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Abstract
We present a particle-based approach to generate field-aligned tetrahedral meshes, guided by cubic lattices, including BCC
and FCC lattices. Given a volumetric domain with an input frame field and a user-specified edge length for the cubic lattice,
we optimize a set of particles to form the desired lattice pattern. A Gaussian Hole Kernel associated with each particle is
constructed. Minimizing the sum of kernels of all particles encourages the particles to form a desired layout, e.g., field-aligned
BCC and FCC. The resulting set of particles can be connected to yield a high quality field-aligned tetrahedral mesh. As demon-
strated by experiments and comparisons, the field-aligned and lattice-guided approach can produce higher quality isotropic
and anisotropic tetrahedral meshes than state-of-the-art meshing methods.

1. Introduction

Field-aligned quadrilateral and hexahedral meshing are active re-
search topics in recent years [PPTSH14, SRUL16, GJTP17]. For
quadrilateral and hexahedral meshes, field alignment is very natural
because the edges of those meshes are expected to agree with the
vectors defining the underlying frame fields. Field-alignment in-
cludes the alignments of both Riemannian distances and directions.
In triangular meshing, there has been researches focusing on Rie-
mannian metric (i.e. distance between nodes) control [ZGW∗13,
FLSG14, NPPZ12], direction control [JTPSH15, DLY∗18] or even
both [HZP∗11]. However, in tetrahedral meshing, only the Rie-
mannian metric has been considered [LS03, DW05a, FLSG14,
BSTY15]. So far we have not found any tetrahedral meshing work
that takes control of both Riemannian metric and direction into con-
sideration.

The triangle and the tetrahedron are the simplest elements in
2D and 3D, respectively. The dihedral angle of a regular tetrahe-
dron is 70.53°. Unlike tiling regular triangles for 2D Euclidean
space, it is impossible to tile regular tetrahedra for 3D Euclidean
space. For most of the existing variational tetrahedral meshing
algorithms, e.g., either Centroidal Voronoi Tessellation (CVT)
based [DW03, ACSYD05, LWL∗09], or Optimal Delaunay Trian-
gulation (ODT) based methods [CH11, CWL∗14], the majority of
their outputs are close to regular tetrahedra, accompanied by some
badly shaped tetrahedra. This is one of the reasons that slivers are
notoriously hard to remove in tetrahedral meshing [KS07,TSA09],
and also one of the reasons that direction-aligned tetrahedral mesh-
ing has not been discussed.

Our motivation is to generate tetrahedral meshes with high qual-
ity elements, instead of regular tetrahedra, which can pack the 3D
Euclidean space. Body-Centered-Cubic (BCC) and Face-Centered-
Cubic (FCC) lattices are two close packing scheme of spheres in
3D. The corresponding tetrahedra formed by BCC and FCC lattices
have high quality [DW05b], which has been confirmed and used in
mesh generation [LS07] and applications [ATW13]. Besides that,
the symmetric cubic structures of BCC and FCC also allow us to
build field-aligned anisotropic tetrahedral meshes.

In this paper, we propose a particle-based variational method to
generate field-aligned cubic lattice, which leads to anisotropic tetra-
hedral meshes. We design a Gaussian Hole Kernel to construct a
potential energy of the particle system, and optimize the energy to
effectively and efficiently distribute the particles for the desired lat-
tice patterns. To the best of our knowledge, our particle-based cubic
lattice (BCC and FCC) optimization method is the first approach
that can generate field-aligned isotropic and anisotropic tetrahedral
meshes. As illustrated by our experiments, the field-aligned and
lattice-guided tetrahedral meshing provides two benefits: (1) for
isotropic tetrahedral meshing, having a direction field to guide the
mesh could potentially improve mesh quality, especially for mod-
els with rotational features; (2) for anisotropic tetrahedral meshing,
having BCC/FCC to guide the mesh can generate higher quality
meshes as compared to state-of-the-art methods.
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Figure 1: BCC and FCC lattice

2. Backgrounds and Related Works

2.1. BCC and FCC Lattices

A Body-Centered-Cubic (BCC) lattice is formed by vertices of cu-
bic cells along with cell centers as shown in Fig. 1a. Their Voronoi
cells are truncated octahedra, and each dual Delaunay tetrahedral
element has dihedral angles [60°(4), 90°(2)], called BCC tetra-
hedron. BCC lattice is the optimal lattice quantizer in terms of
the mean squared error [BS83]. Every point in the BCC lattice
has identical one-ring neighbor structures, consisting of 8 nearest
neighbors and 6 second-nearest neighbors. For a regular cubic lat-
tice with unit edge length, the 14 one-ring neighbors of each vertex
consist of the set:

OneringBCC ={±0.5,±0.5,±0.5}∪
{{±1,0,0},{0,±1,0},{0,0,±1}}.

(1)

A Face-Centered-Cubic (FCC) lattice consists of vertices of cu-
bic cells and their face centers as shown in Fig. 1b. Their Voronoi
cells are rhombic dodecahedra, and the dual Delaunay tetrahe-
dral elements include two kinds of tetrahedra with dihedral angles
[54.735°(4), 90°, 109.47°] and [70.528°(6)]. Comparing to BCC,
FCC is preferred as a finite-element mesh generation in terms of
better approximation error bounds [RO00]. Each inner vertex in
FCC lattice has the same one-ring neighbor structures, denoted as:

OneringFCC ={{±0.5,±0.5,0},{±0.5,0,±0.5},{0,±0.5,±0.5}}
∪{{±1,0,0},{0,±1,0},{0,0,±1}}.

(2)

The number of one-ring neighbors Nor for each vertex is: Nor = 14
for BCC and Nor = 18 for FCC.

