
Algebraic Systems Motivated by DNA Origami

James Garrett, Nataša Jonoska, Hwee Kim, Masahico Saito

Department of Mathematics and Statistics, University of South Florida
4202 E. Fowler Ave, Tampa, FL 33620, USA

Abstract We initiate an algebraic approach to study DNA origami
structures. We identify two types of basic building blocks and describe a
DNA origami structure by their composition. These building blocks are
taken as generators of a monoid, called the origami monoid, and motiv-
ated by the well studied Temperley-Lieb algebras, we identify a set of
relations that characterize the origami monoid. We present several ob-
servations about Green’s relations for the origami monoid and study the
relations to a direct product of Jones monoids, which is a morphic image
of an origami monoid.

Key words: DNA origami, Temperley-Lieb algebra, Rewriting system.

1 Introduction

In the past few decades, bottom-up assemblies at the nano scale have introduced
new materials and molecular scaffoldings producing structures that have wide
ranging applications (e.g. [5, 8]), even materials that seem to violate standard
chemistry behavior (e.g. [14]). “DNA origami”, introduced by Rothemund [11] in
2006, significantly facilitated the construction of ∼ 100× 100nm 2D DNA nano-
structures. The method typically involves combining an M13 single-stranded
cyclic viral molecule called scaffold with 200-250 short staple strands to produce
about 100nm diameter 2D shapes [11], and more recently also to produce a vari-
ety of 3D constructs (e.g. [4]). Fig. 1 (left) shows a schematic of an origami
structure, where the thick black line represents a portion of the cyclic vector
plasmid outlining the shape, and the colored lines are schematics of the short
strands that keep the cyclic molecule folded in the shape. Because the chemical
construction of DNA origami is much easier than previous methods, this form
of DNA nanotechnology has become popular, with perhaps 300 laboratories in
the world today focusing on it.

Although numerous laboratories around the world are successful in achieving
various shapes with DNA origami, theoretical understanding and characteriza-
tions of these shapes is still lacking. With this paper we propose an algebraic
system to describe and investigate DNA origami structures. The staple strands
usually have 2-4 segments of about 8 bases joining 2-3 locations (folds) of the
scaffold. All cross-overs between two staple strands and between two neighboring
folds of the scaffold are antiparallel. We divide the DNA origami structure to
local scaffold-staples interactions and to such local interactions we associate a

2 James Garrett, Nataša Jonoska, Hwee Kim, Masahico Saito

generator of a monoid which we call an origami monoid. The origami monoid we
present here is closely related to the Jones monoid [2,3] which is a monoid vari-
ant of the well studied Temperley-Lieb algebra [1]. We show that a DNA origami
structure can be associated to an element of an origami monoid and propose a
set of rewriting rules that are plausible for DNA segments to conform in DNA
origami. The number of generators of an origami monoid depends on the number
of parallel folds of the scaffold in the DNA origami. We observe that a direct
product of two Jones monoids is a surjective image of an origami monoid, and
we study the structure of the origami monoids through Green’s relations. We
characterize the origami monoids for small number of scaffold folds and propose
several conjectures for general origami monoids.

Fig. 1: (Left) A schematic figure of DNA origami structure with scaffold in black
and staples in color (edited from [11]). (Right) Various shapes made by DNA
origami, from [11]. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Springer Nature (Folding DNA to create nanoscale shapes
and patterns, Paul W. K. Rothemund), [4561420919172] 2006

2 Preliminaries

2.1 Jones monoids

Temperley-Lieb algebras have been used in many fields, particularly in physics
and knot theory (see, for example, [1, 2, 7, 9]). The Jones monoid Jn is derived
from the Temperley-Lieb algebras and is defined with generators and relations
as follows [2, 9]. The monoid Jn is generated by hi, i = 1, . . . , n − 1, and has
relations

(B) hihjhi = hi for |i−j| = 1, (C) hihi = hi (D) hihj = hjhi for |i−j| ≥ 2.

