ−1)(m−1)/(mn−1) ≤ (ℓ−1)m/(mn) = (ℓ−1)/n.

The lower bound follows by just observing that there are ℓ−1 terms in the product, and each term

is at most (1− m−1
mn−1 ).

Finally, we prove one minor technical lemma to argue that when ℓ−1 ≤ n/2, 1−(1− m−1
mn−1 )

ℓ−1 ≥
(1− ln(2)) · (ℓ− 1)/(2n).

Lemma 7. Let ℓ− 1 ≤ n/2 and n ≥ 2. Then 1− (1− m−1
mn−1)

ℓ−1 ≥ (1− ln(2)) · (ℓ− 1)/(2n).

Proof. We start by searching for a constant c such that for all x ∈ [0, 1/2], and all y such that

xy ∈ [0, 1/2], we have 1 − (1 − x)y ≥ cxy. We will then use this constant to prove the lemma

statement. Let’s first fix x and c, and minimize 1 − (1 − x)y − cxy over all y ∈ [1, 1/(2x)] (this

search is well-defined unless x = 0, in which case 1− (1− x)y − cxy = 0 for all y). The derivative

with respect to y is − ln(1 − x)(1 − x)y − cx, and the second derivative is ln(1 − x)2(1 − x)y ≥ 0.

So if the first derivative is positive at y = 1, it is positive on the entire interval [1, 1/(2x)]. So now

we wish to see how small the first derivative can be, as a function of x, when y = 1.

This is again single-variate optimization: minimize − ln(1 − x) · (1 − x) − cx on [0, 1/2]. The

derivative is 1 + ln(1 − x) − c. Observe that if c ≤ 1 − ln(2), then the derivative is ≥ 0 on the

entire range (0, 1/2). This means that for c ≤ 1 − ln(2), the minimizer occurs at x = 0, which is

− ln(1) · 1 − c · 0 = 0. So at this point, we conclude that when c ≤ 1 − ln(2), the first derivative

with respect to y is non-negative at y = 1, and therefore positive on the entire interval [1, 1/(2x)).

This means that the minimum occurs at y = 1 (and we will restrict ourselves from now on to

c ≤ 1− ln(2)).

Now that we know the minimum occurs at y = 1, our remaining minimization is trivial: mini-

mize 1−(1−x)−cx = (1−c)x, which is achieved at x = 0, and indeed c·0 ≥ 0. So we have proven that

when c ≤ 1− ln(2), the minimum value for 1− (1−x)y−cxy over all x ∈ [0, 1/2] and y ∈ [1, 1/(2x))

occurs at x = 0, y = 1, and the value is ≥ 0. This proves that 1− (1−x)y ≥ (1− ln(2))xy whenever

x ∈ [0, 1/2] and xy ∈ [0, 1/2].

Now we wish to apply the above fact when x = m−1
mn−1 and y = ℓ−1 ≤ n/2. Indeed, observe first

that when n ≥ 2, we have that x ≤ 1/2. Moreover, when y ≤ n/2 we have x · y = nm−n
2mn−2 ≤ 1/2.

Applying the previous work gives 1 − (1 − m−1
mn−1)

ℓ−1 ≥ (1 − ln(2)) · (ℓ − 1) · m−1
mn−1 . Note that for

m ≥ 2, m−1
mn−1 ≥ 1/(2n). Therefore we can conclude the lemma statement.
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Now with Lemma 7, we can conclude that when ℓ− 1 ≤ n/2, we have:

Pr[E2] ∈ [(1− ln(2))(ℓ − 1)/(2n), (ℓ− 1)/n].

Now, let’s analyze the probability of E3 ∧ E1. Observe that first, Pr[E1] = 1/m, and E3 and

E1 are independent. So let’s look at Pr[E3|E1]. Observe that Pℓ′ is exactly the probability that E3

does not occur, conditioned on E1, because the ℓ
′th highest value has j(ℓ′) = j(ℓ) and ~vi(ℓ′) /∈ Rj(ℓ′).

If none of these events occur, then certainly event E3 occurs. Therefore:

Pr[E3|E1] ≥ 1−
∑

ℓ′<ℓ

Pℓ′ ,Pr[E3 ∧ E1] ≥ (1−
∑

ℓ′<ℓ

Pℓ′)/m.