2.2. Frame Field

A frame field specifies the desired direction and (possibly
anisotropic) metric behavior of resulting mesh on a certain surface
or in a volume domain. In 3D volume meshing, a discrete frame
field is usually defined on a given tetrahedral mesh. Each vertex
or tetrahedron i is associated with a 3× 3 matrix Ti, which is ex-
panded by three vectors, i.e., Ti = [ti1 , ti2 , ti3 ]. We suppose every
Ti is of full rank. Each vector may have non-unit length, and the
three vectors may be non-orthogonal to each other. If every Ti is
orthonormal, the frame field reduces to a cross field.

For every matrix Ti, there is a corresponding linear trans-
formation matrix Bi = T−1

i . The matrix Bi locally maps a
stretched/sheared cube with edges ti1 , ti2 , ti3 to a regular cube
aligned with the three axes of the 3D Cartesian coordinate system.
Bi also defines a local mapping of any vector from the anisotropic
space into isotropic space. The details are discussed in Sec. 3.1.

2.3. Related Works on Tetrahedral Meshing

Tetrahedral meshing has been studied for several decades in both
engineering and computer science fields. The algorithms can
be categorized into four types: advancing front methods, octree
and lattice methods, Delaunay-based methods, and particle-based
methods.

Advancing Front Methods [MH95] start from the domain
boundary and gradually add vertices and tetrahedra until the do-
main is completely meshed. They preserve the domain boundary
explicitly. However, the difficulty of this type of method is to re-
solve the intersected tetrahedra inside the domain.

Octree and Lattice Methods: Quadtree/Octree is a Cartesian
grid structure in 2D/3D. Quadtree encoding an input curve in 2D
was first introduced by Yerry and Shephard [YS83], then general-
ized to 3D [YS84] and refined by Shephard and Georges [SG91].
These methods start from encoding the surface as an adaptive grid
structure, i.e., an octree, which converts the surface to a volumetric
representation. The tetrahedral meshes are then constructed by lo-
cal tetrahedralization of each octree cell, with special treatment for
the cells intersecting the input surface [SG91, MV92].

Similar to octree methods, lattice methods utilize a space-filling
tetrahedral lattice instead of Cartesian grid as volume representa-
tion, which omits the local tetrahedralization for the interior cells.
The boundary tetrahedra are deformed to preserve smooth bound-
ary. For a better quality, finer cells are generated by Fredenthal sub-
division of a grid [VdMGT97] or adaptive BCC lattice [MBF03]
along the surface boundary. The isosurface stuffing method [LS07]
proposed an option to cut the boundary tetrahedra to resolve the
input surface. The cutting rules yield theoretical bounds for the
smallest/largest dihedral angles. Doran et al. [DCB13] extended the
method with A15 lattice. However, these stuffing-based methods
cannot generate either field-aligned isotropic tetrahedral meshes,
or anisotropic tetrahedral meshes.

Delaunay-Based Methods [CDS12] can be further categorized
into two groups: (1) Delaunay refinement-based methods [Che97,
JAYB15, Si15] improve the mesh quality by inserting new ver-
tices until certain user-specified conditions are met, e.g., the min-
imal dihedral angle. (2) Variational methods iteratively minimize
an energy, e.g., CVT [DW03, ACSYD05, LWL∗09], ODT [CH11,
CWL∗14], by optimizing positions of vertices and their connectiv-
ities.

Particle-Based Methods use repulsive particles to resample sur-
faces or volumes. It was first introduced by Turk [Tur92], and
later extended by Witkin and Heckbert [WH05] for implicit sur-
face meshing. They introduced Gaussian kernel to model the in-
teraction between particles which sample an implicit surface. Re-
searchers have tried different choices of kernels, such as a modi-
fied cotangent function with finite support [MGW05], or a bounded
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cubic function [YS00], and packing ellipsoidal bubbles instead of
spherical bubbles to get anisotropic tetrahedral meshes. Zhong et
al. [ZGW∗13] used the Gaussian kernel to model the inter-particle
energy in an embedding space to solve anisotropic surface mesh-
ing. Note that the traditional Gaussian kernel is radially-symmetric.
Even though it can be distorted to elliptically-symmetric under
Riemannian metric, the interaction between particles still resem-
bles packing of circles/spheres isotropically, or ellipses/ellipsoids
anisotropically. This makes it impossible to explicitly control field-
alignment of particles. In this paper, we propose Gaussian Hole
Kernel as potential energy between particles to guide their distribu-
tion into either BCC or FCC pattern, which will be introduced in
the next section.

3. Particle-Based Lattice Optimization

In the particle-based framework, each vertex in the resulting mesh
is modeled as a particle with certain inter-particle potential energy,
the derivative of which determines the inter-particle forces. The po-
sition of particles are optimized according to the forces from their
neighbors until they reach the equilibrium. In the following sub-
section, we introduce how to design the potential energy which can
guide particles to form the field-aligned lattice pattern, either BCC
or FCC, when they reach the equilibrium.

3.1. Gaussian Hole Kernel

Gaussian kernel is radially-symmetric, thus defining the inter-
particle energy using it resembles packing of circles/spheres in
2D/3D, as demonstrated for anisotropic triangular meshing of sur-
faces [ZGW∗13]. Suppose two neighboring particles i and j are lo-
cated at pi and p j, respectively, their radially-symmetric energy can

be defined as: e−
‖vi j‖

2

2σ2 , where vi j = pi−p j, and σ is the standard
deviation of the Gaussian kernel. However, such radial-symmetry
means that this potential energy does not have directional align-
ment property. In other words, given two different cross fields (of
rotation only), their particle optimization results will be the same.

