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On categories of (φ,Γ)-modules

Kiran S. Kedlaya and Jonathan Pottharst

Abstract. Let K be a complete discretely valued field of mixed
characteristics (0, p) with perfect residue field. One of the cen-
tral objects of study in p-adic Hodge theory is the category of
continuous representations of the absolute Galois group of K on
finite-dimensional Qp-vector spaces. In recent years, it has become
clear that this category can be studied more effectively by em-
bedding it into the larger category of (φ,Γ)-modules; this larger
category plays a role analogous to that played by the category of
vector bundles on a compact Riemann surface in the Narasimhan-
Seshadri theorem on unitary representations of the fundamental
group of said surface. This category turns out to have a number
of distinct natural descriptions, which on one hand suggests the
naturality of the construction, but on the other hand forces one
to use different descriptions for different applications. We provide
several of these descriptions and indicate how to translate certain
key constructions, which were originally given in the context of
modules over power series rings, to the more modern context of
perfectoid algebras and spaces.

Throughout, let p be a prime number and let K be a p-adic field,
by which we mean a complete discretely valued field of mixed charac-
teristics (0, p) and perfect residue field. For instance, K may be a finite
extension of Qp, but we do not restrict to this case unless otherwise
specified.

In p-adic Hodge theory, one studies the relationship between dif-
ferent cohomology theories associated to algebraic (and more recently
analytic) varieties over K. For example, by analogy with the com-
parison between the Betti and de Rham cohomologies associated to a
complex algebraic variety, one has a p-adic comparison isomorphism
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comparing the p-adic étale and algebraic de Rham cohomologies of a
variety over K. (This result has a long, rich, and continuing history
which we do not wish to review here; see the introductions of [47] and
[9] for up-to-date synopses.)

Continuing with this analogy, just as one encapsulates the Betti–de
Rham comparison isomorphism in the construction of a Hodge struc-
ture associated to a complex algebraic variety, one would like to encode
the p-adic comparison isomorphism into an object associated to a K-
variety that “remembers” certain cohomology groups and their associ-
ated structures. One reason to do this is to study situations where one
has putative instances of the comparison isomorphism corresponding
to varieties which are expected to exist but not yet constructed; this
situation occurs naturally in the study of Shimura varieties [42].

A first approximation to such a package is Fontaine’s definition of
a (φ,Γ)-module [23]. To a continuous representation of GK on a finite-
dimensional Qp-vector space, Fontaine associates a module over a cer-
tain commutative ring (described explicitly in terms of formal Laurent
series; see §1) equipped with semilinear actions of certain endomor-
phisms of the base ring (the eponymous φ and Γ). The fact that the
representation can be recovered from this module rests on two pivotal
observations: first, one can describe representations of Galois groups
of fields of characteristic p on finitely generated Zp-modules in a man-
ner reminiscent of Artin–Schreier theory, as shown by Katz [27, 4.1.1];
second, the infinite cyclotomic extension K(µp∞) has the same Galois
group as the field of Laurent series over the residue field of K(µp∞), as
shown by Fontaine–Wintenberger [22].

Given a smooth proper K-variety, its p-adic étale cohomology ad-
mits a continuousGK-action and thus may be fed into Fontaine’s (φ,Γ)-
module functor. Fontaine had already established how to pass func-
torially from p-adic étale cohomology to de Rham cohomology, so in
principle the same information is captured in the (φ,Γ)-module; how-
ever, there is no obvious way to convert the (φ,Γ)-module into de Rham
cohomology without first passing back to étale cohomology.

This defect was subsequently remedied by work of Cherbonnier–
Colmez [14] and Berger [3], which shows that Fontaine’s construction
may be modified to use a different base ring in which formal Laurent
series are replaced by rigid analytic functions on suitable annuli (again
see §1 for precise definitions). This has the crucial advantage of making
“evaluation at a point” make enough sense so that Fontaine’s étale–
de Rham construction factors through the (φ,Γ)-module. Among the
various applications of this refinement, we single out one which will be
relevant later in our story: one can use (φ,Γ)-modules in this sense to
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give explicit formulas in Iwasawa theory, such as for the Bloch–Kato
exponential function and the Perrin-Riou reciprocity map [4].

Here we arrive at the point of departure for this paper: the Iwasawa
theory we just alluded to is nowadays retronymically called cyclotomic
Iwasawa theory, because similar considerations have subsequently been
applied to towers of number fields whose Galois groups are various (not
necessarily commutative) p-adic Lie groups. However, the construction
of (φ,Γ)-modules described above gives a privileged role to the cyclo-
tomic towers, so it is not immediately evident that they can be used
to study Iwasawa theory beyond the cyclotomic case. While some ini-
tial work in this direction does exist [7, 8, 45], our aim here is not
to address this issue directly, but to instead work at a more founda-
tional level: we describe (φ,Γ)-modules, and the constructions used in
Berger’s explicit formulas, in terms that do not distinguish the cyclo-
tomic tower from other p-adic Lie towers.

Before saying more about this, it is important to emphasize the fact
that the functor from p-adic representations of GK to (φ,Γ)-modules
in the sense of Berger is only a full embedding, not an equivalence of
categories. Using work of the first author [28], one may characterize
the essential image of the functor (the so-called étale (φ,Γ)-modules)
as the semistable objects for a suitable degree function; this immedi-
ately suggests an analogy with the Narasimhan–Seshadri theorem [44]
identifying unitary representations of the fundamental group of a com-
pact Riemann surface with polystable bundles. The computation of
(continuous) Galois cohomology of representations in terms of (φ,Γ)-
modules, worked out in Fontaine’s setting by Herr [24, 25], adapts
to Berger’s setting and extends to non-étale objects by work of R. Liu
[41]. These developments have led to several new applications of p-adic
Hodge theory, such as the construction of a p-adic local Langlands cor-
respondence for GL2(Qp) with good interpolation properties [16] and
the study of the geometry of eigenvarieties via triangulations of (φ,Γ)-
modules [39, 2, 11, 12]; this paper may have some relevance to such
applications also, but we refrain from speculating on this point here.

A first step towards realizing our goal of getting the cyclotomic
tower out of the theory of (φ,Γ)-modules is to describe the category
in a more agnostic fashion. We introduce two of these: one by Berger
in the language of B-pairs and one by Fargues–Fontaine in terms of
vector bundles on certain one-dimensional noetherian schemes (some-
times called Fargues–Fontaine curves). The latter description arises
very naturally within the geometric reinterpretation of p-adic Hodge
theory in the language of perfectoid spaces, as in the work of Scholze
[46, 47, 48] and Kedlaya–Liu [36, 37].
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However, these descriptions alone do not suffice to expunge the cy-
clotomic tower from the theory of (φ,Γ)-modules from the point of
view of applications to Iwasawa theory. This is because Berger’s ex-
plicit formulas depend crucially on a certain construction involving
reduced traces in the cyclotomic tower, which ultimately manifests as
an operator on the power series used in the definition of the base ring
of (φ,Γ)-modules (the ψ map; see Definition 7.1). To eliminate this
construction, we make crucial use of the theory of arithmetic defor-
mations of (φ,Γ)-modules, as developed with L. Xiao in [39]; this
allows us to exchange the explicit use of the cyclotomic tower in the
classical construction of (φ,Γ)-modules for an arithmetic deformation
parametrizing cyclotomic twists. This makes it natural to consider
other deformations corresponding to other p-adic Lie groups, includ-
ing nonabelian ones. A natural next step would be to try to interpret
results from any of [7, 8, 45] in this framework, but we stop short of
this point; see Remark 7.4 and §8 for a brief discussion.

Before concluding this introduction, we set a few running notations.
Our primary model for these and other notations is [39].

Hypothesis 0.1. Throughout this paper, as in this introduction,
let K be a complete discretely valued field of mixed characteristics with
perfect residue field k and absolute Galois group GK ; we do not assume
k is finite (i.e., that K is a finite extension of Qp) unless explicitly
specified. Put F = W (k)[1/p] for W (k) the ring of Witt vectors over
k, so that K/F is a finite totally ramified extension. Let A be an
affinoid algebra over Qp in the sense of Tate, rather than the more
expansive sense of Berkovich.

1. The original category of (φ,Γ)-modules

We begin by describing the original construction of the category of
(φ,Γ)-modules, into which the category of continuous representations
of GK on finite-dimensional Qp-vector spaces embeds; this is most ex-
plicit in the case K = F . In preparation for our later discussion, we
escalate the level of generality to accommodate representations valued
in affinoid algebras.

Definition 1.1. Let RepA(GK) denote the category of continu-
ous representations of GK on finite projective A-modules. With more
work, it would be possible to consider also representations on arbitrary
finitely generated A-modules; we will not attempt this here.