And therefore we can conclude that:

Pℓ ≥ Pr[E1 ∧ E3] · Pr[E2] ≥ 1/m ·
(

1−
∑

ℓ′<ℓ

Pℓ′

)

· (1− ln(2)) (ℓ− 1)/(2n). (9)

Observe also that Pℓ ≤ Pr[E1∧E2] = Pr[E1] ·Pr[E2] ≤ ℓ−1
mn . In particular, we can use this upper

bound on Pℓ′ , ℓ
′ < ℓ to derive a cleaner lower bound on Pℓ. Indeed, for any ℓ <

√
mn ≤ n/2 (the

last inequality is because we assume that n ≥ 4m. This is the only place we use this assumption,

but it is a key step), we have that:

∑

ℓ′<ℓ

Pℓ′ ≤
∑

ℓ′<
√
mn

(ℓ′ − 1)/mn ≤
√
mn

2

2mn
= 1/2.

By plugging the above in inequality 9 we can conclude that for all ℓ <
√
mn, we have:

Pℓ ≥
(1− ln(2)) · (ℓ− 1)

4nm
.

To recap: we have now shown that, independent of the particular values drawn, the ℓth highest

of nm draws is equal to maxi∈[n]{vij · I(~vi ∈ Rj)} with probability at least Pℓ ≥ (1−ln(2))·(ℓ−1)
4mn , for

all ℓ <
√
mn. So the only remaining step is to compute the expected value of the ℓth highest of nm

draws from ER.

Lemma 8. Let Vx,y denote the xth highest of y i.i.d. draws from ER. Then E[Vx,y] = y/(x− 1).6

Proof. One approach would be to explicitly write out the integral for the xth highest of y draws.

This is tedious. Instead, we will count the revenue of an auction in two different ways. Consider

an (x− 1)-unit auction with x− 1 copies of the same item. There are y unit-demand bidders with

values drawn i.i.d. from ER. Then as all virtual values are non-negative and there is no ironing,

the revenue-optimal auction is to set the xth highest bid as the price and let the (x − 1) highest

bidders get the item. The expected revenue of this auction is exactly Vx,y · (x− 1).

On the other hand, we claim that the optimal revenue for this setting is exactly y. To see this,

observe that clearly the optimal revenue is at most y, as even with y copies of the item, we could

not get revenue more than 1 per bidder. On the other hand, consider the mechanism that posts a

6Observe that when x = 1, the expected value of the highest of ≥ 1 draws from ER is indeed +∞.
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price p and lets any bidder willing to pay p get the item, for p → ∞. Then the probability that at

least one bidder chooses to pay is at least y/p−
(

y
2

)

/p2. So the revenue is at least y−
(

y
2

)

/p, which

approaches y as p → ∞. So the optimal revenue for this setting is indeed y.

Therefore, we get that y = Vx,y · (x− 1) and Vx,y = y
x−1 .

Now we can put everything together. We have argued that maxi∈[n]{vij · I(~vi /∈ Rj)} is equal to

the ℓth highest of nm draws with probability Pℓ ≥ (1−ln(2))(ℓ−1)
4mn for all ℓ <

√
mn, and also argued

that the expected value of the ℓth highest of mn draws is mn
ℓ−1 . Therefore, for all j we get:

E~v←(ERm)n

[

max
i∈[n]

{vij · I(~vi /∈ Rj)}
]

≥
∑

ℓ<
√
nm

Pℓ·E[Vℓ,nm] ≥
∑

ℓ<
√
nm

(1− ln(2))(ℓ − 1)

4nm
· nm
ℓ− 1

≥
√
nm/14.

Summing over all j yields the proposition statement.

Now with Lemma 6 and Proposition 8, we can conclude the following:

m
∑

j=1

E~v←(ERm)n

[

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj) + vij · I(~vi /∈ Rj)

}

]

≥ nm+m
√
nm/14.

This immediately implies the following corollary:

Corollary 7. If one compares to the EFFTW benchmark (which upper bounds the expected revenue)

instead of the expected revenue, then the competition complexity of n bidders with additive valuations

over m ≤ n/4 i.i.d., regular items is at least
√
nm/14.

Proof. Simply recall that Revn+c(ER) = n+c, and VCGn+c(ERm) = m·Revn+c(ER) = m(n+c).

So in order to have VCGn+c(ERm) ≥ nm+
√
nm/14, we must have c ≥ √

nm/14.

B Competition complexity is not independent of n.