We need to construct a more specific potential energy to get
the desired lattice structure. Once the frame field specifying the
target edge direction and length of the lattice cube are given,
the one-ring neighbors of a particle are fixed accordingly. Radial-
symmetry is not enough to form the particular one-ring structures
locally. Our goal is to force neighbor particles to fall into each
others’ desired one-ring neighbor positions exactly by minimizing
the potential energy. To achieve such property, we place negative
Gaussian kernels right at the desired one-ring neighbor positions,
which is like digging a hole at those positions in the energy field:

−e−
‖vi j−Onering(k)‖2

2σ2 , where Onering(k) is the desired offset from p j
to its k-th one-ring neighbor pi for either BCC in Eq. (1) or FCC in
Eq. (2), k = 1...Nor. When we minimize such a potential energy, the
neighboring particles will be pushed exactly to those holes. Besides
that, we also include a positive Gaussian kernel at the position of
the particle itself which will push its neighbors away to avoid par-
ticles being optimized to the same positions. We call this potential

energy as Gaussian Hole Kernel (GHK):

Ei j = e−
‖vi j‖

2

2σ2 − 1
Nor

Nor

∑
k=1

e−
‖vi j−Onering(k)‖2

2σ2 . (3)

To generate anisotropic field-aligned lattice pattern, we will
transform the anisotropic lattice alignment problem to an isotropic
one locally based on the given frame field. When particles form a
regular cubic lattice aligned with the axes of Cartesian coordinate
system, particles in the anisotropic space will exhibit a BCC/FCC
pattern aligned with the desired frame field. Each particle i is as-
sociated with a matrix Ti expanded by three vectors {ti1, ti2, ti3}.
Those three vectors define the local alignment of cubic lattice.
Suppose there is no degenerate case, i.e., |Ti| 6= 0, then the cor-
responding matrix Bi = T−1

i transforms the anisotropic space to an
isotropic one locally: BiTi = Bi{ti1, ti2, ti3}= I. In other words, Bi
transforms an anisotropic lattice to an isotropic one locally. If we
take {ti1, ti2, ti3} as basis of the anisotropic space, then any vector
v= k1ti1+k2ti2+k3ti3 in the anisotropic space has a corresponding
vector v′ = Biv = diag(k1,k2,k3)I in the mapped isotropic space,
where the one-ring neighbors of each vertex in BCC and FCC are
well defined as in Eq. (1) and Eq. (2).

Suppose there are N particles V= {pi|i = 1...N}. For two neigh-

boring particles i and j, we use Ti j = T
(

pi+p j
2

)
as the frame eval-

uated (T at the field sample closest to pi+p j
2 ) at the middle of two

particles, and the correspondingly matrix Bi j = T−1
i j transforms vi j

from its anisotropic space to the isotropic one. The energy of Eq. (3)
between two neighboring particles i and j can be modified as:

E′i j = e−
‖Bi jvi j‖

2

2σ2 − 1
Nor

Nor

∑
k=1

e−
‖Bi jvi j−Onering(k)‖2

2σ2 . (4)

Here σ should be proportional to the expected edge length l∗ of
cubic lattice. We discuss the choice of a proper value for σ in Sec. 4.

Note that we denote all the symbols in the isotropic space with a
prime symbol

(′). The energy E′i j is defined in the isotropic space.
The negative of first-order derivative of E′i j with respect to p′i is the

force defined in the isotropic space: f′i j =−
∂E′i j
∂p′i

. Since the particle
positions pi are optimized in the anisotropic space, we transform
the force back to the anisotropic space: fi j = Ti jf′i j, which is:

fi j =
vi j

σ2 e−
‖Bi j vi j‖

2

2σ2 −
Ti j

Nor

Nor

∑
k=1

Bi jvi j−Onering(k)
σ2 e−

‖Bi j vi j−Onering(k)‖2

2σ2 .

(5)

Our energy definition in Eq. (4) satisfies E′i j = E′ji, and the force
defined in Eq. (5) satisfies fi j =−f ji.

3.2. Lattice Optimization

Once the inter-particle energy is defined, the particle optimization
problem is modeled as an energy minimization problem. The vari-
ables are the particle positions V = {pi|i = 1...N}, which are con-
strained in domain Ω. The problem is formulated as follows:

min E(V) = ∑
i

∑
j 6=i

Ei j ≈∑
i

∑
j∈N(i)

Ei j (6)

s.t. pi ∈Ω, ∀i = 1...N
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where N(i) is the set of neighbors of particle i within distance R.
Instead of considering the inter-particle energy between every pair
of particles, we only consider the energy of two particles within
distance R. We call R the neighbor radius. Gaussian energy is close
to 0 when R >= 5σ. This approximation affect very little to the
total energy while significantly reducing the number of items in
the energy summation from O(N2) to O(N). We use k-d tree to
query the neighbors for each particle. When the frame field has
large stretching ratio, it is also necessary to adjust the query radius
accordingly since k-d tree is built based on Euclidean distance. The
energy and force related to particle i is Ei and fi, which is the sum
of inter-particle energies and forces from its neighbors N(i).

We use L-BFGS [LN89] to minimize the energy by loosening
the constraint. The particles are labeled as four types: fixed parti-
cles, sharp edge particles, boundary particles, and free particles.
Fixed particles are corner points of the domain boundary. In our
implementation, we simply calculate the dihedral angles between
neighboring triangles to detect all the sharp edges in the input sur-
face mesh. A corner is identified if it is shared by more than two
sharp edges. During the optimization, the gradient of the sharp edge
particle will be projected onto the direction of its underlying sharp
edge, and the gradient of boundary particles will be projected onto
the tangent plane of its boundary surface. After each round of L-
BFGS optimization, we will project particles to the domain bound-
ary if it is either outside the domain or inside but close to the bound-
ary. If a boundary particle is close to a sharp edge, then it is pro-
jected to the sharp edge and labeled as a sharp edge particle. This
is used to maintain the constraint in Eq.(6).