Definition 1.2. Let R∞
F,A be the ring of rigid analytic functions

on the disc |π| < 1 over F ⊗̂QpA. This ring is complete for the topology
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of uniform convergence on quasicompact subspaces (Fréchet topology).
The ring admits a continuous endomorphism φ defined by the formula

(1.2.1) φ

(∑
n

cnπ
n

)
=
∑
n

φF (cn)((1 + π)p − 1)n,

where φF denotes the A-linear extension of Witt vector Frobenius map
on F . The group Γ = Z×

p also admits a continuous action on R∞
F,A

defined by the formula

(1.2.2) γ

(∑
n

cnπ
n

)
=
∑
n

cn((1 + π)γ − 1)n (γ ∈ Γ)

under the interpretation of (1 + π)γ as the binomial series

(1 + π)γ =
∞∑
n=0

γ(γ − 1) · · · (γ − n+ 1)

n!
πn.

Note that the actions of φ and Γ commute.

Definition 1.3. Let RF,A be the direct limit of the rings of rigid
analytic functions on the annuli ∗ < |π| < 1 over F ⊗̂QpA. This ring is
complete for the direct limit topology (in the category of locally con-
vex topological Qp-vector spaces) induced by the topologies of uniform
convergence on quasicompact subspaces (the LF topology). We extend
the actions of φ and Γ on R∞

F,A to continuous actions on RF,A using the
same formulas (1.2.1), (1.2.2). Note that RF,A is connected whenever
A is.

Definition 1.4. A (φ,Γ)-module over RF,A is a finite projective
RF,A-module M equipped with commuting semilinear actions of φ and
Γ such that the action of Γ is continuous for the LF topology. Here by
a semilinear action of φ on a module M , we mean a semilinear map
φM : M → M induced by an isomorphism φ∗M → M ; note that the
isomorphism property does not ensure that φM acts bijectively on M ,
as this already fails for M = RF,A with the standard φ-action.

Let ΦΓF,A denote the category of (φ,Γ)-modules over RF,A, viewed
as an exact tensor category with rank function rankF : ΦΓF,A →
Cont(SpecA,Z) computing the rank of the underlying RF,A-module.

We will establish the following result in §4.

Theorem 1.5. There exists a full embedding RepA(GF )→ ΦΓF,A.

In the interim, let us see how this result can be used to define a
corresponding category with F replaced by K.
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Definition 1.6. Let RK,A ∈ ΦΓF,A be the object of rank [K : F ]

corresponding to IndGF
GK

ρtriv via Theorem 1.7. The canonical isomor-
phisms ρtriv⊗ρtriv ∼= ρ∨triv⊗ρtriv ∼= ρtriv then correspond to an associative
morphism µK : RK,A⊗RK,A → RK,A; this gives RK,A the structure of
a finite flat RF,A-algebra equipped with continuous actions of φ and Γ.

Let ΦΓK,A be the category of pairs (M,µ) for which M ∈ ΦΓF,A
and µ : RK,A ⊗RF,A

M → M is a morphism which is associative with
respect to µK , i.e., the compositions

RK,A ⊗RK,A ⊗M
µK⊗1→ MK ⊗M

µ→M,

RK,A ⊗RK,A ⊗M
1⊗µ→ RK,A ⊗M

µ→M

coincide. In other words, these are finite projective RK,A-modules
equipped with commuting semilinear continuous actions of φ and Γ.
We again view ΦΓK,A as an exact tensor category with rank function
rankK = rankF /[K : F ] computing the rank of the underlying RK,A-
module.

Let K ′ be a finite extension of K. Define the induction functor
Ind : ΦΓK′,A → ΦΓK,A and the restriction functor Res : ΦΓK,A →
ΦΓK′,A by restriction of scalars and extension of scalars, respectively,
along the natural map RK,A → RK′,A.

We may then formally promote Theorem 1.5 as follows.

Theorem 1.7. There exists a full embedding RepA(GK)→ ΦΓK,A
compatible with induction and restriction on both sides.

Definition 1.8. The category ΦΓK,A admits duals, and hence in-
ternal Homs: the dual of M ∈ ΦΓK,A is the module-theoretic dual
M∨ = HomRK,A

(M,RK,A) with the actions of φ,Γ constructed so that
the canonical RK,A-linear morphism M∨ ⊗RK,A

M → RK,A is a mor-
phism in ΦΓK,A. (Note that the definition of the φ-action on M∨

depends on the fact that the action of φ corresponds to an isomor-
phism φ∗M → M , not just an arbitrary RK,A-linear morphism.) For
M corresponding to V ∈ RepA(GK) via Theorem 1.7,M∨ corresponds
to the contragredient representation V ∨.

LetRK,A(1) denote the object of ΦΓK,A corresponding to the cyclo-
tomic character χ in RepA(GK) via Theorem 1.7. Concretely, RK,A(1)
can be written as the free module of rank 1 on a generator ε satisfying

φ(ε) = ε, γ(ε) = χ(γ)ε (γ ∈ Γ).

For M ∈ ΦΓK,A, define the Cartier dual

M∗ =M∨(1) =M∨ ⊗RK,A
RK,A(1) ∈ ΦΓK,A;
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for M corresponding to V ∈ RepA(GK) via Theorem 1.7, M∗ corre-
sponds to the Cartier dual of V (i.e., the contragredient of V twisted
by the cyclotomic character).

Remark 1.9. The description of ΦΓK,A given above is consistent
with [32] but not with most older references. The reason is that even if
MaxspecA is connected, in general MaxspecRK,A is not connected; it
is more typical to replace it with one of its connected components, and
to replace Γ with the stabilizer of that component. See Remark 4.2
and [32, Remark 2.2.12] for further discussion.

Remark 1.10. The base ring in Fontaine’s original theory of (φ,Γ)-
modules was not the ring RK,Qp , but rather the completion of the
subring of elements of RK,Qp which are bounded (meaning equivalently
that their coefficients or their values are bounded). This ring cannot
naturally be interpreted in terms of functions on a rigid analytic space.

2. Interlude on perfectoid fields

In preparation for giving alternate descriptions of the category
ΦΓK,A, we introduce the basic theory of perfectoid fields, which sub-
sumes the earlier theory of norm fields on which the classical theory
of (φ,Γ)-modules is built; we briefly discuss the relationship with the
older theory in Remark 2.20, deferring to [32] for more historical dis-
cussion. In the process, we must do a bit of extra work in order to
accommodate the coefficient ring A.

Definition 2.1. Let L be a field containing K which is complete
with respect to a nonarchimedean absolute value, denoted |·|. Let oL
denote the valuation subring of L (i.e., elements of norm at most 1).
We say L is perfectoid if L is not discretely valued and the Frobenius
map on oL/(p) is surjective.

Example 2.2. Suppose that K = F and let L be the completion
of K(µp∞). Then

oL ∼= (W (k)[ζp, ζp2 , . . . ]/(1 + ζp + · · ·+ ζp−1
p , ζp − ζpp2 , ζp2 − ζ

p
p3 , . . . ))

∧
(p)

oL/(p) ∼= k[T1, T2, . . . ]/(1 + T1 + · · ·+ T p−1
1 , T1 − T p2 , T2 − T

p
3 , . . . ),

so L is perfectoid; the same will hold for general K by Theorem 2.4
below. For some more general results that subsume this example, see
Remark 2.20 and Lemma 2.21.

Hypothesis 2.3. For the remainder of §2, let L be a perfectoid
field.
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Theorem 2.4. Define the multiplicative monoids

oL♭ = lim←−
x↦→xp

oL, L♭ = lim←−
x ↦→xp

L.

(a) There is a unique way to promote oL♭ and L♭ to rings in such
a way that the map oL♭ → L♭ and the composition oL♭ → oL →
oL/(p) become ring homomorphisms. (The map oL♭ → oL is
multiplicative but not additive.)

(b) The ring L♭ is a perfect field. In addition, the function L♭ →
L

|·|→ R is an absolute value with respect to which L♭ is complete
with valuation subring oL♭.

(c) The field L♭ is also perfectoid.
(d) Any finite extension of L, equipped with the unique extension

of the absolute value, is again perfectoid.
(e) The functor L′ ↦→ L′♭ defines an equivalence of categories be-

tween finite extensions of L and L♭, and thereby a canonical
isomorphism GL

∼= GL♭.