In this section, we show that while indeed the “true” competition complexity in the big-n case may

be better than what is achievable by comparing to the EFFTW benchmark, it is not independent

of n. Specifically, we will argue that for all n and m = 2 items, the optimal mechanism for (ERm)n

achieves revenue at least 2n + ln(n)/10.

Proposition 9. Revn(ER2) ≥ 2n+ ln(n)/10.

Proof. Consider the following mechanism:

• Bidders select whether to be “high”, “low”, or “medium”.

• First, all high bidders are processed in random order. When processed, a high bidder can get

both remaining items for price p.

• Next, all medium bidders are processed in random order. When processed, a medium bidder

will get a random remaining item for price q.
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• Low bidders get no items.

We will think of p → ∞, and take q :=
√
n. First, it is easy to see that any bidder who values

the grand bundle (of both items) at least as 2q will choose to be a high or medium bidder. Let’s

now count the expected number of such bidders.

Lemma 9.

Pr
(v1,v2)←ER2

[v1 + v2 ≥ 2q] =
2

2q − 1
+

(q − 1
2) · ln(2q − 1)− q

q2(2q − 1)

Proof. There are two ways that that we can have v1 + v2 ≥ 2q. First, maybe v1 ≥ 2q − 1. In this

case, as v2 ≥ 1, surely v1+v2 ≥ 2q. Second, maybe v1 < 2q−1 and v2 ≥ 2q−v1. So the probability

of both cases together is: 1
2q−1 +

∫ 2q−1
1

1
x2 · 1

2q−xdx. Also:

∫ 2q−1

1

1

x2
· 1

2q − x
dx

=
1

4
·
[

x ln(2q − x) + 2q − x lnx

q2x

]2q−1

1

=− 1

4
·
(

2q − (2q − 1) · ln(2q − 1)

q2(2q − 1)
− ln(2q − 1) + 2q

q2

)

=
1

2
· −q + q(2q − 1) + (2q − 1) · ln(2q − 1)

q2(2q − 1)

=
q2 − q + (q − 1

2) ln(2q − 1)

q2(2q − 1)
.

Adding back in the 1
2q−1 , we get the lemma statement.

We will want to take q small enough so that in expectation nΩ(1) bidders wish to be medium/high.

This will let us claim that he expected number of medium/high bidders concentrates around its

expectation. But we also want q to be big enough so that we can get some revenue from these

cases.

Lemma 10. Consider any set of n − 1 bidders, and let 100 ≤ q ≤ √
n and p → ∞. Then with

probability at least 1 − e−n ln2(q)/(128q2) = 1 − o(1/n), none of these bidders are high, and at least
n
q + n ln(q)

8q2
are medium.

Proof. The number of bidders with v1 + v2 exceeding 2q is a sum of independent {0, 1} random

variables whose expected value exceeds n
q + n ln(q)

4q2
. (We have assumed q ≥ 100 in order to simplify

the second term).

We therefore wish to understand the probability that the actual number of medium/high bidders

is at least its expectation minus n ln(q)
8q2 . This is a simple application of the Chernoff bound with

µ ≥ n
q and δ ≤ ln(q)

8q . So the probability of this deviation is at most e−n ln2(q)/(128q2). When q <
√
n,

this probability is o(1/n).

Now we just need to recall that this is the probability that at least n
q + n ln(q)

8q2
bidders are high

or medium. Observe further that the probability that any are high bidders is at most 4n/p (some

27



bidder must value some item at at least p/2, which occurs with probability at most 4n/p by union

bound), which approaches 0 as p → ∞.

Now, let’s see what value a bidder would need to have in order to prefer to be high instead of

medium.

Lemma 11. Assuming that all other bidders are medium or low, and there are k − 1 medium

bidders, a bidder with v1 + v2 ≥ pk−2q
k−1 chooses to be a high bidder instead of medium.

Proof. If the bidder chooses to be medium, then they will get each item with probability 1/k, and

pay 2q/k in expectation. If they choose to be high, they will get each item with probability 1,

and pay p. So in order to prefer this, they would need to have (v1 + v2) · (1 − 1/k) ≥ p − 2q/k.

Rearranging yields the lemma.

Now we analyze the revenue from two possible cases. Below for notational simplicity, define

k := n
q + n ln(q)

8q2 .

• Case One: Some bidder has v1 + v2 ≥ pk/(k − 1). In this case, with probability at least

1− o(1/n), there are no high bidders and at least k medium bidders among the other n− 1.