The details of our L-BFGS particle optimization algorithm are
illustrated in Alg. 1.

3.2.1. Particle Insertion and Deletion

Minimizing the GHK energy encourages each particle to fall into
a nearby hole. If there is no initial particles near a hole, then that
hole will be left empty. If more than one particles are close to a
hole, then those particles will compete for that hole. So the random
initialization of particles results in some regions missing particles
and some regions packing with extra particles. Hence we need a
particle insertion and deletion algorithm to overcome this problem
and obtain the desired BCC and FCC lattice patterns.

The existing mesh refinement schemes are designed based on the
mesh structure, e.g., inserting a vertex at the center of an edge or
the centroid of a face. In the particle optimization stage, we do not
build the mesh, which provides efficency especially for anisotropic
cases. Inspired by the existing mesh refinement scheme, we design
the following “mesh-free” insertion and deletion schemes.

Particle Deletion Scheme: Without connectivity, each particle
does not have a well-defined one-ring neighbor. But we can query
the neighbors N(i) using k-d tree for any particle i. After that we
calculate the anisotropic distance to its neighbors and sort the dis-
tance in ascending order. Suppose we store the sorted distance in
array Di, the particle i is deleted if any of the following condition
holds:

• Di[0]< 0.5∗ lclosest ;
• 1

2 ∑
1
k=0 Di[k]< 0.75lclosest ;

Algorithm 1: L-BFGS Particle Optimization Algorithm

Input: l∗, Ω, T, V
Output: Optimized V

1 while stopping criteria not satisfied do
2 Build k-d tree for V ;
3 E← 0;
4 foreach pi ∈ {V− f ixed particles} do
5 Query the neighbors N(i) from k-d tree;
6 Calculate Ei and fi;
7 if pi is a sharp edge particle or a boundary particle

then
8 Update fi ;
9 end

10 E← E +Ei;
11 end
12 Run L-BFGS with E and {fi|i = 1...N} to update V;
13 end
14 foreach pi ∈ V do
15 if pi is outside of domain or its distance to boundary

≤ 0.3l∗ then
16 Project and mark it as a boundary particle;
17 end
18 if pi is a boundary particle and its distance to sharp

edge is ≤ 0.3l∗ then
19 Project and mark it as a sharp edge particle;
20 end
21 end

• 1
4 ∑

3
k=0 Di[k]< 0.85lclosest ;

• 1
6 ∑

5
k=0 Di[k]< 0.9lclosest ;

• 1
8 ∑

7
k=0 Di[k]< 0.95lclosest ;

where lcloest is the closest one-ring neighbor distance in the lattice,
e.g., lclosest =

√
3/2l∗ for BCC, and lclosest =

√
2/2l∗ for FCC. We

denote the set of particles to be deleted as SD. The general rule of
setting the coefficients is stricter constrain for the average distance
of more neighbors. The coefficients given above are experimentally
chosen based on our observation in the experiments, and used in all
results in the paper.

Particle Insertion Scheme: Unlike the particle deletion scheme,
the first step of particle insertion is to get the insertion candi-
dates. Inspired by one-ring structure of the desired lattice, we col-
lect the candidate set by going through each particle and add all
expected positions of its one-ring neighbors to the candidate set
SI =∪N

i=1∪
Nor
k=1 {pi+Ti ∗Onering(k)}, where Ti is the frame field

at particle i. If a candidate is outside the domain, we will project it
to the domain boundary. The coinciding duplicates will be removed
from the set SI and also candidates coinciding with any particle will
also be removed. We define two positions as coincidence if their
distance is less than 0.1l∗. After filtering the candidate set based
on coincidence, we will calculate GHK energy for each remain-
ing candidate and sort them in ascending order. Then we examine
candidates one by one and pick a candidate if the nearest particle,
including previously picked candidates, is at least 0.75lcloest away.
Too small insertion threshold will cause unnecessary vertices being
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Algorithm 2: Particle-Based Lattice Optimization Algo-
rithm

Input: l∗, Ω, T
Output: particle set V

1 Estimate vertex number N;
2 Randomly initialize V; Optimize V by Alg. 1;
3 for i← 0 to MaxRoundNum do
4 Apply particle deletion scheme, SD← deleted particles;
5 V← V\SD;
6 Apply particle insertion scheme, SI ← inserted

particles;
7 V← V∪SI ;
8 if |SD|+ |SI |== 0 then
9 break;

10 end
11 Optimize V by Alg. 1;
12 end
13 Optimize V by Alg. 1;

inserted and may slow the convergence. Too large insertion thresh-
old will insert less vertices than required. The coefficient 0.75 is set
according to our observation in the experiments.

The particle deletion and insertion schemes are performed after
each round of L-BFGS optimization. In an L-BFGS optimization
round, the particle number is fixed. After particle deletion and in-
sertion, another round of L-BFGS optimization is performed. As
the optimization processed, less particles are deleted and inserted.
The overall lattice optimization process is given in Alg. 2.