The elements of Jn may be represented as planar diagrams with non-crossing
lines connecting n points at the top and n points at the bottom of the diagrams.
The diagram for the generator hi is depicted in Fig. 2 (A) [9]. For each hi,

Algebraic Systems for DNA Origami 3

parallel vertical lines connect the top jth and bottom jth points (j 6= i, i +
1) of the diagram for all but the ith and (i+1)st points, while the top ith
and (i+1)st points are connected, and the bottom ith and (i+1)st points are
connected. Multiplication of two elements is represented by concatenation of
diagrams, placing the diagram of the first element on top of the second, and
removing closed loops. The diagramatic representation of the monoid relations
are depicted in Fig. 2 (B), (C) and (D). More details can be found in [2, 9].

(D)(B)(A)

i

(C)

Fig. 2: The generators (A) and relations (B,C,D) of the Jones monoid

2.2 String rewriting systems

An alphabet Σ is a non-empty finite set of symbols. A word over Σ is a finite
sequence of elements (symbols) from Σ, and Σ∗ is the set of all words over
Σ. This set includes the empty string, the word containing no symbols, often
written as 1. A word u is called a factor of a word v if there exist words x and
y, which may be empty, such that v = xuy. Note that this is also sometimes
referred to as a subword.

A string rewriting system, (Σ,R) consists of an alphabet Σ and a set of
rewriting rules, R, which is a binary relation on Σ∗. An element (x, y) of R is
called a rewriting rule, and is written x→ y. We extend R to factors of words −→

R
,

where for any s, t ∈ Σ∗, s −→
R

t if there exist x, y, u, v ∈ Σ∗ such that s = uxv,

t = uyv, and x→ y. We also write s→ t for simplicity if no confusion arises.
If there is a sequence of words u = x1 → x2 → · · · → xn = v in a rewriting

system (Σ∗, R), we write u →∗ v. An element x ∈ Σ∗ is confluent if for all
y, z ∈ Σ∗ such that x→∗ y and x→∗ z, there exists w ∈ Σ∗ such that y →∗ w
and z →∗ w. If all words in Σ∗ are confluent, then (Σ∗, R) is called confluent.
In particular, if R is symmetric, then the system (Σ∗, R) is confluent.

2.3 Monoids and Green’s relations

A monoid is a pair (M, ·) where M is a set and · is an associative binary operation
on M that has an identity element 1. The set Σ∗ is a (free) monoid generated by
Σ with word concatenation as the binary operation, and the empty string as the
identity element. Presentations of monoids are defined from the free monoid in a
manner similar to presentations of groups. Rewriting systems define the monoid
relations by taking the equivalence closure of the rewriting rules, which makes
the rewriting system confluent.

For a monoid M , the principal left (resp. right) ideal generated by a ∈M is
defined by Ma = {xa | x ∈ M} (resp. aM), and the principal two-sided ideal

4 James Garrett, Nataša Jonoska, Hwee Kim, Masahico Saito

s MaM . Green’s relations L , R, and J are defined for a, b ∈ M by aL b if
Ma = Mb, aRb if aM = bM and aJ b if MaM = MbM . Green’s H relation is
defined by aH b if aL b and aRb. Green’s D relation is defined by aDb if there
is c such that aL c and cRb. The equivalence classes of L are called L -classes,
and similarly for the other relations. In a finite monoid, D and J coincide. The
D-classes can be represented in a matrix form called egg boxes, where the rows
represent R-classes, columns L -classes, and each entry is an H -class. See [10]
for more details.

Example 1. In [3], D-classes are obtained for Jones and related monoids. Here
we include an example of a D-class of J3, which has a D-class consisting of
the identity element and another class of the (2 × 2)-matrix below, where each
element is a an H -class, which in this case are singletons:[

h1 h1h2
h2h1 h2

]
where rows {h1, h1h2}, {h2h1, h2}, are the R-classes and columns {h1, h2h1},
{h1h2, h2} are the L -classes in this D-class. For instance, we see that multiplying
h1 and h1h2 by hi to the right gives rise to the same right ideal.

