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Extended Abstract

Methods for inferring phylogenetic trees from very large datasets exist, yet, large-
scale tree reconstructions still require significant resources. New species are con-
tinually being sequenced, and as a result, even large trees can become outdated.
Reconstructing the tree de novo each time new sequences become available is
not practical. An alternative approach is phylogenetic placement where new
sequence(s) are simply added to an existing backbone tree. Phylogenetic place-
ment has applications other than updating trees, including sample identification,
where the goal is to detect the identity of given query sequences of unknown ori-
gins. This problem arises [3] in the study of mixed environmental samples that
make up much of the microbiome literature. Sample identification is also the
essence of barcoding and meta-barcoding, methods used often in biodiversity
studies.

Maximum Likelihood (ML) methods of phylogenetic placement are now avail-
able and in wide use (e.g., [4] and EPA(-ng) [2]). The ML approach is com-
putationally demanding, and in particular requires large amounts of memory,
and therefore, is limited in the size of the backbone tree it can use. More
fundamentally, existing placement tools take as input alignments of assembled
sequences for the backbone set, even when queries allowed to be unassembled
reads. This reliance on assembled sequences makes them unsuitable for alignment
and assembly-free scenarios. For example, sample identification using genome-
skimming is fast becoming cost-effective. Methods like Skmer [5] (introduced
in RECOMB 2018) can be used to infer k-mer-based estimates of phylogenetic
distance from genome skims, and these distances can potentially be used for
placement on phylogenetic trees. However, existing methods cannot be used for
this purpose.

Distance-based phylogenetics has a rich methodological history, and yet,
there are no existing tools for distance-based phylogenetic placement. Such
methods, if developed, can be scalable to ultra-large backbone trees. Moreover,
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distance-based methods only need distances, not assembled sequences, and there-
fore, can be used for sample identification from reads in an assembly-free and
alignment-free fashion.

We have developed a new method for distance-based phylogenetic place-
ment called APPLES (Accurate Phylogenetic Placement using LEast Squares).
APPLES finds the placement of a query sequence that minimizes the least square
error of phylogenetic distances with respect to sequence distances. It can also
operate on the minimum evolution principle, or a hybrid of minimum evolution
and least square error. Using dynamic programming, APPLES is able to per-
form placement in time and memory that both scale linearly with the size of the
backbone tree.

We have performed extensive studies on simulated and real datasets to eval-
uate APPLES. Our results show that in the alignment-based scenario, APPLES
is much faster than ML tools, uses much less memory, and is very close to ML
in the accuracy. Moreover, APPLES can handle much larger backbone trees (we
have tested up to 200,000 leaves), and has increased accuracy when the backbone
trees become larger and more densely sampled. In contrast, ML methods cannot
handle backbones with several thousand species. For assembly-free scenarios,
we study three genome skimming datasets of insects and show that APPLES
applied to Skmer distances can accurately identify genome skim samples using
coverage below 1X [1]. APPLES is open-source and freely available at https://
github.com/balabanmetin/apples.

References

1. Balaban, M., Sarmashghi, S., Mirarab, S.: Apples: Fast distance-based phylogenetic
placement. bioRxiv (2018). https://doi.org/10.1101/475566. https://www.biorxiv.
org/content/early/2018/11/23/475566

2. Barbera, P., et al.: EPA-ng: massively parallel evolutionary placement of genetic
sequences. BioRxiv, 291658 (2018)

3. Janssen, S., et al.: Phylogenetic placement of exact amplicon sequences
improves associations with clinical information. mSystems 3(3), 00021–18
(2018). https://doi.org/10.1128/mSystems.00021-18. http://msystems.asm.org/
lookup/doi/10.1128/mSystems.00021-18

4. Matsen, F.A., Kodner, R.B., Armbrust, E.V.: pplacer: linear time maximum-
likelihood and bayesian phylogenetic placement of sequences onto a fixed reference
tree. BMC Bioinf. 11(1), 538 (2010)

5. Sarmashghi, S., Bohmann, K., Gilbert, M.T.P., Bafna, V., Mirarab, S.: Assembly-
free and alignment-free sample identification using genome skims. Genome Biology
(abstract appeared at RECOMB 2018) (2018, in press). https://doi.org/10.1101/
230409. https://www.biorxiv.org/content/early/2018/04/02/230409

https://github.com/balabanmetin/apples
https://github.com/balabanmetin/apples
https://doi.org/10.1101/475566
https://www.biorxiv.org/content/early/2018/11/23/475566
https://www.biorxiv.org/content/early/2018/11/23/475566
https://doi.org/10.1128/mSystems.00021-18
http://msystems.asm.org/lookup/doi/10.1128/mSystems.00021-18
http://msystems.asm.org/lookup/doi/10.1128/mSystems.00021-18
https://doi.org/10.1101/230409
https://doi.org/10.1101/230409
https://www.biorxiv.org/content/early/2018/04/02/230409

	Short Papers
	APPLES: Fast Distance-Based Phylogenetic Placement
	De Novo Peptide Sequencing Reveals a VastCyclopeptidome in Human Gut and OtherEnvironments
	Biological Sequence Modeling withConvolutional Kernel Networks
	Dynamic Pseudo-time Warping of ComplexSingle-Cell Trajectories
	netNMF-sc: A Network RegularizationAlgorithm for Dimensionality Reductionand Imputation of Single-Cell Expression Data
	Geometric Sketching of Single-Cell DataPreserves Transcriptional Structure
	Sketching Algorithms for Genomic DataAnalysis and Querying in a Secure Enclave
	Mitigating Data Scarcity in Protein BindingPrediction Using Meta-Learning
	Efficient Estimation and Applicationsof Cross-Validated Genetic Predictions
	Inferring Tumor Evolutionfrom Longitudinal Samples
	Scalable Multi-component Linear Mixed Modelswith Application to SNP Heritability Estimation
	A Note on Computing IntervalOverlap Statistics
	GRep: Gene Set Representationvia Gaussian Embedding
	Accurate Sub-population Detection andMapping Across Single Cell Experiments withPopCorn
	Fast Estimation of Genetic Correlationfor Biobank-Scale Data
	Distance-Based Protein Folding Poweredby Deep Learning
	Distance-Based Protein Folding Poweredby Deep Learning
	Comparing 3D Genome Organization inMultiple Species Using Phylo-HMRF
	Towards a Post-clustering Testfor Differential Expression
	AdaFDR: A Fast, Powerful and Covariate-AdaptiveApproach to Multiple Hypothesis Testing

	Author Index