The complexity of our particle optimization algorithm is re-
lated to the number of particles. A small target edge length indi-
cates large number of particles, which is time-consuming. To speed
up the optimization, we can start with the particle optimization
(Alg. 2) by setting the target edge length as 2l∗. After the opti-
mization is completed, we get a particle set V with edge length
2l∗. Using a similar strategy as the particle insertion scheme, we
collect the candidates to refine the particle set. For each particle,
the point which is l∗ distance away along the frame field vectors is
added to the refined candidates Vr. After removing the coincidence
candidates in Vr, we take the particles in V and Vr as initial par-
ticles, and start another round of optimization by setting the target
edge length as l∗. With a better initialization, the optimization con-
verges much faster. If l∗ is too small, we can start with 2kl∗ and do
the above trick for k iterations. Such refinement strategy not only
accelerates the optimization, but also helps converge to a better re-
sult. Both gradient norm E psG and max iteration number MaxIts
are set as the stopping criteria in Alg. 1. E psG is set to 1e−2 for
each round, except the last round, where E psG = 1e−4. If k = 0,
MaxRoundNum is set to 16. If k = 1, MaxRoundNum = 8. If round
number is less than 5, MaxIts is set tp 13, otherwise it is set to 8.
The last round is without the MaxIts as stopping criteria. We use
the kitten Model as an example to show the energy decreasing with
respect to computation time.

3.3. Tetrahedral Mesh Generation

After particle optimization, we will connect the particles to build a
tetrahedral mesh. Restricted Voronoi Diagram (RVD) [YLL∗09] is
used to build the surface boundary using the boundary particles. We
use the RVD class provided by GEOGRAM [Lév15]. Once we get
the boundary triangle mesh, we perform the restricted Delaunay
tetrahedralization by TetGen [Si15], which does not consider the
anisotropic frame field. To get a tetrahedral mesh with respect to the
frame field, we perform a set of topological operations [She02b],
by using the Gradient-Based Shape Matching Energy [NZL∗17] as
guidance to flip the tetrahedral mesh.

4. Experiments

We compare our methods with the state-of-the-art methods
[JAYB15, FLSG14, ZGW∗13]. The implementation of our algo-
rithms are based in C++. The experiments are conducted on a work-
station with Intel(R) Xeon E5645 2.40GHz CPU and 32GB DDR3
RAM. The calcuation of energy and force for each particle is inde-
pendent, so we speed up the program with OpenMP. The input of
our program includes a volume domain, its associated frame field,
and also the target edge length l∗ of the cubic lattice defined in the
isotropic space.

Frame Field: Frame fields are given as an input. Several existing
state-of-the-art algorithms can be used to generate a high-quality
cross field for any arbitrary volumetric domain [HTWB11, RSL16,
GJTP17,SVB17]. For the convenience, we denote the discrete cross
field as D. We also test our methods with some user-designed frame
fields, e.g., rotation along y-axis on torus and highly anisotropic
frame fields on cubes.

Quality Metrics: To calculate the quality of anisotropic tetra-
hedral meshes, we first transform the elements τ from anisotropic
space to isotropic space τ

′. Many anisotropic mesh quality met-
rics are discussed in [She02a]. We measure the quality by dihe-
dral angles θ, edge-radius ratio ρ =

√
6emin/4rcirc, and condition

κ = 3
√

6vτ′/(2lrms ∗Arms), where rcirc is the circumradius, emin is
the shortest edge length, vτ′ is the volume, lrms and Arms are the
root mean square of edge lengths and face areas of a tetrahedron.
When τ

′ is a regular tetrahedron, ρopt = 1, κopt = 1. We report his-
tograms and minimum, average and standard deviation for θmin, ρ

and κ, denoted as θmin, θmin, σ(θmin), ρmin, ρ, σ(ρ), κmin, κ, and
σ(κ). θmin and θmax are the smallest and the largest dihedral angles
of a tetrahedron, respectively.

Alignment Error: The alignment quality ε is evaluated on
the resulting meshes. For each edge vi j of the resulting tetra-
hedral mesh, we first transform it to the isotropic space v′i j =

Bi jvi j, then the smallest angle between v′i j and vectors in Onering
is used to measure the alignment error of edge vi j, i.e., ε =

minNor
k=1 arccos

(
v′>i j ·Onering(k)
‖v′i j‖·‖Onering(k)‖

)
. Histograms, mean ε and σ(ε)

are reported for the result meshes.

Experiment Parameters: Our experiments show that setting σ

in the range [0.25lclosest ,0.35lclosest ] has the similar performance,
so we use 0.3lclosest for all the experiments. The neighbor radius
R is set as 1.3l∗, which includes all the one-ring neighbors. The
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Figure 2: The energy curve of Kitten Model about BCC optimization with 20 rounds of LBFGS optimization. The purple and green numbers
are the number of being deleted and inserted at the end of each round respectively. The zoom-in view of the last 10 rounds is also provided.

Table 1: The mesh quality in comparison with Particle2013 [ZGW∗13]. #V and #T are the numbers of vertices and tetrahedra in the result
meshes. #T<20° and #T<40° are the numbers of tetrahedra with θmin < 20° and θmin < 40°, respectively. The minimum/maximum, mean, and
standard deviation of smallest dihedral angle θmin, largest dihedral angle θmax, edge radius ratio ρ, condition κ are provided. The mean and
standard deviation of alignment error ε are also listed. Note that the best values are highlighted in bold for each group.