3 Origami monoid On

3.1 Generators

Here we identify simple building blocks in DNA origami structures. With each
block type we associate a generator of a monoid and derive string rewriting
systems to describe DNA structures. We have two motivations for our choices.
(1) In Fig. 1 (left), one notices repeated patterns of simple building blocks whose
concatenation builds a larger structure. One type of these patterns is a cross-
over by the staple strands, and the other is a cross-over of the scaffold strand.
Thus, a natural approach to describe DNA origami structures symbolically is
to associate generators of an algebraic system to simple building blocks, and
to take multiplication in the system to be presented as concatenation of the
blocks. (2) In knot theory, a knot diagram is decomposed into basic building
blocks of crossings or tangles. For the Kauffman bracket version of the Jones
polynomial [7], for example, whose generators resemble building blocks observed
in Fig. 1 (left), are used.

For a positive integer n we define a monoid On, where n represents the
number of vertical double stranded DNA strands, that is, n is the number of
parallel folds of the scaffold. For the structure in Fig. 1, n = 6. The generators of
On are denoted by αi (corresponds to anti-parallel staple strands cross-over) and
βi (corresponds to antiparallel scaffold strand cross-over) for i = 1, . . . , n − 1,
as depicted in Fig. 3. The subscript i represents the position of the left scaffold
corresponding to αi and βi, respectively, by starting at 1 from the leftmost
scaffold strand fold and counting right (Fig. 4).

Algebraic Systems for DNA Origami 5

Because DNA is chemically oriented, and the strands in the double stranded
DNA are oppositely oriented, we define an orientation within the building blocks
corresponding to generators. Because parallel scaffold strands are obtained by
folding of the scaffold, consecutive scaffold strands run in alternating directions,
while staple strands run in the opposite direction to the scaffold, and for con-
vention we take that the first scaffold runs in an upwards direction. In this way,
the direction of the scaffold/staple strands for any particular αi or βi depends
entirely on the parity of i, as shown in Fig. 3.

(a) αi, i odd (b) αi, i even (c) βi, i odd (d) βi, i even

Fig. 3: The generators identified

Fig. 4: α4 in the
context of a 6-fold
stranded structure

Fig. 4 shows a diagram corresponding to α4 as an example of the “full picture”
of one of these generators. For the sake of brevity, we neglect to draw the extra
scaffold and staple strands in most diagrams, but it may be helpful to imagine
them when we describe their concatenation. In addition, we often use αi and
βi to refer to the corresponding diagrams. As in Fig. 4, parallel scaffolds in
generator diagrams do not have counterpart parallel staples.

3.2 Concatenation as a monoid operation

To justify modeling DNA origami structures by words over the generators we
make a correspondence between concatenations of generators αi, βi and concat-
enations of DNA segments. For a natural number n ≥ 2, the set of generators
of the monoid On is the set Σn = {α1, α2, . . . , αn−1, β1, β2, . . . , βn−1}. For a
product of two generators xi and yj in Σn, we place the diagram of the first
generator above the second, lining up the scaffold strings of the two generators,
and then we connect each respective scaffold string. If the two generators are
adjacent, that is, if for indices i and j it holds |i− j| ≤ 1, then we also connect
their staples as described below. Otherwise, if |i − j| ≥ 2, no staple connection
is performed and the concatenation is finished.

We define a convention of connecting staples for adjacent generators, which
is motivated by the manner in which staples connect in Fig. 1. Note how the
staples of α-type protrude “outside” of the scaffold in Fig. 3. We refer to these
ends of a staple as an “extending staple-ends”, and all other staple ends as
“non-extending staple-ends”. We connect staples everywhere except when two
non-extending staple-ends would have to cross a scaffold to connect (recall that
the scaffold strands are connected first), as can be seen in Fig. 6 and Fig. 7.