Conditioned on this, the bidder will choose to be high, and we get revenue p. The probability

that this case occurs is at least 2n(1 − 1/k)/p −
(

2n
2

)

(1 − 1/k)2/p2 (as it occurs whenever

anyone values some item above p). Conditioned on this, with further probability 1− o(1/n),

this buyer chooses to be high and we get revenue p. So the total revenue from these cases

is at least: (1 − o(1/n)) · (p · (2n(1 − 1/k)/p −
(2n
2

)

(1 − 1/k)2/p2)) = 2(1 − 1/k)n − o(1) as

p → ∞.

• Case Two: no bidder has v1+v2 ≥ pk/(k−1). In this case, we know that with probability

1 − o(1/n), there are at least two (in fact, many more) bidders who are medium. So we get

revenue 2q in these cases. Observe that as p → ∞, we are in this case with probability

approaching 1, so the total revenue from these cases is 2q · (1−o(1/n)) = 2q−o(1) as p → ∞.

So our revenue is 2n(1 − 1/k) + 2q − o(1). Recall that k := n
q + n ln(q)

8q2 = 8nq+n ln(q)
8q2 . Therefore

our revenue is:

2n− 16nq2

8nq + n ln(q)
+

16nq2 + 2nq ln(q)

8nq + n ln(q)

=2n+
2q ln(q)

8q + ln(q)
≥ 2n+ ln(q)/5.

Recall that we required q ≤ √
n in order for our calculations to be valid, so by setting q :=

√
n,

our revenue is at least 2n+ ln(n)/10.

And now we can conclude that the competition complexity cannot be independent of n:

Corollary 8. The competition complexity of n bidders with additive valuations over m = 2 i.i.d.,

regular items is at least ln(n)/10. In particular, there exists no function f(·) only of m such that

the competition complexity of n bidders with additive valuations over m i.i.d. items is f(m).

28



C Omitted Proofs from Section 2

Proof of Fact 1. The proof follows quickly from Myerson’s lemma, stated below:

Lemma 12 (Myerson’s Lemma [Mye81]). Consider any Bayesian Incentive Compatible mechanism

for a single item with payment rule P (·) and allocation rule X(·). That is, on bids ~v, the mechanism

charges bidder i Pi(~v) and awards bidder i the item with probability Xi(~v). Then for all i, the

expected payment made by bidder i is equal to bidder i’s expected virtual welfare. That is:

E~v←Dn [Pi(~v)] = E~v←Dn [Xi(~v) · ϕD(vi)] ,

E~v←Dn [Pi(~v)] ≤ E~v←Dn [Xi(~v) · ϕD(vi)] .

Now, consider the single-bidder auction that simply sets a price of v. Then it’s expected revenue

is simply v · Prw←D[w ≥ v]. The expected virtual welfare is Ew←D[ϕD(w) · I(w ≥ v)]. Therefore,

by Myerson’s Lemma:

v =
Ew←D [ϕD(w) · I(w ≥ v)]

Prw←D [w ≥ v]
= Ew←D≥v

[ϕD(w)] .

The proof for ironed virtual values follows identically, after replacing the left-most equality with

inequality.

D Omitted Proofs from Section 4

D.1 Little n proofs

Proof of Observation 1. For all ~v, if ~v(1) /∈ Rj , then both random variables inside the expectation

take value v(1)j . If ~v(1) ∈ Rj , then the random variable for the left-hand expectation is at most

max{ϕj(v(1)j), v(2)j} (note that the + is no longer necessary as we’re taking a maximum with

v(2)j ≥ 0 anyway). The right-hand expectation is exactly this. Because the right-hand random

variable is larger for all ~v, the expectation is larger as well.

Proof of Proposition 2. We again begin with a coupling. First, couple the draws Xi,n := Fj(vij)

for all i. Next, couple the quantiles Yℓ,m−1 = Fℓ(v(1)ℓ) for ℓ < m, ℓ 6= j, and Yj,m−1 = Fm(v(1)m) (if

j 6= m, otherwise there is no Ym,m−1 to define). Crucially, observe that this is a valid coupling, as

values for items are drawn independently (in particular, conditioned on drawing vij for all j, the

quantiles Fℓ(viℓ) are still i.i.d. and uniform from [0, 1]). Observe now the following:

• Always, v(ℓ)j = F−1
j (X(ℓ),n) for all ℓ.