Model T Alg. #V θmin/θmin/σ(θmin) θmax/θmax/σ(θmax) ρmin/ρ/σ(ρ) κmin/κ/σ(κ) ε/σ(ε) #T<20° #T<40° #T Time(s)
Bunny n/a Particle2013 60,000 15.73/52.93/7.00 156.62/94.90/11.65 0.39/0.82/0.07 0.31/0.89/0.07 20.88/7.77 3 13,359 319,562 143.60
Bunny I BCC 59,504 16.29/57.55/4.61 159.50/91.93/6.35 0.30/0.91/0.07 0.30/0.94/0.05 2.61/4.86 18 5,944 331,845 55.52
Bunny I FCC 57,533 17.98/58.06/7.83 157.45/96.64/16.68 0.35/0.89/0.08 0.33/0.90/0.07 2.25/4.35 2 5,143 318,470 94.84
Bunny D BCC 61,836 18.72/55.83/5.21 148.07/93.32/7.79 0.33/0.88/0.08 0.42/0.92/0.06 5.04/6.45 1 7,933 348,522 65.70
Bunny D FCC 60,324 17.50/56.36/7.19 153.16/96.27/14.75 0.31/0.87/0.07 0.35/0.91/0.06 4.20/4.43 2 4,510 336,753 137.79

Fertility n/a Particle2013 40,002 18.88/52.58/7.12 152.62/95.20/11.71 0.31/0.81/0.08 0.38/0.89/0.07 20.94/7.71 1 10,020 202,173 33.77
Fertility I BCC 41,188 16.86/56.59/5.88 158.44/93.02/8.25 0.35/0.89/0.09 0.32/0.93/0.07 3.70/6.07 26 7,286 218,319 40.60
Fertility I FCC 39,594 15.30/57.09/8.24 157.75/96.94/16.37 0.37/0.87/0.08 0.32/0.90/0.08 3.29/5.25 5 6,241 207,638 61.02
Fertility D BCC 42,594 17.91/55.23/5.97 154.92/94.30/9.18 0.30/0.87/0.09 0.35/0.92/0.07 6.05/7.52 6 7,664 229,902 51.88
Fertility D FCC 42,015 22.17/56.13/7.28 144.17/96.27/14.52 0.38/0.86/0.08 0.45/0.90/0.07 4.72/4.95 0 3,697 223,298 75.16
Kitten n/a Particle2013 60,000 15.63/52.47/7.90 158.25/95.15/11.65 0.32/0.80/0.10 0.31/0.88/0.08 20.83/7.78 28 23,988 305,286 92.65
Kitten I BCC 59,913 14.53/57.31/4.75 164.59/92.02/6.55 0.27/0.91/0.07 0.24/0.93/0.05 2.82/4.83 40 6,335 335,237 71.28
Kitten I FCC 56,499 16.46/58.30/8.13 156.81/96.84/17.37 0.35/0.89/0.08 0.32/0.90/0.07 1.90/4.37 8 5,430 313,779 93.27
Kitten D BCC 62,124 20.86/55.65/5.21 150.06/93.38/7.85 0.31/0.88/0.07 0.41/0.92/0.06 5.08/6.40 0 7,815 351,849 71.80
Kitten D FCC 59,998 22.47/56.31/7.24 147.43/96.33/14.76 0.30/0.87/0.07 0.43/0.91/0.06 4.21/4.40 0 4,491 336,382 135.46

Gaussian Hole Kernel definition in Eq. (4) takes the inverse of Nor
as the weight for the negative Gaussian kernels. This is to balance
the force used to push particles away and the forces to drag parti-
cles to holes. Larger weight will result in more coinciding particles,
while with smaller weight, particles are more evenly pushed away
but may be more off the desired one-ring structure. However, after
a few rounds of optimization with deletion and insertion scheme,
the performance of different weights are similar. The other param-
eters for deletion, insertion and projection of particles are given in
the Sec. 3.2. All the experiments are conducted with the same pa-
rameters.

Comparison with Particle2013 [ZGW∗13]: Zhong et al.’s
method [ZGW∗13] used the traditional Gaussian kernel for gen-
erating anisotropic triangular mesh, and can be trivially extended
for tetrahedral mesh generation. We compare our Gaussian hole
kernel methods, named BCC and FCC, with their method, named
Particle2013, on three models as shown in Fig. 3 and Table. 1.

Particle2013 cannot achieve field-aligned meshing results for dis-
crete cross fields. The experiments of our method use both T = I
and T = D (discrete cross fields). Under either rotation field, our
method achieves higher quality, e.g., about 3°to 5°growth on θmin,
0.05 to 0.11 gain on rho and thousands less of tetrahedra in #T<40°.
Those gains are coming from the lattice-guided alignment, produc-
ing high quality BCC and FCC tetrahedra.

BCC alignment provides higher ρ and κ than FCC alignment.
FCC alignment creates higher θmin but also higher θmax than BCC
alignment. FCC alignment has smaller #T<40° and it also has
smaller alignment error. Unlike identity field I, a discrete cross field
usually contains singularities inside the volume domain. The upper
right corner of Fig. 3 shows the singularities of D inside the Fertil-
ity model. Alignment to D is harder than alignment to I, which ex-
plains the slight decline in quality. The advantage of rotation align-
ment will be illustrated in the later part.

Comparisons with CVT and ODT: We also compare with the
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(a) Particle2013
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(b) BCC T = I
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(c) FCC T = I
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(d) BCC T = D
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(e) FCC T = D

Figure 3: Comparison with the traditional Gaussian kernel method proposed in Particle2013 [ZGW∗13]. The first row is the result on
surface. The second shows the tetrahedra with θmin < 40°. The third row shows the clipping views. The following rows are histograms of
dihedral angles, edge radius ratio, condition, and alignment error.