Proof. See [32, §1] and references therein. □

Definition 2.5. Define the field L♭ and equip it with an absolute
value as per Theorem 2.4(b). For r > 0, let W r(L♭) be the set of
x =

∑∞
n=0 p

n[xn] ∈ W (L♭) such that p−n |xn|r → 0 as n→∞. By [36,
Proposition 5.1.2], this set is a subring of W (L♭) on which the function
|·|r defined by ⏐⏐⏐⏐⏐

∞∑
n=0

pn[xn]

⏐⏐⏐⏐⏐
r

= max
n
{p−n |xn|r}

is a complete multiplicative norm; this norm extends multiplicatively to

W r(L♭)[p−1]. For 0 < s ≤ r, let R̃[s,r]
L be the completion ofW r(L♭)[p−1]

with respect to max{|·|s , |·|r}, and put R̃[s,r]
L,A = R̃[s,r]

L ⊗̂QpA. Let R̃r
L,A

be the inverse limit of the R̃[s,r]
L,A over all s ∈ (0, r), equipped with

the Fréchet topology. Let R̃L,A be the direct limit of the R̃r
L,A over

all r > 0, equipped with the locally convex direct limit topology (LF
topology).

The notation is meant to suggest a strong analogy between (for

example) the ringR[s,r]
K,A of power series convergent on a (relative) closed

annulus and the somewhat more mysterious ring R̃[s,r]
L,A . In fact, one

may (somewhat imprecisely) think of the latter as consisting of certain
“Laurent series in p with Teichmüller coefficients”; this point of view is
pursued in [31] to express certain geometric consequences. In the case
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where A is a field, a simultaneous development of the ring-theoretic

properties of R[s,r]
K,A and R̃[s,r]

L,A can be found in [29].

For A a field, the following is a consequence of [37, Theorem 3.5.8].

Lemma 2.6. Let L′ be the completion of a (possibly infinite) Galois
algebraic extension of L with Galois group G. Then for 0 < s ≤ r, the

functor from finite projective R̃[s,r]
L,A-modules to finite projective R̃[s,r]

L′,A-
modules equipped with continuous semilinear G-actions is an equiva-
lence of categories.

Proof. We first check full faithfulness. Let M,N be two finite

projective R̃[s,r]
L,A-modules and put P = M∨ ⊗ N . Let M ′, N ′, P ′ be

the respective base extensions of M,N,P to R̃[s,r]
L′,A, equipped with the

induced G-actions. We then have maps

P ∼= Hom(M,N)→ HomG(M
′, N ′) ∼= (P ′)G,

so to check full faithfulness we need only check that P → (P ′)G is
an isomorphism. By writing P as a direct summand of a finite free
module, this reduces immediately to checking that

(R̃[s,r]
L′,A)

G = R̃[s,r]
L,A .

For A = Qp, this equality is a consequence of [36, Theorem 9.2.15]; we
may deduce the general case from this by constructing a Schauder basis
for A over Qp, as in [10, Proposition 2.7.2/3] or [36, Lemma 2.2.9(b)].

We next check essential surjectivity. Let M ′ be a finite projective

R̃[s,r]
L′,A-module equipped with a continuous semilinear G-action. The

G-action may then be described in terms of an isomorphism ι between

the two base extensions of M ′ to R̃[s,r]
L′,A⊗̂R̃[s,r]

L,A
R̃[s,r]
L′,A; note that ι obeys

a cocycle condition expressing the compatibility of the G-action with
composition in the group G. Specifying ι involves only finitely elements

of the ring R̃[s,r]
L′,A, so it may be realized over some subfield of L′ which

is the completion of an algebraic extension of L of at most countable
degree; we may thus assume that L′ itself has this form. From the

proof of [36, Theorem 9.2.15], we see that R̃[s,r]
L′,Qp

splits in the category

of Banach modules over R̃[s,r]
L,Qp

; by tensoring with A, we see that R̃[s,r]
L′,A

splits in the category of Banach modules over R̃[s,r]
L,A . This means that

R̃[s,r]
L,A → R̃

[s,r]
L′,A is a universally injective morphism in the category of

Banach modules over R̃[s,r]
L,A , so we may apply a general descent theorem

of Joyal–Tierney [26] (compare [37, Lemma 1.2.17]) to descend M ′ to

a finite projective R̃[s,r]
L,A-module M . (See also [50, Tag 08WE] for a
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more elementary treatment of the corresponding descent statement for
ordinary modules over a ring, whose proof may be emulated for Banach
modules.) □

Remark 2.7. It is shown in [33, Theorem 3.2] that the rings R̃[s,r]
L,Qp

are really strongly noetherian, that is, any affinoid algebra over such a
ring (even in the sense of Berkovich) is noetherian. In particular, the

rings R̃[s,r]
L,A are really strongly noetherian; consequently, they satisfy the

analogues of Tate’s acyclicity theorem [34, Theorem 7.14, Theorem 8.3]
and Kiehl’s theorem on the characterization of coherent sheaves [34,
Theorem 8.16].

Definition 2.8. Denote by φ the following maps induced by the
Witt vector Frobenius map on W (L♭):

W r(L♭)→ W r/p(L♭), R̃[s,r]
L,A → R̃

[s/p,r/p]
L,A , R̃r

L,A → R̃
r/p
L,A, R̃L,A → R̃L,A.

A φ-module over R̃L,A is a finite projective R̃L,A-module equipped
with a semilinear φ-action; unlike for (φ,Γ)-modules, this action is
necessarily bijective (because the same is true of the maps φ displayed
above). Let ΦModL,A be the category of φ-modules over R̃L,A.

Lemma 2.9. For any r, s with 0 < s ≤ r/p, we have

ker(φ− 1 : R̃[s,r]
L,A → R̃

[s,r/p]
L,A ) = A.

In particular, we have R̃φ
L,A = A.

Proof. Again using [36, Lemma 2.2.9(b)], we reduce to the case
A = Qp, for which see [36, Corollary 5.2.4]. □

Lemma 2.10. For any r, s with 0 < s ≤ r/p, the following categories
are canonically equivalent:

(a) the category ΦModL,A;

(b) the category of finite projective R̃r
L,A-modules M equipped with

isomorphisms

φ∗M ∼= M ⊗R̃r
L,A
R̃r/p
L,A;

(c) the category of finite projective R̃[s,r]
L,A-modules M equipped with

isomorphisms

φ∗M ⊗R̃[s/p,r/p]
L,A

R̃[s,r/p]
L,A

∼= M ⊗R̃[s,r]
L,A
R̃[s,r/p]
L,A .

Proof. The functor from (b) to (a) is base extension from R̃r
L,A

to R̃L,A. The fact that it is an equivalence is an easy consequence of
the bijectivity of the action of φ on objects of ΦModL,A.
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The functor from (b) to (c) is base extension from R̃r
L,A to R̃[s,r]

L,A . To
prove that it is an equivalence, note first that (c) is formally equivalent
to the same category with r, s replaced by r/p, s/p. Using Remark 2.7,
we see additionally that (c) is equivalent to the same category no matter
what values of r, s are used. We may then check the equivalence be-
tween (b) and (c) by imitating the proof of [39, Proposition 2.2.7]. □

Definition 2.11. For M ∈ ΦModL,A and n ∈ Z, define the twist
M(n) to have the same underlying module as M , but with the action
of φ multiplied by p−n.

Lemma 2.12. For M ∈ ΦModL,A, there exists n0 ∈ Z such that
for all n ≥ n0, φ − 1 is surjective on M(n) and its kernel generates
M(n) as a R̃L,A-module.

Proof. The case A = Qp is treated in [36, Proposition 6.2.2,
Proposition 6.2.4]; the same proofs carry over to the general case. □

Theorem 2.13. Let CL be a completed algebraic closure of L. Then
the formula

V ↦→ (V ⊗A R̃CL,A)
GL

defines a full embedding RepA(GL)→ ΦModL,A. (We will discuss the
essential image of this functor in §3.)

Proof. The target of this functor is inΦModL,A thanks to Lemma 2.6
and Lemma 2.10. If V ∈ RepA(GL) corresponds to M ∈ ΦModL,A,
then by Lemma 2.6 there is a canonical (φ,GL)-equivariant isomor-
phism

V ⊗A R̃CL,A
∼= M ⊗R̃L,A

R̃CL,A.

By Lemma 2.9, we may take φ-invariants to obtain an isomorphism

V ∼= (M ⊗R̃L,A
R̃CL,A)

φ;

from this we see that the functor V ↦→M is fully faithful. □

Definition 2.14. There is a canonical surjection θ : W (oL♭)→ oL
whose kernel is a principal ideal; see [32, §1] for the construction. By
[36, Lemma 5.5.5], for any interval [s, r] containing 1, this map extends

to a surjection θ : R̃[s,r]
L,A → L⊗̂QpA.