Our choice of coloring staples in the figure is arbitrary, and we re-color staples
in the same color if they get connected when we concatenate generators. By ex-
hausting all possibilities, one can see that under our convention of connection,

6 James Garrett, Nataša Jonoska, Hwee Kim, Masahico Saito

the staples remain short by concatenation without joining more than three scaf-
fold folds. Note that concatenation of three or more generators is associative
because generators can be connected in an associative manner following the
rules described above.

Fig. 5: αiαi+1, i odd Fig. 6: αiβi, i odd Fig. 7: αiαi−1, i odd

3.3 Relations in On

The rewriting rules (which generate the relations within the monoids) are mo-
tivated by similarity between the DNA origami structures as seen in Fig. 1(left)
and the diagrams of Jones monoids in Fig. 2. It is deemed that the relations
of Jones monoids simplify the DNA origami structure, and may be useful for
designing efficient and more solid structures by the rewriting rules proposed
below. The figures in this section are for justifying feasibility of corresponding
DNA structures, and to represent the rewriting system diagrammatically.

Rewriting rules. For Σn = {α1, α2, . . . , αn−1, β1, β2, . . . , βn−1}, we establish a
set of rewriting rules that allows simplification of the DNA structure description.
Define a string rewriting system (Σn, R) as follows.

To ease the notation, we define a bar on Σn by αi = βi and βi = αi, and
extend this operation to the free monoid by defining w for a word w by applying
bar to each letter of w. Let γ ∈ {α, β} and i ∈ {1, . . . , n− 1}, then we have:

(1) (Idempotency) γiγi → γi
(2) (Left Jones relation) γiγi+1γi → γi
(3) (Right Jones relation) γiγi−1γi → γi
(4) (Inter− commutation) γiγj → γjγi, for |i− j| ≥ 1
(5) (Intra− commutation) γiγj → γjγi, for |i− j| ≥ 2

The rules are extended to Σ∗n as described in Section 2.2.

The rewriting rules are inspired by Jones monoids, and they are also reflec-
ted in the reality of the diagrams of DNA origami, as shown in Figs. 8 and 9.
Specifically, a pattern in the left of Fig. 8 (a) has a small staple circle, which is
deemed to be simplified by the right side. Staple strands are holding the scaffold
in a certain position (obtained to the right of the arrow) and the cyclic staple
only reinforces the structure. The small circle of a scaffold in Fig. 8 (b) left
cannot form in DNA origami, and therefore is simplified to the structure on the
right of the arrow.

Algebraic Systems for DNA Origami 7

(a) αiαi, i odd (b) βiβi, i odd

Fig. 8: Two examples of idempotency

(A) (B) (C)

Fig. 9: Examples of (A) Jones relation, (B) Inter-commutation, and (C) Intra-
commutation

Deriving additional rewriting rules by substitution. Since DNA origami
structure has no internal scaffold loops, applying rewriting rules similar to (1)–
(5) to concatenations of generators, that is, products of α’s and β’s, is plausible
for DNA origami structures. We extend these rules to more general substitution
rules for our specific case of generators αi and βi by considering other γ’s, for
instance γ = αβ. The composition diagrams show that such substitution rules
describe the DNA origami staples/scaffold structure in the way we proposed
above (see Fig. 10), while these new structures produce rules that cannot be
derived from the listed ones in (1)–(5). Therefore we consider rewriting rules for
concatenations of generators α’s and β’s. Furthermore, we focus on concatena-
tions of generators with the same or ‘neighboring’ indexes, because only for these
generators can the ends of the staples connect. However, αi and βj (i 6= j) can
commute freely (by the inter-communication rule (4)), so we also do not need to
consider substitutions such as γ = αiβi+1. Further, we observe that by setting
γ ∈ {αiβi, βiαi}, the idempotency rule (1) holds as seen in Fig. 10. Therefore
there are only four cases to consider: γ ∈ {αiβi, βiαi, αiβiαi, βiαiβi} and check
the plausibility of corresponding DNA diagrams.