• Whenever ~v(1) ∈ Rj, X
′
L(n,m) = X(1),n. Therefore:

E~v←Dn

[

max{v(1)j · I(~vj /∈ Rj), ϕj(v(1)j), v(2)j} · I(~v(1) ∈ Rj)
]

= E

[

max{ϕj(F
−1
j (X ′

L(n,m))), F−1
j (X(2),n)} · I(X ′

L(n,m) = X(1),n)
]

.
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• Conditioned on ~v(1) /∈ Rj, X
′
L(n,m) is a uniformly random sample from [X(1),n, 1]. This is

because there is some strictly positive number of ℓ such that Yℓ,m−1 > X(1),n. Conditioned

on being > X(1),n, each such value is drawn uniformly from [X(1),n, 1]. And then X ′
L(n,m)

picks one of them uniformly at random. Using Fact 1, we get:

E~v←D

[

v(1)j · I(~v(1) /∈ Rj)
]

≤ E

[

ϕj(F
−1
j (X ′

L(n,m))) · I(X ′
L(n,m) 6= X(1),n)

]

.

Summing the left-hand side of both equations is exactly E~v←Dn

[

max
{

v(1)j · I(~v(1) /∈ Rj), ϕj(v(1)j), v(2)j
}]

.

Summing the right-hand side is clearly upper bounded by E
[

max
{

ϕj(F
−1
j (X ′

L(n,m))), F−1
j (X(2),n)

}]

.

For subsequent proofs, we will need one basic fact about maximums of random variables:

Fact 2. For any three random variables X,Y, Y ′ such that for all x, E[Y ′|Y = y,X = x] ≥ y,

E[max{X,Y ′}] ≥ E[max{X,Y }].

Proof. In fact, we show that for all y, x, E[max{X,Y ′}|Y = y,X = x] ≥ max{x, y}, which implies

the desired statement. There are two cases to consider. First, perhaps x ≥ y. In this case, we

clearly have max{x, Y ′} ≥ x with probability 1. Therefore, E[max{X,Y ′}|Y = y,X = x] ≥ x as

well. Second, perhaps y > x. In this case, by hypothesis we have E[Y ′|Y = y,X = x] ≥ y. So

clearly E[max{X,Y ′}|Y = y,X = x] ≥ y. This covers both cases and proves the fact.

Proof of Corollary 3. We first consider the three random variables X = ϕj(F
−1
j (X ′

L(n,m))), Y =

F−1
j (X(2),n), Y

′ = ϕj(F
−1
j (W2,n)). Then indeed, conditioned on X = x and Y = y, W2,n is a

uniformly random draw from [X(2),n, 1]. Fact 1 therefore concludes that E[Y ′|X = x, Y = y] =

y, allowing an application of Fact 2 to conclude E

[

max
{

ϕj(F
−1
j (X ′

L(n,m))), F−1
j (X(2),n)

}]

≤

E

[

max
{

ϕj(F
−1
j (X ′

L(n,m))), ϕj(F
−1
j (W2,n))

}]

. The corollary follows by observing that

max
{

ϕj(F
−1
j (X ′

L(n,m))), ϕj(F
−1
j (W2,n))

}

= ϕj(max{X ′
L(n,m),W2,n}) = ϕj(XL(n,m)).

Proof of Corollary 4. The proof is nearly-identical to that of Corollary 1 and omitted (the only

difference is that we save a “+1” in the regular case because our current benchmark no longer has

the “+” on the virtual values).

D.2 Big n proofs

Proof of Proposition 3. Consider drawing quantiles q1, . . . , qn, and also {q′i,k}i∈[ℓ−1],k∈[m−1]. Couple

draws from ~v from Dn and ~w from D
n+(ℓ−1)(m−1)
j as follows:

• Set vij = wij = F−1
j (qi) for all i. Relabel the indices so that v(1)j ≥ v(2)j ≥ . . . ≥ v(n)j ,

w(1)j ≥ w(2)j ≥ . . . ≥ w(n)j , and q(1) ≥ q(2) ≥ . . . ≥ q(n).