CVT and ODT methods to see whether BCC and FCC alignment
will improve the mesh qualities. We use their implementations in
CGAL [CGA17,JAYB15] for the comparison. Since both CVT and
ODT energies do not support field-alignment in tetrahedral mesh-
ing, we set the frame field as I for our method. Our particle-based
optimization well generates the BCC and FCC patterns as shown
in Fig. 4 and Fig. 5. The dihedral angle histograms of BCC re-
sults have two peeks around 60°and 90°, and one peak in the his-
tograms of ρ and κ. In FCC results, the histograms of ρ and κ have
two peeks: the right ones are caused by regular tetrahedra in the
meshes and the left ones are the other tetrahedra with dihedral an-
gle [54.735°(4),90°,109.47°], which also explains the peeks in the
dihedral angle histogram. The tetrahedra with θmin < 40° are on
boundary surfaces. The more detailed quality statistics are given in
Table. 2. Our methods have about 6°to 10°growth on θmin, 0.05 to
0.12 increment on ρ and much less elements with θmin < 40°. Be-

sides that, our optimization is faster since there is no computation
of Voronoi diagram or connectivity in each iteration.

Rotation Field Alignment for Improving Mesh Quality: Af-
ter showing our better mesh quality results as compared to Parti-
cle2013, CVT, and ODT methods, we would like to show that for
some models with rotational features, the alignment with its ro-
tation field can produce meshes with better quality. We use two
models for such illustration: Torus (Fig. 6) and Fancyring (Fig. 7).
The frame field we tried on Torus is the rotation along y-axis Ry,
and the frame field for Fancyring is a discrete cross field generated
by [HTWB11], denoted as D. We compare them with the results
generated by identity field I. It can be seen from these two exper-
iments: if the rotation field aligns very well with the shape or the
features of the geometry, we can get better shape approximation as
well as higher tetrahedral qualities as shown in Table. 3.

Field Alignment for Anisotropic Tetrahedral Meshing:
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(a) CVT
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(b) ODT
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(c) BCC
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(d) FCC

Figure 4: Comparisons with CVT and ODT on Fandisk model. The
first row shows the clipping views. The second row shows the tetra-
hedra with θmin < 40°. The following rows are histograms of dihe-
dral angles, edge radius ratio, condition, and alignment error.

To further explore the performance of our field-aligned and
lattice-guided methods, we conduct experiments using the
highly anisotropic fields on Cube, and compare with LCT
method [FLSG14] as shown in Fig. 8 and Fig. 9. Compared with
LCT, our BCC and FCC results show higher quality due to the
strong directional control and the advantage of lattice-alignment.
The detailed quality statistics are given in Table. 4.

Robustness: We demonstrate the robustness of our method by
experiments on Teddy with different numbers of vertices on the
same discrete frame field. The minimal dihedral angle θmin, edge
radius ratio ρ, condition κ, alignment error ε of the resulting
meshes, and their optimization time along with the different ver-
tex numbers are shown in Fig. 10. The results of BCC and FCC are
shown in red and blue curves, respectively.

5. Discussion and Future Work

It should be noted that our method can be easily extended to solve
field-aligned anisotropic triangular meshing for surfaces. This can
be achieved by defining six holes in the GHK of Eq. (3) on the tan-
gent plane of surface. As shown in Fig. 11, our method can obtain
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(a) CVT
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(d) FCC

Figure 5: Comparisons with CVT and ODT on Bimba model. The
red tetrahedra shown in the second row have θmin < 40°.

Table 2: Comparisons with CVT and ODT. #V and #T are the num-
bers of vertices and tetrahedra in the output meshes. The mean
value of smallest dihedral angle θmin, largest dihedral angle θmax,
edge radius ratio ρ, condition κ, and alignment error ε are pro-
vided. The computation time is provided, which is the total time
including particle optimization and mesh generation.

Note that the best values are highlighted in bold for each group.
Model Alg. #V θmin/θmin θmax /θmax ρ κ ε #T<20° #T<40° #T Time(s)
Bimba CVT 20,000 0.41/50.20 179.34/98.12 0.81 0.86 20.75 2,002 14,273 109,806 58.67
Bimba ODT 20,000 2.69/51.36 175.47/93.97 0.81 0.89 20.78 543 9,757 107,400 39.34
Bimba BCC 20,042 16.48/57.22 159.03/92.39 0.90 0.93 3.10 15 2,789 108,168 20.66
Bimba FCC 19,477 18.02/57.56 153.06/96.94 0.88 0.90 2.75 4 2,715 104,340 48.03
Cube CVT 10,000 0.50/50.05 179.22/98.32 0.81 0.86 21.01 1,037 7,311 54,221 28.34
Cube ODT 10,000 2.06/51.19 176.65/94.21 0.81 0.89 21.02 315 5,326 52,975 18.32
Cube BCC 9,009 44.48/59.01 120.61/91.86 0.93 0.94 1.00 0 0 49,152 10.06
Cube FCC 9,842 50.79/59.89 111.29/96.49 0.91 0.91 0.10 0 0 52,728 28.61

Elephant CVT 10,000 0.80/50.85 178.41/97.43 0.81 0.87 20.88 823 5,932 49,596 27.11
Elephant ODT 10,000 0.80/50.99 178.41/94.53 0.80 0.88 20.85 359 5,003 48,801 16.24
Elephant BCC 10,389 16.27/55.87 158.97/93.46 0.88 0.92 4.45 14 2,209 51,579 11.23
Elephant FCC 10,050 16.88/56.30 158.46/97.31 0.86 0.89 4.17 5 1,929 49,299 21.86
Fandisk CVT 18,000 0.49/49.92 179.22/98.54 0.81 0.86 20.92 1,876 12,939 94,977 51.24
Fandisk ODT 18,000 3.72/50.99 173.48/94.60 0.81 0.88 20.89 639 9,172 92,939 34.00
Fandisk BCC 18,518 18.09/57.25 155.71/92.80 0.90 0.93 3.20 2 1,809 99,005 16.39
Fandisk FCC 17,920 18.08/57.47 151.07/96.70 0.88 0.90 2.59 3 2,077 94,509 25.50

better mesh quality of anisotropic triangular meshes compared to
Particle2013 [ZGW∗13] and LCT [FLSG14]. Here r6 is the ratio
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Table 3: The quality statistics of rotation alignment experiments on Torus and Fancyring. #V and #T are the numbers of vertices and
tetrahedra of the result meshes. #T<20° and #T<40° are the numbers of tetrahedra with θmin < 20° and θmin < 40°, respectively. The minimum,
mean, and standard deviation of smallest dihedral angle θmin, edge radius ratio ρ, condition κ are provided. The mean and standard deviation
of ε are also listed. Dist is the Hausdorff distance between the boundary surfaces of the result and input meshes. Note that the best values
are highlighted in bold for each group.