We now introduce a geometric construction developed in great de-
tail by Fargues and Fontaine [20]; see [18, 19] for expository treat-
ments.
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Definition 2.15. Define the graded ring

PL,A =
∞⨁
n=0

PL,A,n, PL,A,n = R̃φ=pn

L,A ,

and put XL,A = Proj(PL,A). Let VBL,A be the category of quasicoher-
ent locally finite free sheaves (or for short vector bundles) on XL,A.

Example 2.16. For any x in the maximal ideal of oL♭ , the sum∑
n∈Z p

−n[xp
n
] converges to a nonzero element of PL,Qp,1.

Definition 2.17. The map θ defines a closed immersion Spec(L⊗̂QpA)→
XL,A; let ZL,A be the resulting closed subscheme of XL,A, and let UL,A
be the complement of ZL,A in XL,A. By [36, Lemma 8.9.3], UL,A is
affine and ZL,A is contained in an open affine subspace of XL,A; conse-
quently, we may complete XL,A along ZL,A to get another affine scheme

ẐL,A. Let Be,L,A,B
+
dR,L,A,BdR,L,A be the respective coordinate rings of

the affine schemes

UL,A, ẐL,A, UL,A ×Proj(PL,A) ẐL,A.

Let BPairL,A be the category of glueing data for finite projective mod-
ules with respect to the diagram

Be,L,A → BdR,L,A ← B+
dR,L,A.

Theorem 2.18. The categories ΦModL,A, BPairL,A, and VBL,A

are canonically equivalent.

Proof. The categories BPairL,A and VBL,A are equivalent by the
Beauville-Laszlo theorem [1] applied to the coordinate ring of some
open affine subscheme of XL,A containing ZL,A. We construct the func-
tor from VBL,A to ΦModL,A as as in [36, Definition 6.3.10]. Choose
F ∈ VBL,A. For each f ∈ PL,A which is homogeneous of positive de-
gree, we have an open affine subscheme of XL,A with coordinate ring

R̃L,A[f
−1]φ; we may thus take sections of F to obtain a finite projective

module over this ring. By base extension, we obtain a finite projective
module over R̃L,A[f

−1] equipped with a semilinear φ-action. By [36,

Lemma 6.3.7], the possible values of f generate the unit ideal in R̃L,A,

so we may glue on Spec(R̃L,A) to obtain an object of ΦModL,A.
In the other direction, forM ∈ ΦModL,A, we may view

⨁∞
n=0M(n)φ

as a graded module over PL,A, and then form the associated quasicoher-
ent sheaf, which we must show is a vector bundle. Using Lemma 2.12,
this follows as in the proof of [36, Theorem 6.3.12]. □

Remark 2.19. Throughout this remark, assume that A is a field.
In this setting, the concept of B-pairs was introduced by Berger [5] in
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a purely algebraic fashion, without reference to the schemes defined in
Definition 2.17. Therein, the ring Be,L,A appears in connection with
Fontaine’s crystalline period ring Bcrys.

The scheme XL,A introduced by Fargues–Fontaine is in some sense
a “complete curve”: in particular, it is a regular one-dimensional noe-
therian scheme. The space PL,A,n constitutes the sections of the n-th
power of a certain ample line bundle on this scheme. This scheme ad-
mits something resembling an analytification in the category of adic
spaces, in that there is a morphism into it from an adic space built

out of the rings R̃[s,r]
L,A , the pullback along which induces an equivalence

of categories of coherent sheaves by analogy with Serre’s GAGA theo-
rem in complex algebraic geometry. This adic space in turn admits an
infinite cyclic étale cover which is a “quasi-Stein space” whose global
sections are the ring

⋂
r>0 R̃r

L,A, on which the deck transformations act
via the powers of φ. For more on this story, see the aforementioned
references such as [20], and also [36, §8.7, 8.8] and [37, §4.7].

Remark 2.20. Let F/K be an algebraic extension. In the case
where F = Qp(µp∞), we have seen already (Example 2.2) that the
completion of F is a perfectoid field. This property turns to be closely
related to ramification of local fields; let us now recall the precise nature
of this relationship.

Coates–Greenberg [15] define F/K to be deeply ramified if for every
finite extension F ′ of F , the trace map Trace : mF ′ → mF is surjective.
This holds in particular if F/K is arithmetically profinite in the sense
of Fontaine–Wintenberger [22] (see [21, Corollary 1.5] for a detailed
proof); the latter holds in turn if F/K is an infinite Galois extension
with finite residual extension whose Galois group is a p-adic Lie group,
by a theorem of Sen [49].

Lemma 2.21. Let F/K be an algebraic extension with completion
L. Then F/K is deeply ramified if and only if L is a perfectoid field.

Proof. Suppose first that L is not perfectoid; this means that
there exists x ∈ oF whose image in oF/(p) is not in the image of Frobe-
nius, and we will show that Trace : mF (x1/p) → mF is not surjective. For
this purpose, there is no harm in replacing F with a tamely ramified
extension; we may thus assume at once that F admits no nontrivial
tamely ramified extension (i.e., it is “tamely closed”).

Let c ≥ p−1 denote the infimum of |x− yp| over all y ∈ oF . Choose
ϵ > 1 and choose y0 ∈ oF such that |x− yp0| ≤ min{1, ϵpc}; note that⏐⏐x1/p − y0⏐⏐ = |x− yp0|

1/p. Since F is tamely closed, we may choose
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µ ∈ oF with

|x− yp0| ≤ |µp| ≤ min{1, ϵp |x− yp0|}.
Put u := (x1/p − y0)/µ. Note that

|z − u| ≥ ϵ−2max{1, |z|} (z ∈ F ) :

for z /∈ oF this is apparent because |z| > 1 ≥ |u|, while for z ∈ oF we
have

|z − u| = |µ|−1
⏐⏐y0 + zµ− x1/p

⏐⏐ ≥ |µ|−1c1/p ≥ ϵ−2.

Since F is tamely closed, it follows that for any P (T ) ∈ F [T ] of degree
at most p− 1, |P (u)| is at least ϵ−2(p−1) times the Gauss norm of P .

Consider a general element z =
∑p−1

i=0 ziu
i ∈ mF (x1/p) with z0, . . . , zp−1 ∈

F . By the previous paragraph, maxi{|zi|} ≤ ϵ2(p−1). Since TraceF (x1/p)/F (x
i/p) =

0 for i = 1, . . . , p− 1,

TraceF (x1/p)/F (z) =

p−1∑
i=0

pzi(−y0/µ)i

has norm at most p−1 |µ|1−p ϵ2(p−1) ≤ p−1c(1−p)/pϵ2(p−1) ≤ p−1/pϵ2(p−1).
By taking ϵ sufficiently close to 1, we deduce that Trace : mF (x1/p) → mF

is not surjective.
Conversely, suppose that L is perfectoid. For any finite extension

F ′ of F , by Theorem 2.4 the completion L′ of F ′ is again perfectoid.
Using the existence of a commutative diagram

W (oL♭) →→

↓↓

oL

↓↓
W (oL′♭) →→ oL′

in which the horizontal arrows are surjective (see Definition 2.14), the
surjectivity of Trace : mF ′ → mF reduces to the surjectivity of Trace :
mL′♭ → mL♭ , or equivalently the fact that the cokernel of the latter map
is annihilated by all of mL♭ . This holds because the annihilator of the
cokernel is nonzero (because L′♭/L♭ is a finite separable extension) and
closed under taking p-th roots. (This argument is a special case of the
almost purity theorem for perfectoid rings; see [36, Theorem 5.5.9] and
[46, Theorem 7.9].) □

3. Slopes of φ-modules

We now introduce the important concept of slopes of φ-modules.
The basic theory is motivated by the corresponding theory of slopes
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of vector bundles on algebraic varieties (especially curves). In the pro-
cess, we identify the essential image of the embedding functor of The-
orem 2.13 in case A is a field.

Hypothesis 3.1. Throughout §3, let L be a perfectoid field.

Lemma 3.2. Suppose that A is a field. Then R̃×
L,A =

⋃
r>0(W

r(L♭)[p−1]⊗̂QpA)
×.

(This statement can be extended to the case where A is reduced, but not
more generally.)