First, consider γ ∈ {αβ, βα}, where γi indicates αiβi. Then substituting γ
into rewriting rules (1), (2), and (3) gives us new rewriting rules (1a), (2a), and
(3a). For example, (1a) consists of αiβiαiβi → αiβi and βiαiβiαi → βiαi. Note
that a provisional rewriting rule (5a) could easily be obtained by the rewriting
rule (5), so we do not consider it as a new rule. We also do not add rewriting
rule (4a) since it conflicts with the structure of the scaffold, as shown in Fig. 11.
Notice that the scaffold strand at the top left is connected to the second strand
only on the left side of the figure, and on the right hand side of the figure it is
connected to the third strand. Next we consider γ ∈ {αβα, βαβ}, which gives us
rewriting rules (1b), (2b) and (3b). Similarly as before, rules (4b) and (5b) are
not added, (4b) because of incompatible staple strands, and (5b) because it can

8 James Garrett, Nataša Jonoska, Hwee Kim, Masahico Saito

be derived from (5). In addition, (1b) can also be derived from (1) and (1a), so
it is not considered as a new rule. In the end, we are left with 10 rewriting rules
which we use to define the general rewriting rules and the monoids.

Fig. 10: Substitution of αβ and βα (resp.)
into the first rewriting rule (i odd)

Fig. 11: Substitution of
γ = αβ into rewriting rule

(4) for i odd.

Definition 1. The origami monoid On is the monoid with a set of generators
Σn and relations generated by the rewriting rules (1) through (5), (1a), (2a),
(3a), (2b), (3b).

4 Monoid structure of On

In this section, we present computational results on Green’s D-classes and com-
pare them to those for the Jones monoids obtained in [3]. For comparison, we
use the monoid epimorphism from On to the product Jn × Jn defined below.

Let Jn be the Jones monoid of degree n with generators hi, i = 1, . . . , n− 1.
We denote the submonoid of On generated by αs (resp. βs), by Oαn (resp. Oβn).
An equivalent description for Oαn is the set of all words consisting of only αs
(plus the empty word), and similarly for Oβn. Let Oαβn = [On \ (Oαn ∪ Oβn)] ∪ {1}.

Lemma 1. Oαβn is a submonoid of On.

Proof. The left and right hand sides of each rewriting rule show that rewriting
a word by these rules does not change the absence, or existence of at least one α
in the word, and similarly for β. Thus multiplication of two words in Oαβn does
not remove α’s or β’s from the product, hence the product remains in Oαβn .

Let pα : On → Jn be the epimorphism defined by ‘projections’ pα(αi) = hi
and pα(βi) = 1, for all i = 1, . . . , n − 1, and let pβ be defined similarly for βs.
Define p : On → Jn × Jn by p(x) = (pα(x), pβ(x)) for x ∈ On. Since the monoid
relations of On hold under p, we have the following:

– Oαn
∼= Oβn

∼= Jn.
– The map p : On → Jn × Jn is a surjective monoid morphism.

In particular, it follows that the order of On is at least |Jn|2.

Algebraic Systems for DNA Origami 9

4.1 Orders of origami monoids

For n = 2 we can determine the order of O2 as follows.

Lemma 2. Every non-empty element of O2 can be represented by the rewriting
rules as one of the following words: α1, β1, α1β1, β1α1, α1β1α1, or β1α1β1.

Proof. Since Σ2 = {α1, β1}, we list the words of length 3 or less exhaustively.
After applying rewriting rules to these words, they reduce to those words listed
in the statement.