• For i ∈ [ℓ − 1], set v(i)k = F−1
k (q′i,k) for all k 6= j. Set v(i)m = F−1

m (q′i,j) (unless j = m, in

which case v(i)m is already set, and there is no q′i,m).
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• For i ∈ [ℓ − 1], set w(i)k = F−1
j (q′i,k) for all k 6= j. Set w(i)m = F−1

j (q′i,j) (unless j = m, in

which case w(i)m is already set, and there is no q′i,m). As all ws are drawn from Dj, interpret

all n+ (ℓ− 1)(m− 1) such draws as values of a single bidder for item j. Let w(ℓ) denote the

ℓth largest of these draws.

• Observe that w(ℓ) ≥ w(ℓ)j = v(ℓ)j .

Now, we consider the random variables inside the left-hand and right-hand expectations. Let

now i∗ denote the minimum i such that ~v(i) /∈ Rj. Observe that when i∗ < ℓ, this is also the

minimum i such that there exists a k 6= j with Fj(w(i)j) < Fj(w(i)k).
7 Therefore, i∗ ≥ ℓ only if

no i, k exists for which Fj(w(i)j) < Fj(w(i)k). So first, consider the possibility that i∗ ≥ ℓ. In this

case, the contribution to the benchmark is upper bounded by max{ϕj(v(1)j), v(ℓ)j}. But we have

that ϕj(w(1)) ≥ ϕj(v(1)j), and also w(ℓ) ≥ v(ℓ)j . Therefore, we can conclude that:

E~v←Dn

[(

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj) + vij · I(~vi /∈ Rj)

}

)

· I(i∗ ≥ ℓ)

]

≤ E
~w←D

n+(m−1)(ℓ−1)
j

[(

max
{

ϕj(w(1)), w(ℓ)

})

· I(i∗ ≥ ℓ)
]

.

Now, consider the case that i∗ < ℓ. In this case, the contribution to the benchmark is exactly

max{ϕj(v(1)j), v(i∗)j}. We now wish to argue that, conditioned on i∗, v(i∗)j and v(1)j , the expected

contribution to the right-hand side exceeds this. Indeed, observe that there exists at least one k for

which q′i∗,k > q(i∗). Conditioned on q(i∗) (and v(1)j , which has no effect), q′i∗,k is simply a uniformly

random draw from [q(i∗), 1]. That is, w(i∗)k′ , (where k′ = k if k 6= j and k′ = m if k = j) is simply

a draw from Dj, conditioned on exceeding w(i∗)j . Therefore, E[ϕj(w(i∗)k′)|w(i∗)j = x,w(i∗)k′ >

w(i∗)j] ≥ x (by Fact 1). We can now apply Fact 2 to conclude that E[max{ϕj(v(1)j), v(i∗)j} · I(i∗ <
ℓ)] ≤ E[max{ϕj(v(1)j),maxk{ϕj(w(i∗)k)}} · I(i∗ < ℓ)]] ≤ E[ϕj(w(1)) · I(i∗ < ℓ)]]. The last inequality

follows simply because w(1) ≥ v(1)j and also w(1) ≥ maxk{w(i∗)k}.

E~v←Dn

[(

max
i∈[n]

{

ϕj(vij)
+ · I(~vi ∈ Rj) + vij · I(~vi /∈ Rj)

}

)

· I(i∗ < ℓ)

]

≤ E
~w←D

n+(m−1)(ℓ−1)
j

[

ϕj(w(1)) · I(i∗ < ℓ)
]

.

Summing up the two left-hand sides yields item j’s contribution to the EFFTW benchmark.

Summing up the two right-hand sides lower bounds the desired right-hand side.

Proof of Lemma 1. Again couple draws so that wi = F−1
j (Xi,n′). Then ϕj(X(1),n′) = ϕj(w(1)).

Additionally, E[ϕj(Wℓ,n′)|X(1),n′ = x,X(ℓ,n′) = y] ≤ F−1
j (y) = w(ℓ) by Fact 1. So the hypotheses of

Fact 2 are satisfied, and we get that

E~w←Dn′

[

max
{

ϕj(w(1)), w(ℓ)

}]

≤ E

[

max{ϕj(F
−1
j (X(1),n′)), ϕj(F

−1
j (Wℓ,n′))}

]

= E

[

ϕj(F
−1
j (max{X(1),n′ ,Wℓ,n′))

]

= E

[

ϕj(F
−1
j (XB(n

′, ℓ)))
]

.

7If Dj has no point masses, we could instead just write w(i)j < w(i)k, but we write it like this to be careful in the

case of point masses.
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