Proof. See [36, Corollary 4.2.5]. □

Definition 3.3. Suppose that A is a field. Let v(A) denote the
valuation group of A, normalized so that v(Q×

p ) = Z. Let k be the
largest finite extension of Fp which embeds into both L and the residue
field of A, and let A0 be the unramified extension of Qp with residue
field k; then W (L♭)⊗̂QpA = W (L♭) ⊗Qp A splits into copies of the

integral domain W (L♭) ⊗A0 A indexed by choices of the embedding
k → L. The p-adic valuation on W (Lf lat) extends to a valuation
W (L♭) ⊗A0 A with values in v(A); summing across components gives
a map W (L♭) ⊗Qp A → v(A) ∪ {+∞}. By Lemma 3.2, we obtain a

homomorphism R̃×
L,A → v(A); note that this map is invariant under

φ-pullback.
By Theorem 2.18, line bundles on XL,A correspond to φ-modules

over R̃L,A whose underlying modules are projective of rank 1. By
taking determinants of these modules and using the φ-invariance of
the map R̃×

L,A → v(A), we obtain a morphism deg : Pic(XL,A)→ v(A)
called the degree map. (This map can also be given an interpretation
in terms of rational sections of line bundles, in parallel with the usual
construction of the degree map for line bundles on an algebraic curve;
see [20] for this viewpoint.) As usual, for F ∈ VBL,A of arbitrary rank,
we define the degree of F as the degree of its determinant ∧rank(F)F ,
and (if F ≠ 0) the slope of F as the ratio µ(F) = deg(F)/ rank(F).
We may transfer these definitions to ΦModL,A using Theorem 2.18.

Lemma 3.4. For each positive integer n, we have ker(pnφ − 1 :

R̃[s,r]
L,A → R̃

[s,r/p]
L,A ) = 0.

Proof. Again using [36, Lemma 2.2.9(b)], we reduce to the case
A = Qp. Suppose that x belongs to the kernel. The equality

|x|t = |φ(x)|t/p =
⏐⏐p−nx⏐⏐

t/p
= pn |x|t/p

holds initially for t ∈ [s, r], then by induction for t ∈ [p−ms, r] for each
nonnegative integer m, and hence for all t ∈ (0, r]. It follows that |x|t
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remains bounded as t→ 0+, so by [36, Lemma 4.2.4] we have x ∈ R̃×
L,A.

However, by Lemma 3.2, this means that x has a well-defined p-adic
valuation, which is the same as the valuation of φ(x); we must then
have n = 0, contradiction. □

Definition 3.5. Suppose that A is a field. For F ∈ VBL,A

nonzero, we say F is stable (resp. semistable) if there does not ex-
ist a nonzero proper subobject F ′ of F such that µ(F ′) ≥ µ(F) (resp.
µ(F ′) > µ(F)). For example, by Lemma 3.4, any rank 1 bundle is
semistable. We say F is étale if it is semistable of degree 0.

For general F ∈ VBL,A, Lemma 3.4 implies that the set of slopes of
nonzero subbundles of F is bounded above; consequently, there exists
a canonical filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = F

such that the successive quotients Fi/Fi−1 are semistable and µ(F1/F0) >
· · · > µ(Fm/Fm−1). This filtration is called the Harder–Narasimhan fil-
tration, or HN filtration, of F . Note that F1 is the maximal subbundle
of F achieving the maximal slope among nonzero subbundles of F . The
HN polygon of F is the Newton polygon of length rank(F) in which the
slope µ(Fi/Fi−1) occurs with multiplicity rank(Fi); the total height of
this polygon is deg(F).

Theorem 3.6. Suppose that A is a field.

(a) The tensor product of any two semistable bundles in VBL,A is
again semistable. In particular, the tensor product of two étale
bundles is again étale.

(b) Let L′ be any perfectoid field containing L. Then the HN poly-
gon remains invariant under base extension from VBL,A to
VBL′,A.

(c) The essential image of the full embedding RepA(GL)→ ΦModL,A
in Theorem 2.13 consists precisely of the étale objects.

Proof. See [36, §4] and references therein. □

Remark 3.7. For general A, we may define the degree, rank, slope,
and HN polygon of F ∈ VBL,A as functions on Maxspec(A). Unfor-
tunately, these functions do not extend well to the Berkovich space
associated to A, because the theory of slopes behaves poorly when the
degree map does not take discrete values.

In addition, if A is not a field, then the subcategory of ΦModL,A
consisting of pointwise étale objects may be strictly larger than the
essential image of RepA(GL); in fact, this already occurs for objects
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of rank 1, as noted in [6, Remarque 4.2.10]. For further discussion, see
[35].

Lemma 3.8. For F ∈ VBL,A, the HN polygon of F , as a function
on Maxspec(A), is bounded above and below, and its height is constant
on connected components of MaxspecA.

Proof. Using Lemma 2.12, we see that F admits a surjective mor-
phism from O(n)⊕d for some integers n, d. It follows that the HN poly-
gon of F has no slopes less than n. The same argument applies to the
dual bundle shows that the HN polygon of F also has slopes which are
uniformly bounded above. □

4. From φ-modules to (φ,Γ)-modules

We now use φ-modules to give an alternate description of the cate-
gory ΦΓK,A in the language of perfectoid fields. In the process, we will
establish Theorem 1.7.

Definition 4.1. Let LK be the completion of K(µp∞); it is a per-

fectoid field by Example 2.2 and Theorem 2.4. Let Φ̃ΓK,A denote the
category of objects of ΦModLK ,A equipped with continuous semilinear
ΓK-actions, where ΓK = Gal(K(µp∞)/K).

We now complete the discussion initiated in Remark 1.9.

Remark 4.2. Via the cyclotomic character, we may identify ΓF
with Γ and ΓK with an open subgroup of Γ. Put R̃K,A = IndΓ

ΓK
R̃LK ,A;

this is a direct sum of copies of R̃LK ,A indexed by the connected com-

ponents of K⊗F F (µp∞). We may then identify objects of Φ̃ΓK,A with

finite projective R̃K,A-modules equipped with continuous semilinear Γ-
actions.

Definition 4.3. Choose a coherent sequence ζp, ζp2 , . . . of p-power
roots of unity and let ϵ be the element (1, ζp, ζp2 , . . . ) ∈ L♭K . Then the
map W (k)JπK → W (oL♭

K
) taking π to [ϵ] − 1 is (φ,Γ)-equivariant; it

thus extends to a (φ,Γ)-equivariant map RK,A → R̃K,A.

Theorem 4.4. The categories ΦΓK,A and Φ̃ΓK,A are equivalent via

base extension along RK,A → R̃K,A.

Proof. In the case A = Qp, this is proved in [37, Theorem 6.1.7].
It can also be deduced from prior results; for example, for L a com-
pleted algebraic closure of K, Berger [5, Théorème A] constructed an
equivalence between ΦΓK,A and the category of objects of BPairL,A
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equipped with continuous semilinear GK-actions. By Theorem 2.18,
these can be interpreted as objects of ΦModL,A equipped with contin-
uous semilinear GK-actions; using Lemma 2.6 and Lemma 2.10, these

can in turn be identified with objects of Φ̃ΓK,A.
To obtain full faithfulness in the general case, note that since both

categories admit internal Homs in a compatible way, we reduce to
checking that forM ∈ ΦΓK,A, every (φ,Γ)-stable element v ∈M⊗RK,A

R̃K,A belongs to M itself. Using a Schauder basis for A over Qp (see
the proof of Lemma 2.6), we may construct a family of bounded Qp-
linear morphisms A → Qp whose kernels have zero intersection; by
tensoring along these, we reduce the claim that v ∈ M to a family of
corresponding assertions in the previously treated case A = Qp.

To obtain essential surjectivity, one may emulate the proof of [37,
Theorem 6.1.7]; we only give a brief sketch here, as details will be given
in upcoming work of Chojecki and Gaisin. By full faithfulness, we may
reduce to the case K = F . By Lemma 2.10, we may start with a finite

projective R̃[s,r]
LF ,A

-module M̃ equipped with an isomorphism of the base

extensions of φ∗M̃ and M̃ to R̃[s,r/p]
LF ,A

, plus a compatible semilinear Γ-

action. Within R̃[s,r]
LF ,A

, we have a dense subring R̆[s,r]
F,A consisting of the

union of the closures of the subrings φ−n((F ⊗̂QpA)[π
±]) for n ≥ 0;

it will suffice to descend M̃ to a finite projective R̆[s,r]
F,A -module M̆ on

which φ and Γ continue to act. Using the density of R̆[s,r]
F,A in R̃[s,r]

LF ,A
, we

may apply [37, Lemma 5.6.8] to descend the underlying module of M̃ ,
but the resulting descended module will typically not be Γ-stable; this
may corrected using a sequence of successive approximations as in [37,
Lemma 5.6.9]. We thus obtain a Γ-stable descended module, which is
then easily shown to be also φ-stable. □

As a corollary, we may now establish Theorem 1.5.