Now consider a word w with length greater than 3. We show that w can be
reduced to a word with length 3 or less. If α1α1 or β1β1 are factors of w, we reduce
them to α1 or β1, respectively. Repeating this process, we may assume that w
is an alternating sequence of α1 and β1. Since α1β1 and β1α1 are idempotent,
w reduces to a word of length less than 4.

It is known that the elements of the Jones monoid Jn are in bijection with the
linear chord diagrams obtained from the arcs of the diagrams representing them,
and the total number of such chord diagrams is equal to the Catalan number

Cn =
1

n+ 1

(
2n
n

)
[2]. Thus the numbers of elements of Jn for n = 2, . . . , 6 are

2, 5, 14, 42, 429, respectively. GAP computations show that the number of non-
identity elements in O3, O4, O5 and O6 are 44, 293, 2179, 19086 respectively [12].
This sequence of integers is not listed in the OEIS [13] list of sequences. We
observe that the orders of origami monoids are much larger. In fact it is not
apparent from the definition whether they are all finite. Thus we conjecture the
following.

Conjecture 1. The order of On is finite for all n.

4.2 Green’s classes

We have the following observations for Green’s classes of On for general n.

Lemma 3. Let x ∈ Oαn, y ∈ Oαβn be nonempty words and let Dx and Dy be the
D-classes containing x and y, respectively. Then Dx 6= Dy.

Proof. By Lemma 1, if yL a, then a ∈ Oαβn , and if aRb, then b ∈ Oαβn . Thus we
cannot have yDx.

Corollary 1. The conclusion of Lemma 3 holds for x ∈ Oβn, y ∈ Oαβn and
x ∈ Oαn, y ∈ Oβn.

Remark 1. It follows from the definition of p that every D-class of On maps into
a D-class of Jn × Jn, and by Lemma 1.4 Ch. 5 in [6] the map is also onto. Also,
if On is finite, then each D-class of Jn × Jn is an image of a D-class of On by
p. We conjecture that there is in fact a one-to-one correspondence between the
D-classes of On and those of Jn × Jn. We show that this observation is true for
n ≤ 6.

10 James Garrett, Nataša Jonoska, Hwee Kim, Masahico Saito

 1

* *

* *

 1

* *

* *

 3

* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

 2

* *

* *

 1

* * *

* *

* *

 2

* *

* *

 1

* * *

* *

* *

 3

* *

* *

 4

* * * * * * * * * * * *

* * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * * * * * *

* * * * * * * *

* * * * * *

* * * * * *

* * * * *

* * * * * * * *

* * * * * *

* * * * * *

 2

* * *

* *

* *

 5

* *

* *

 7

* * * * * * *

* * * * *

* * * * *

* * * * * * *

* * * * * * *

* * * * *

* * * * *

 6

* * * * * * *

* * * * *

* * * * * * *

* * * * *

* * * * * * *

* * * * *

* * * * *

 8

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

 1

* * *

* *

* * *

* *

 2

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

 1

* * *

* *

* * *

* *

 3

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

 4

* * * * * * * * * * * *

* * * *

* * * * * * *

* * * * * * * *

* * * * * * * * * * *

* * * * * * *

* * * * * * * * * * * *

* * * * * * * *

* * * * * *

* * * * * *

* * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * *

* * * * * * *

* * * * * * * *

* * * * * *

* * * * * * * *

* * * * * *

 2

* * *

* *

* * *

* *

 5

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

 7

* * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

 6

* * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * *

 8

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

Fig. 12: D-classes of Jn (left) and On (right) for n = 3 (top left), n = 4 (bottom
left), and n = 5 (right)

4.3 Green’s classes for n ≤ 6

Green’s relations for Jn have been studied in [7]. We show results of GAP compu-
tations that determine D-classes of origami monoids On for n ≤ 6; the structures
are presented in Figs. 12 and 13. Shaded squares represent H -classes which con-
tain an idempotent. We note that for n ≤ 6, every H -class of On is singleton,
so each square in the figure represents precisely one element of On.