Model T Alg. #V θmin/θmin/σ(θmin) ρmin/ρ/σ(ρ) κmin/κ/σ(κ) ε/σ(ε) #T<20° #T<40° #T Dist Time(s)
Torus I BCC 2,274 18.70/54.06/7.78 0.37/0.85/0.11 0.34/0.90/0.09 6.02/7.65 5 798 10,605 0.500 6.98
Torus I FCC 2,299 15.62/55.37/8.70 0.34/0.85/0.09 0.30/0.89/0.08 4.98/6.37 1 541 10,486 0.341 6.66
Torus Ry BCC 2,440 28.10/55.05/6.55 0.43/0.86/0.09 0.55/0.91/0.07 5.69/6.97 0 520 11,389 0.377 7.91
Torus Ry FCC 2,347 20.87/54.38/8.34 0.35/0.85/0.10 0.42/0.89/0.09 5.60/6.19 0 677 11,106 0.318 11.76

Fancyring I BCC 4,775 17.22/51.76/8.68 0.23/0.81/0.13 0.37/0.88/0.10 9.66/9.72 14 2,587 21,420 0.542 8.42
Fancyring I FCC 4,810 13.79/52.05/9.56 0.19/0.80/0.12 0.29/0.87/0.10 8.15/7.70 15 2,493 21,094 0.480 14.44
Fancyring D BCC 4,187 22.93/53.98/6.40 0.29/0.85/0.08 0.37/0.90/0.07 8.55/8.84 0 417 18,992 0.195 21.56
Fancyring D FCC 3,979 22.14/53.57/6.96 0.33/0.84/0.08 0.48/0.90/0.07 6.76/5.76 0 527 17,256 0.203 14.93

(a) BCC (B = I) (b) BCC (B = Ry) (c) FCC (B = I) (d) FCC (B = Ry)

Figure 6: BCC and FCC experiments on Torus with I and Ry rota-
tion fields. The yellow ones are the clipping views.

Table 4: Statistics of mesh quality and time consumption compared
with LCT [FLSG14]. #V and #T are the numbers of vertices and
tetrahedra of the result meshes. #T<20° and #T<40° are the numbers
of tetrahedra with θmin < 20° and θmin < 40°, respectively. The
mean of smallest dihedral angle θmin, edge radius ratio ρ, condition
κ, and computation time are provided. Note that the best values are
highlighted in bold for each group.

Model Alg. #V θmin θmin ρ κ ε #T<20° #T<40° #T Time(s)
LCT 1,869 24.84 51.71 0.81 0.89 21.59 0 585 8,117 8.3

Fig. 8 BCC 2,476 36.88 56.95 0.90 0.92 3.09 0 0 11,988 16.28
FCC 2,471 52.85 58.75 0.90 0.91 0.78 0 0 11,520 31.13
LCT 6,338 15.51 49.87 0.78 0.88 20.94 88 4,220 31,840 72.6

Fig. 9 BCC 6,410 14.26 53.73 0.85 0.89 5.37 8 2,297 33,099 56.05
FCC 6,498 23.44 55.27 0.85 0.90 3.84 0 632 32,993 87.59

of vertices with degree-6. The quality of a triangle is measured by
ξ = 4

√
3ap/h, where a is its area, p is its perimeter and h is its

longest edge length in its mapped isotropic space.

Fig. 6 and Fig. 7 show two examples that our rotation-field-
aligned BCC and FCC methods might improve mesh quality for
models having rotational shapes and features. In the future we
would like to investigate in depth the relationship between the gen-
eration of frame-fields and the quality of field-aligned BCC and
FCC meshes, in order to come up with some better field genera-
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(d) FCC (T = D)

Figure 7: BCC and FCC experiments on Fancyring with different
rotation fields. The red ones are the tetrahedra with θmin < 40°

.
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(b) FCC
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(c) LCT

Figure 8: Anisotropy variation along a single direction on
Cube [0.1,1.1]3. The inverse of frame field is defined as B =

diag
((

1.0125− e−|x−0.6|
)−1

,1,1
)

. The second row shows the

clipping views of the result tetrahedral meshes. The last four rows
show the histograms of dihedral angle, edge radius ratio, condi-
tion, and alignment error.

tion methods that are specifically tailored for such lattice meshes.
In addition, we would like to investigate the possibility of other
lattices [DW05b], such as A15 and Z-type configurations, etc.
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(c) LCT

Figure 9: Cylindrical anisotropy on Cube [1,11]3. The
inverse of frame field is defined as B = S ∗ R, where

S = diag
((

1.05− e−0.01|x2+y2−49|
)−1

,1,1
)

, and the

three columns of R are
(
−x/

√
x2 + y2,y/

√
x2 + y2,0

)
,(

−y/
√

x2 + y2,x/
√

x2 + y2,0
)

, and (0,0,1), respectively.
The second row is the clipping view of the result tetrahedral
meshes. The last four rows show the histograms of dihedral angle,
edge radius ratio, condition, and alignment error.
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