Proof of Theorem 1.5. By Theorem 4.4, it suffices to exhibit a

full embedding RepA(GK)→ Φ̃ΓK,A. We obtain this embedding from
Theorem 2.13 by adding ΓK-descent data. □

Definition 4.5. We say that M ∈ ΦΓK,A is étale if its image in
ΦModLK ,A is étale.

Theorem 4.6. Suppose that A is a field. Then M ∈ ΦΓK,A is
étale if and only if it belongs to the essential image of the functor
RepA(GK)→ ΦΓK,A.

Proof. This is immediate from Theorem 3.6(c). □
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Remark 4.7. Theorem 4.4, when restricted to étale objects, re-
produces the Cherbonnier-Colmez theorem on the overconvergence of
p-adic representations [14]. However, the proof we have in mind is
closer in spirit to the one in [32, §2].

Remark 4.8. Note that the embedding in Theorem 1.5 is not quite
canonical: it depends on the coherent sequence of p-power roots of unity
chosen in Definition 4.3. This suggests that in some sense, the embed-

ding of RepGK
(A) into Φ̃ΓK,A is more natural than the embedding

into ΦΓK,A.

Remark 4.9. Let F/K be a deeply ramified Galois algebraic ex-
tension, so that by Lemma 2.21 the completion L of F is a perfectoid

field. Using Lemma 2.6, we may describe the category Φ̃ΓK,A as the
category of objects of ΦModL,A equipped with continuous semilinear
Gal(F/K)-actions; in particular, we again obtain a full embedding of
RepA(GK) into this category. However, in general there is no natural
analogue of the category ΦΓK,A because the ring R̃L,A cannot be ob-
tained in a natural way from a ring of Laurent series. For this reason,
we are driven to reformulate known constructions involving ΦΓK,A us-

ing Φ̃ΓK,A with the eye towards generalizing to towers other than the
cyclotomic tower; we will pick up on this theme in §8.

5. Cohomology of (φ,Γ)-modules

We now upgrade the previous discussion to relate Galois cohomol-
ogy to (φ,Γ)-modules. This time, we start directly with the perfectoid
framework.

Definition 5.1. Let L be a perfectoid field. For M̃ ∈ ΦModL,A,

let H0
φ(M̃), H1

φ(M̃) be the kernel and cokernel of φ− 1 on M̃ , and put

H i
φ(M̃) = 0 for i > 1.

Lemma 5.2. Choose r, s with 0 < s ≤ r/p. Let M̃, M̃ r, M̃ [s,r] be
corresponding objects in the categories (a),(b),(c) of Lemma 2.10. Then
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the vertical arrows in the diagram

0 →→ M̃
φ−1 →→ M̃ →→ 0

0 →→ M̃ r φ−1 →→

↑↑

↓↓

M̃ r ⊗R̃r
L,A
R̃r/p
L,A

→→

↓↓

↑↑

0

0 →→ M̃ [s,r] φ−1 →→ M̃ [s,r] ⊗R̃[s,r]
L,A
R̃[s,r/p]
L,A

→→ 0

constitute quasi-isomorphisms of the horizontal complexes.

Proof. The proof of [36, Proposition 6.3.19] in the case A = Qp

adapts without change. □

Definition 5.3. For G a profinite group acting continuously on
a topological abelian group M , let C(G,M) denote the complex of
inhomogeneous continuous cochains on G with values in M . Denote
by H i(G,M) or H i

G(M) the cohomology groups of this complex.
For M ∈ ΦΓK,A, let Cφ,Γ(M) denote the total complex associated

to the double complex

0→ C(Γ,M)
φ−1→ C(Γ,M)→ 0.

Denote by H i
φ,Γ(M) the cohomology groups of this complex. We make

an analogous definition for M̃ ∈ Φ̃ΓK,A.

Lemma 5.4. Let L be a perfectoid field. Let L′ be the completion of
a (possibly infinite) Galois algebraic extension of L with Galois group

G. Then for 0 < s ≤ r, for M a finite projective R̃[s,r]
L,A-module, M is

G-acyclic, i.e., the morphism M → C(G,M) is a quasi-isomorphism.

Proof. Using a Schauder basis for A over Qp (see the proof of
Lemma 2.6), we may reduce to the case A = Qp, for which we may
apply [36, Theorem 8.2.22]. □

Theorem 5.5. Let L be a perfectoid field. For M̃ ∈ ΦModL,A,
F ∈ VBL,A corresponding as in Theorem 2.18, we have canonical iden-

tifications H i
φ(M̃) ∼= H i(XL,A,F) for all i ≥ 0.

Proof. Since XL,A is separated and is covered by two open affine
subschemes, we have H i(XL,A,F) = 0 for i ≥ 2. The identification
for i = 0, 1 arises directly from Theorem 2.18, using in the case i =
1 the interpretation of the cohomology groups as Yoneda extension
groups. □
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Theorem 5.6. For M ∈ ΦΓK,A, M̃ ∈ Φ̃ΓK,A corresponding via

Theorem 4.4, the morphisms H i
φ,Γ(M) → H i

φ,Γ(M̃) are isomorphisms
for all i.

Proof. As in Theorem 4.4, the case A = Qp is treated in [37,
Theorem 6.1.7], and we sketch an adaptation to the general case and
refer to upcoming work of Chojecki and Gaisin for further details. We
again reduce to the case K = F , and to calculating (φ,Γ)-cohomology

for a pair of modules M̆, M̃ in which M̆ is finite projective over R̆[s,r]
F,A

and M̃ is the base extension to R̃[s,r]
LF ,A

. In this setting, we may already

show that H i
Γ(M̆) = H i

Γ(M̃) using the method of [37, Lemma 5.6.6],

i.e., by first making a direct calculation in the case where M̆ = R̆[s,r]
F,A ,

then using this case to make a series of successive approximations in
the general case. □

Theorem 5.7. Suppose that [K : Qp] < ∞. For M ∈ ΦΓK,A, we
have the following.

(a) The groups H i
φ,Γ(M) are finite A-modules for i = 0, 1, 2, and

vanish for i > 2.
(b) For any morphism A → B of affinoid algebras over Qp, the

canonical morphism

Cφ,Γ(M)⊗L
A B → Cφ,Γ(M ⊗RK,A

RK,B)

is a quasi-isomorphism.
(c) If M is the image of V ∈ RepA(GK) under Theorem 1.5, then

there is a canonical quasi-isomorphism C(GK , V ) ∼= Cφ,Γ(M).
In particular, the A-modules H i

φ,Γ(M) coincide with the Galois
cohomology groups of V .

Proof. See [39, Proposition 2.3.7, Theorem 4.4.2, Theorem 4.4.3].
□

Remark 5.8. While Theorem 5.6 and Theorem 5.7 together as-
sert that the groups H i

φ,Γ(M̃) are finite A-modules, the proof of this

statement depends crucially on the interpretation of M̃ in terms of the
category ΦΓK,A. To illustrate this, we sketch a proof of Theorem 5.7(a)
in the spirit of [39] but technically somewhat simpler. (It is also slightly
more general, as we only need to assume that A is a noetherian Banach
algebra over Qp.)

We first reduce to the case K = Qp using the (φ,Γ)-module-
theoretic counterpart of Shapiro’s lemma described in [41, Theorem 3.2]
(compare also Remark 4.2). For M ∈ ΦΓA,K , Shapiro’s lemma as
usual implies that H i

φ,ΓK
(M) ∼= H i

φ,Γ(Ind
Γ
ΓK
M); since the definition of
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the latter does not explicitly reference the module structure, we may
view IndΓ

ΓK
M as a module over IndΓ

ΓK
RK,A and then restrict scalars

to RQp,A without changing the cohomology.
Now assuming K = Qp, choose r, s, r

′, s′ with 0 < s < s′ ≤ r′/p ≤
r/p. Let R[s,r]

Qp,A
be the ring of rigid analytic functions on the disc

p−rp/(p−1) < |π| < p−sp/(p−1) over A. For r sufficiently small, we may
(by analogy with Lemma 2.10 and Lemma 5.2) realize M as a finite

projective R[s,r]
Qp,A

-module M [s,r] equipped with an isomorphism

φ∗M [s,r] ⊗R[s/p,r/p]
Qp,A

R[s,r/p]
Qp,A

∼= M [s,r] ⊗R[s,r]
Qp,A
R[s,r/p]

Qp,A

and compute H i
φ,Γ(M) as the cohomology of the total complex

0→ C(Γ,M [s,r])
φ−1→ C(Γ,M [s,r/p])→ 0.