For n ≤ 6, since On is finite, the J and D relations coincide. A preorder
≤D is defined on On by a ≤D b if the two-sided principal ideal generated by
a is a subset of the two-sided principal ideal generated by b. This condition is
equivalent to the existence of x, y ∈ On such that xby = a. Since any two elements
of a D-class generate the same principal ideal, this preorder may be extended to
the set of D-classes of On such that D ≤D D′ if for a ∈ D and b ∈ D′, a ≤D b.
The lines between D-classes in the figures represent this preorder.

The relations between On and Jn described in Section 6.2 can be observed
in Fig. 12. We omit the D-class consisting of only the empty word from the
diagrams, which is maximal among D-classes. For each n, two copies of the
D-classes of Jn can be found as the D-classes of Oαn and Oβn, respectively, in
the D-classes of On. As described in Remark 1, these correspond to the direct
product of one identity and one non-identity D-class of Jn. The other D-classes
are those of Oαβn , and correspond to the direct product of two non-identity D-
classes of Jn. Which pair of D-classes of Jn correspond to which D-class of On
can be better seen in Fig. 13.

Algebraic Systems for DNA Origami 11

In Fig. 13, we arrange the D-classes of O6 to better illustrate the relation
between the D-classes of Jn, although the same process may be applied to other
n. On the right, the preorder of the D-classes remains, applying left-to-right
as well as top-to-bottom. The D-classes along the top row and left column are
the D-classes of Oα6 and O

β
6 respectively, which as previously described are iso-

morphic to Jn. For any D-class of Oαβn , the D-classes which it maps onto are
greater in the preorder. Thus the grid of D-classes may be thought of as a table,
with the row and column of any entry determining the image of the D-class by
pα and pβ , respectively. Since rewriting rules are equivalent for α and β, the
D-classes are symmetric up to switching rows and columns. This can be easily
seen in the D-classes in the upper right and lower left corners. However, the rows
and columns of any D-class may be ordered arbitrarily, and are automated by
GAP, making the symmetry non-obvious for other D-classes.

 1

* * *

* *

* * *

* * *

* *

 3

* * * * * * * * *

* * * *

* * * * * * *

* * * * * * *

* * * * *

* * * * * *

* * * * * * * *

* * * * * *

* * * * *

 4

* * * * * * * * * * * *

* * * * * *

* * * * * * *

* * * * * * * *

* * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * *

* * * * * *

* * * * * *

* * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * *

* * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * *

* * * *

* * * * * *

* * * * * * *

* * * * * * * *

* * * *

* * * * * *

* * * * * * *

* * * * * * * *

* * * * * *

* * * * * *

 2

* * *

* *

* * *

* * *

* *

 5

* * * * * * * * *

* * * *

* * * * * * *

* * * * * * *

* * * * *

* * * * * *

* * * * * * * *

* * * * * *

* * * * *

 6

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

 10

* *

* * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* *

* *

* *

* *

* *

* * * * * * * * * * * * * * * * *

* *

* *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* *

* *

* *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * *

* *

* *

* * * * * * * * * * * *

* *

* * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * *

 7

* *

* * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * *

* *

* *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* *

* * * * * * * * * * * *

* * * * * * * * * * * *

* *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* *

* *

* * * * * * * * * * * * * * * * *

* *

* *

* * * * * * * * * * * * * * * * *

* *

* *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* *

* * * * * * * * * * * * * * * *

* *

* *

* * * * * * * * * * * * * * * * * * * *

* *

* * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * *

* * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * *

 8

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

 12

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

 9

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

* * * * * * * * * *

 11

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* * * * * * * * * * * * * * * * * * * *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* * * * * * * * * * * * * * * * * * * *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* * * * * * * * * * * * * * * *

* *

* *

* *

* * * * * * * * * * * * * * * * * * * *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* * * * * * * * * * * * * * * * * * * *