We then have a diagram

0 →→ C(Γ,M [s,r])

↓↓

φ−1 →→ C(Γ,M [s,r/p]) →→

↓↓

0

0 →→ C(Γ,M [s′,r′])
φ−1 →→ C(Γ,M [s′,r′/p]) →→ 0

in which the vertical arrows define a quasi-isomorphism of the total
complexes associated to the rows. However, each vertical arrow is com-
posed of maps which are completely continuous morphisms of Banach
spaces over A, i.e., uniform limits of morphisms of finite rank. By
the Cartan-Serre-Schwartz lemma as applied in [38, §3] (compare [40,
Satz 2.6]), we deduce that the cohomology groups of the total com-

plexes are finite A-modules. (By contrast, the maps R̃[s,r]
Qp,A

→ R̃[s′,r′]
Qp,A

are not completely continuous.)

Remark 5.9. In Remark 5.8, note that φ is only A-linear rather
than (F ⊗̂QpA)-linear; we thus need [K : Qp] <∞ in order to reduce to
the case K = F = Qp. If we relax the hypothesis on K to allow it to
be a more general local field, the vanishing of H i

φ,Γ(M) for i > 2 and

finiteness for i = 0 remain valid, but the finite generation of H i
φ,Γ for

i = 1 and i = 2 can fail.

6. The cyclotomic deformation

We now consider a key example of an arithmetic deformation. The
construction follows [39, Definition 4.4.7], but we opt here for more
geometric language.
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Definition 6.1. LetX be a rigid analytic space over Qp. The rings

RK,A, R̃[s,r]
K,A, R̃r

K,A, R̃K,A all satisfy the sheaf axiom and Tate acyclicity
with respect to finite coverings by affinoid subdomains: for example,
the Čech sequence for R̃K,A with respect to a given covering is ob-
tained from the corresponding sequence for the structure sheaf by the
exact operation of taking the completed tensor product over Qp with

R̃K,Qp . (The exactness of completed tensor products over Qp does
involve a nontrivial argument using Schauder bases; see for example
[36, Lemma 2.2.9].) These constructions thus give rise to ring sheaves

RK,X , R̃[s,r]
K,X , R̃r

K,X , R̃K,X on the affinoid space Maxspec(A) which are
acyclic on affinoid subspaces.

Let ΦΓK,X , Φ̃ΓK,X be the categories of finite projective modules

over the respective ring sheaves RK,X , R̃K,X equipped with continuous
commuting semilinear actions of φ,Γ. These form stacks for both the
analytic topology and the étale topology; in particular, Theorem 4.4

gives rise to an equivalence of categories ΦΓK,X → Φ̃ΓK,X .

Definition 6.2. Let ZpJΓKK be the completed group algebra. Since
this ring is formally of finite type over Zp, we may apply Berthelot’s
generic fiber construction (see for example [17, §7]) to view this ring as
the collection of bounded-by-1 rigid analytic functions on a certain one-
dimensional quasi-Stein space WK over Qp (the weight space of ΓK).
More precisely, in case ΓK ∼= Zp, the space WK is an open unit disc
admitting γ − 1 as a coordinate for any topological generator γ ∈ ΓK ;
in the general case, WK is a finite disjoint union of such discs.

The action of ZpJΓKK on ΛK = O(WK) by (left) multiplication
defines a canonical one-dimensional Galois representation on WK ; let
DfmK be the corresponding (φ,ΓK)-module. For X a rigid analytic
space over Qp and M ∈ ΦΓK,X , define the cyclotomic deformation
of M as the external tensor product M ⊠DfmK ∈ ΦΓK,X×QpWK

. We

similarly define the cyclotomic deformation of M̃ ∈ Φ̃ΓK,X as an object

M̃ ⊠DfmK of Φ̃ΓK,X×QpWK
.

Remark 6.3. For M ∈ ΦΓK,A, we may view the cyclotomic de-
formation of M as arising from the completed tensor product M ′ =
M⊗̂QpΛK . Since the action of ΓK on M is locally analytic, the action
map M × ΓK → M extends to a projection M ′ → M sectioning the
inclusion M → M ′. From the existence of this projection, it follows
(as in the proof of [39, Theorem 4.4.8]) that

(M ′)ΓK = 0, (M ′)ΓK
∼= M.
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By contrast, for M̃ ∈ Φ̃ΓK,A, the action map M̃ × ΓK → M̃ is contin-

uous, but does not define a bounded map M̃⊗̂QpΛK → M̃ .

Definition 6.4. Define the ring R̆K,A =
⋃∞
n=0 φ

−n(RK,A). We

may then define the category Φ̆ΓK,A of (φ,Γ)-modules over R̆K,A. The

base extension functor ΦΓK,A → Φ̆ΓK,A is obviously surjective; by
Theorem 4.4 it is also fully faithful, and hence an equivalence.

7. Iwasawa cohomology and the cyclotomic deformation

The goal of this section is to describe various constructions in the
classical language of (φ,Γ)-modules which play a role in Iwasawa the-
ory, then translate these into the other categories so as to isolate the
role of the cyclotomic extension. Assume hereafter that [K : Qp] <∞.

Definition 7.1. Define the map ψ : RK,A → RK,A as the reduced
trace of φ, i.e., as p−1φ−1 ◦ Trace(RK,A → φ(RK,A)); by definition, it
is a left inverse of φ. For any M ∈ ΦΓK,A, we may likewise take the
reduced trace of the action of φ on M to obtain an action of ψ on M ,
which is again a left inverse of φ; concretely, the action of ψ on M is
characterized by additivity and the identity

ψ(rφ(v)) = ψ(r)v.

We have an exact sequence

(7.1.1) 0→Mφ=1 →Mψ=1 φ−1−→Mψ=0.

Proposition 7.2. For any M ∈ ΦΓK,A, the A-module M/(ψ − 1)
is finitely generated.

Proof. It suffices to treat the case K = Qp, for which see [39,
Proposition 3.3.2(1)]. □

Corollary 7.3. For any M ∈ ΦΓK,A, there is a canonical iso-
morphism

Mφ=1 ∼= HomA(M
∗/(ψ − 1), A).

In particular, the A-module Mφ=1 is finitely generated.

Proof. It suffices to treat the case K = Qp. In this case, using
residues of power series, one constructs as in [39, Notation 2.3.13] a
nondegenerate pairing M ×M∗ → RK,A(1) satisfying

{φ(x), φ(y)} = {x, y} (x ∈M, y ∈M∗)

and hence

(7.3.1) {φ(x), y} = {x, ψ(y)} (x ∈M, y ∈M∗).
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We will show that the mapM → HomA(M
∗, A) arising from the pairing

{−,−} induces the desired isomorphism; this will then imply the finite
generation of Mφ=1 using Proposition 7.2.

To begin with, the nondegeneracy of the pairing {−,−} implies
the injectivity of M → HomA(M

∗, A), and the identity (7.3.1) shows
that the image of this map is contained in HomA(M

∗/(ψ − 1), A). In
the other direction, note that Proposition 7.2 and the open mapping
theorem imply that (ψ − 1)M∗ is a closed subspace of M∗ for the
Fréchet topology, so every element of HomA(M

∗/(ψ − 1), A) defines a
continuous A-linear map M∗ → A. By the perfectness of the pairing,
any such map corresponds to an element of M . □

Remark 7.4. One of the key constructions in p-adic Hodge theory
is Fontaine’s crystalline period functor, which takes a representation
V ∈ RepA(GK) to the finite A-module

Dcrys(V ) = (V ⊗Qp Bcrys)
GK

where Bcrys is a certain topological Qp-algebra (the ring of crystalline
periods). For example, when A = Qp and V is the p-adic étale coho-
mology of a smooth proper scheme over oK , the crystalline comparison
theorem defines a functorial isomorphism of Dcrys(V ) with the rational
crystalline cohomology of the same scheme; see [9] for a thoroughly
modern take on the construction.

The functor Dcrys factors naturally through ΦΓK,A and Φ̃ΓK,A:

for example, for M = ΦΓK,A, M̃ ∈ Φ̃ΓK,A corresponding to V ∈
RepA(GK), we have a canonical isomorphism

Dcrys(V ) ∼= M [t−1]Γ ∼= M̃ [t−1]Γ, t = log(1 + π).

In the case of M̃ , all we are using about t is that it belongs to PLK ,A,n

for some n > 0 and that its zero locus on XL,A is precisely ZL,A; this
interpretation can be used to avoid specific references to the cyclotomic
tower.

When K/Qp is unramified, A is finite over Qp, and M ∈ ΦΓK,A is
crystalline (i.e., its Dcrys is “as large as possible”, as if M arose from
the comparison isomorphism), the objectMψ=1 is related to the Galois
cohomology H1 of each of the twists ofM in its cyclotomic deformation
(see Corollary 7.9 below), and Mψ=0 is related to the Dcrys of the same
twists of M . As shown by Berger [4] (and generalized by Nakamura
[43]), explicit formulas for Bloch–Kato’s and Perrin-Riou’s exponential
maps, and the “δ(M)” formula for the determinant of the latter, follow
from a study of the relationship between these two objects. We will
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therefore focus on describing corresponding objects made from M̃ in

Φ̃ΓK,A for general K,A,M .

Definition 7.5. For M ∈ ΦΓK,A, let Cψ(M) denote the complex

0→M
ψ−1→ M → 0

with the nonzero terms placed in degrees 1 and 2. Denote by H i
ψ(M)

the cohomology groups of this complex.
Let Cψ,Γ(M) denote the total complex associated to the double

complex

0→ C(Γ,M)
ψ−1→ C(Γ,M)→ 0.

Denote by H i
ψ,Γ(M) the cohomology groups of this complex. The dia-

gram

0 →→ C(Γ,M)
φ−1 →→

id
↓↓

C(Γ,M)

−ψ
↓↓

→→ 0

0 →→ C(Γ,M)
ψ−1 →→ C(Γ,M) →→ 0

induces a morphism Cφ,Γ(M)→ Cψ,Γ(M) which is a quasi-isomorphism
[39, Proposition 2.3.6].

Definition 7.6. For M ∈ ΦΓK,X , M̃ ∈ Φ̃ΓK,X corresponding via
Theorem 4.4, define the following sheaves on X:

Hi
ψ,Γ(M) : Maxspec(B) ↦→ H i

ψ,Γ(M ⊗RK,B)

Hi
φ,Γ(M) : Maxspec(B) ↦→ H i

φ,Γ(M ⊗RK,B)

Hi
φ,Γ(M̃) : Maxspec(B) ↦→ H i

φ,Γ(M̃ ⊗ R̃K,B).

By Theorem 5.6 and Definition 7.5, the sheavesHi
ψ,Γ(M),Hi

φ,Γ(M),Hi
φ,Γ(M̃)

are canonically isomorphic; by [39, Theorem 4.4.3, Remark 4.4.4], they
are coherent.

Theorem 7.7. For M ∈ ΦΓK,A, with notation as in Remark 6.3,
there is a canonical morphism of complexes

Cψ,Γ(M
′)→ Cψ(M)

which is a quasi-isomorphism.

Proof. Apply [39, Theorem 4.4.8]. □

Corollary 7.8. Suppose that M ∈ ΦΓK,A, M̃ ∈ Φ̃ΓK,A corre-
spond as in Theorem 4.4. Then for X = Maxspec(A), we have canon-
ical isomorphisms

Γ(X ×K WK ,Hi
ψ,Γ(M̃ ⊠DfmK)) ∼= H i

ψ(M).
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This statement applies to Iwasawa cohomology as follows.

Corollary 7.9. For V ∈ RepA(GK) corresponding toM ∈ ΦΓK,A,

M̃ ∈ Φ̃ΓK,A via Theorem 1.7 and Theorem 4.4, write

H i
Iw(GK , V ) =

(
lim
n→∞

H i(GK(µpn ), T )
)
⊗Z Q

for T ⊆ V the unit ball for some Galois-invariant Banach module
norm on V (the construction does not depend on the choice), with the
transition maps being the corestriction maps. Then for each i, we have
functorial isomorphisms

H i
Iw(GK , V )⊗̂ZpJΓKKΛK ∼= H i

ψ(M) ∼= H i
φ,Γ(M̃ ⊠DfmK)

of ΛK-modules compatible with base change.

Proof. Combine Theorem 7.7 with [39, Corollary 4.4.11]. □

Remark 7.10. Corollary 7.9 is a variant of a statement made by
Fontaine in his original language of (φ,Γ)-modules; see [14, §II.1] or
[4, Theorem II.8].

We now treat the kernel of ψ. Although Theorem 7.12 is ultimately
an easy consequence of previous results, its statement is in fact new.

Definition 7.11. Since WK is a quasi-Stein space, we may write
it as the union of an ascending sequence {WK,n} of admissible affinoid
subspaces. Given an affinoid space X and a coherent sheaf F on X×K
WK , define the module of boundary sections of F as

Γbd(F) = lim−→
n→∞

Γ(X ×K (WK \WK,n),F).

Theorem 7.12. Suppose that M ∈ ΦΓK,A, M̃ ∈ Φ̃ΓK,A correspond
as in Theorem 4.4. Then for X = Maxspec(A), we have canonical
isomorphisms

Γbd(Hi
φ,Γ(M̃ ⊠DfmK)) ∼=

{
Mψ=0 i = 1

0 i ̸= 1.

Proof. The vanishing for i = 0 is apparent from Corollary 7.8
(because on a quasi-Stein space, a coherent sheaf is determined by
its module of global sections); the vanishing for i = 2 follows from
the same considerations plus Proposition 7.2. For i = 1, the morphism
from the left side to the right side is induced by the map φ−1 in (7.1.1);
to check that it is an isomorphism, we may reduce to the case where
A is reduced. In this case, we may use Liu’s extension of Tate’s Eu-
ler characteristic formula [41] (see also [39, Theorem 2.3.11]), applied
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pointwise on X ×K WK , to see that the left side is a finite projective
module over A⊗̂KΛK ; we may then use [39, Proposition 4.3.8], applied
pointwise on X, to see that the right side is also a finite projective
module of the same rank and that the map is an isomorphism. □

8. Coda: beyond the cyclotomic tower

To conclude, we put the previous discussion of the cyclotomic de-
formation into a context which we find suggestive for future work.

Remark 8.1. Let L be any perfectoid field which is the comple-
tion of a Galois algebraic extension of K with Galois group G. By

Lemma 2.6, we may also characterize Φ̃ΓK,A as the category of objects
of ΦModL,A equipped with continuous semilinear G-actions. For ex-
ample, we may take L = CK to be a completed algebraic closure of
K; in this case, using Theorem 2.18 we get a description of ΦΓK,A as
objects of BPairCK ,A equipped with continuous semilinear GK-actions.
In the case A = Qp, this description is due to Berger [5].

Remark 8.2. In the language of [36], we may view objects of

Φ̃ΓK,A as sheaves on the pro-étale site of K which are locally finite
free modules over the ring sheaf CX⊗̂QpA, equipped with an action of
φ.

Remark 8.3. For M ∈ ΦΓK,A, we have stated descriptions of the
objects Mψ=1 (in Corollary 7.8) and Mψ=0 (in Theorem 7.12) of cy-

clotomic Iwasawa theory in terms of the corresponding M̃ ∈ Φ̃ΓK,A.

In light of the previous discussion, the object M̃ can be constructed,
and computations can be made with it, without any direct reference to
the cyclotomic extension of Qp; the only appearance of the cyclotomic
extension in the formulas is via the cyclotomic deformation DfmK on
the weight space WK .

Consequently, for a general p-adic Lie extension L of K with group
Γ, one may hope to get something meaningful by forming a suitable
deformation space of representations WK , using the homomorphism
GK → Gal(L/K) ∼= Γ to define an object of RepWK

(GK), passing to

the associated object in Φ̃ΓK,WK
, taking the external tensor product

with M̃ , and considering the cohomology of the result. For starters, in
the case where Γ is again a one-dimensional p-adic Lie group, it would
be worth comparing this process to other constructions proposed as
analogues of [4], e.g., those of Berger–Fourquaux [7] and Schneider–
Venjakob [45].
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369 (2015), 325–374.
[19] L. Fargues and J.-M. Fontaine, Vector bundles on curves and p-adic Hodge

theory, in Automorphic Forms and Galois Representations, Volume 1, London
Math. Soc. Lect. Note Ser. 414, Cambridge Univ. Press, 2014.

[20] L. Fargues and J.-M. Fontaine, Courbes et fibrés vectoriels en théorie de
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Bordeaux 21 (2009), 285–300.

[31] K.S. Kedlaya, Nonarchimedean geometry of Witt vectors, Nagoya Math. J.
209 (2013), 111–165.

[32] K.S. Kedlaya, New methods for (φ,Γ)-modules, Res. Math. Sci. 2:20 (2015).
[33] K.S. Kedlaya, Noetherian properties of Fargues-Fontaine curves, Int. Math.

Res. Notices (2015), article ID rnv227.
[34] K.S. Kedlaya, Reified valuations and adic spaces, Res. Number Theory 1:20

(2015).
[35] K.S. Kedlaya and R. Liu, On families of (φ,Γ)-modules, Algebra Number The-

ory 4 (2010), 943–967.
[36] K.S. Kedlaya and R. Liu, Relative p-adic Hodge theory: Foundations,
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