* *

 13

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

 14

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* * * * * * * * * * * * * * * * * * * *

* *

* * * * * * * * * * * * * * * * * * * *

* *

* *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* *

* *

* * * * * * * * * * * * * * * * * * * *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

 15

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

* *

Fig. 13: D-classes of O6 (left) and re-arranged and resized to fit the grid (right)

5 Concluding remarks

In this paper, motivated by similarity to Temperley-Lieb algebras, we introduced
an algebraic system that describes DNA origami structures. Generators in this
system are defined such that they mimic basic building blocks of DNA origami.
Following the structural properties of the DNA origami, we established rewriting
rules, as well as monoids whose elements conform to the relations obtained from
these rules. To each DNA origami structure we can associate an element from
an appropriate monoid. For example, the structure in Fig. 1 corresponds to the

12 James Garrett, Nataša Jonoska, Hwee Kim, Masahico Saito

element represented by the word α1α3α5β2β4. We hope that such representations
of DNA origami may provide a tool for distinguishing constructs.

The monoids introduced here are connected to Jones monoids, and we provide
several conjectures with the goal of relating them to known monoids. For ex-
ample, from our findings for n ≤ 6, we conjecture that On are finite for all n,
and H -classes are singletons. We also provide conjectures relating to the D-
classes of On and Jn under the morphism p. Specifically, we conjecture that the
D-classes of On are in one-to-one correspondence with the D-classes of Jn × Jn.

Acknowledgment

This work is partially supported by NIH R01GM109459, and by NSF’s CCF-
1526485 and DMS-1800443. This research was also partially supported by the
Southeast Center for Mathematics and Biology, an NSF-Simons Research Center
for Mathematics of Complex Biological Systems, under National Science Found-
ation Grant No. DMS-1764406 and Simons Foundation Grant No. 594594.

References

1. S. Abramsky. Temperley-Lieb algebra: From knot theory to logic and computation
via quantum mechanics. CoRR, abs/0910.2737, 2009.

2. M. Borisavljević, K. Došen, and Z. Petric. Kauffman monoids. Journal of Knot
Theory and its Ramifications, 11(2):127–143, 2002.

3. I. Dolinka and J. East. The idempotent-generated subsemigroup of the Kauffman
monoid. Glasgow Mathematical Journal, 59(3):673–683, 2017.

4. S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, and W. M. Shih. Self-
assembly of DNA into nanoscale three-dimensional shapes. Nature, 459:414–418,
2009.

5. A. K. Geim and K. S. Novoselov. The rise of graphene. Nature Materials, 6:183–
191, 2007.

6. P. A. Grillet. Semigroups: An Introduction to the Structure Theory. CRC Press,
1995.

7. L. H. Kauffman. Knots and Physics. World Scientific, 2001.
8. H. Kim, S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S.

Umans, O. M. Yaghi, and E. N. Wang. Water harvesting from air with metal-
organic frameworks powered by natural sunlight. Science, 356(6336):430–434, 2017.

9. K. W. Lau and D. G. FitzGerald. Ideal structure of the Kauffman and related
monoids. Communications in Algebra, 34(7):2617–2629, 2006.

10. J. E. Pin. Varieties of Formal Languages. North Oxford Academic Publishers,
1986.

11. P. W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns.
Nature, 440(7082):297–302, 2006.

12. Gap – groups, algorithms, and programming, version 4.10.0. https://www.

gap-system.org.
13. The on-line encyclopedia of integer sequences, id:a047974. http://www.research.

att.com/~njas/sequences/A047974.
14. W. Zhang, A. R. Oganov, A. F. Goncharov, Q. Zhu, S. E. Boulfelfel, A. O. Lyakhov,

E. Stravrou, M. Somayazulu, V. B. Prakapenka, and Z. Konôpková. Unexpected
stable stoichiometries of sodium chlorides. Science, 342(6165):1502–1505, 2013.

