Optimizing Declarative Graph Queries at Large Scale

Qizhen Zhang, Akash Acharya, Hongzhi Chen?¥, Simran Arora, Ang Chen?, Vincent Liu and Boon Thau Loo
University of Pennsylvania, $The Chinese University of Hong Kong, ¥Rice University

ABSTRACT

This paper presents GraphRex, an efficient, robust, scalable,
and easy-to-program framework for graph processing on
datacenter infrastructure. To users, GratheX presents a
declarative, Datalog-like interface that is natural and ex-
pressive. Underneath, it compiles those queries into efficient
implementations. A key technical contribution of GraphRex
is the identification and optimization of a set of global op-
erators whose efficiency is crucial to the good performance
of datacenter-based, large graph analysis. Our experimen-
tal results show that GraphRex significantly outperforms
existing frameworks—both high- and low-level—in scenar-
ios ranging across a wide variety of graph workloads and
network conditions, sometimes by two orders of magnitude.

CCS CONCEPTS

« Information systems — Data management systems;
Relational parallel and distributed DBMSs; - Computer
systems organization — Distributed architectures;

KEYWORDS

Distributed systems; graph analytics; Datalog optimizations;
datacenter networks

ACM Reference Format:)

Qizhen Zhang, Akash Acharya, Hongzhi Chen$, Simran
Arora, Ang Chen?, Vincent Liu and Boon Thau Loo.
2019. Optimizing Declarative Graph Queries at Large Scale. In 2019
International Conference on Management of Data (SIGMOD ’19), June
30-Fuly 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3299869.3300064

1 INTRODUCTION

Over the past decade, there has been a proliferation of graph
processing systems, ranging from low-level platforms [20,
34, 43, 45] to more recent declarative designs [54]. While

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD 19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06...$15.00
https://doi.org/10.1145/3299869.3300064

10000

BigDatalog 5201.43
Giraph
PowerGraph 1102.01

1000 - GraphRex mmm

499.35 1
203.47 6.4
148.15

L 84.98 87.998]

100 53.35

3002 21.94
12.44 12,31
oF 5.47 7
3.03
0.1

Twitter (2B) Friendster (3.6B) UK2007 (3.7B) ClueWeb (42.6B)

Execution time (s)

Figure 1: Performance comparison (log scale) of SSSP
between declarative systems: BigDatalog and Graph-
Rex, and low-level graph systems: Giraph and Power-
Graph on large graphs. All systems are run in a data-
center with 6 TB RAM and 1.6 K cores in aggregate.

users can deploy these systems in a variety of contexts, the
largest instances routinely scale to multiple racks of servers
contained in vast datacenters like those of Google, Facebook,
and Microsoft [51]. This trend of large-scale distributed data
processing is likely to persist as data continues to accumulate.

These massive deployments are in a class of their own:
their size and the inherent properties of the datacenter infras-
tructure present unique challenges for graph processing. To
highlight these performance issues on practical workloads,
Figure 1 illustrates, for multiple graph processing systems
and billion-edge graphs, the running time of a single-source
shortest path (SSSP) query on a representative datacenter
testbed. We tested four systems: (1) BigDatalog [54], a re-
cent system that provides a declarative interface to Spark; (2)
Giraph [20], a platform built on Hadoop that powers Face-
book’s social graph analytics; (3) PowerGraph [28], a highly
optimized custom framework; and as a sneak preview of the
space of possible improvement (4) GraphRex, our system for
large-scale datacenter-based graph processing. As the results
demonstrate, while the three existing systems are capable of
scaling to billion-edge workloads, our approach leads to up
to two orders of magnitude better performance.

The above results barely scratch the surface of optimiza-
tion opportunities for large-scale graph queries in datacen-
ters. We note two significant opportunities that are underex-
plored in previous work:

Opportunity #1: The impact of graph workload characteristics.
Real-world graphs exhibit particular qualities that incur se-
rious performance degradation if ignored. One example is a
power-law distribution with high skew, where most vertices

are of fairly low degree, but a few vertices have very high
edge counts. Even within a single execution, the optimal
query plan may then differ depending on which vertex is
being processed. Another is a proclivity to produce redun-
dant data, e.g., in the case of label propagation where nodes
can often reach each other via many paths. Each of these
presents opportunities for optimization.

Opportunity #2: The impact of datacenter architecture. Per-
formance can also depend heavily on the underlying infras-
tructure. Consider the rack-based architecture of Facebook’s
most recent datacenter design [14]. Racks of servers are con-
nected through an interconnection network such that a given
server’s bandwidth to another can differ by a factor of four
depending on whether the other server is in the same rack
or not. Though this type of structure is ubiquitous in today’s
datacenters due to practical design constraints [14, 30, 56],
existing processing systems (e.g., [20, 28, 54]) have largely ig-
nored these effects, typically assuming uniform connectivity
that is not the case in modern datacenters.

The GraphRex system. To exploit these two opportunities,
this paper explores a suite of optimization techniques specifi-
cally designed to ensure good performance for massive graph
queries running in modern datacenters. We have developed
GraphRex (Graph Recursive Execution) that significantly
outperforms state-of-the-art graph processing systems.

The performance of GraphRex stems, in part, from the
high-level language it presents. It compiles Datalog queries
into distributed execution plans that can be processed in
a massively parallel fashion using distributed semi-naive
evaluation [42]. While prior work has noted that declara-
tive abstractions based on Datalog are natural fits for graph
queries [8, 54], these systems fall short on constructing effi-
cient physical plans that (1) scale to large graphs that can-
not fit in the memory of one machine, and (2) scale to a
large number of machines where the network is a bottleneck.
GraphRex goes beyond these systems by combining tradi-
tional query processing with network-layer optimizations. It
aims to achieve the best of both worlds: ease of program-
ming using a declarative interface and high performance on
typical datacenter infrastructure. Our key observation is that
these two goals exhibit extraordinary synergy.

We note that this synergy comes with a requirement: that
the graph processing system be aware of the underlying
physical network. In a private cloud datacenter where the
operator has full-stack control of the application and infras-
tructure, visibility is trivial. In a public cloud, the provider
would likely expose GraphRex “as a service” in order to
abstract away infrastructure concerns from users.

Our contributions. We make the following contributions
in the design and implementation of GraphRex:

(i) Datacenter-centric relational operators for large-scale graph
processing. We have developed a collection of optimizations
that, taken together, specialize relational operators for data-
center-scale graph processing. The scope and effect of these
optimizations is broad, but their overarching goal is to reduce
data and data transfer, particularly across “expensive” links
in the datacenter. These techniques, applied using knowl-
edge of the underlying datacenter topology and semantics
of relational operators in GraphRex’s declarative language,
allow us to significantly outperform existing graph systems.

(ii) Dynamic join reordering. We also observe that graph
queries may require changing join reorderings as join selec-
tivity is heavily influenced by graph degrees; and degrees can
vary significantly across a graph. Inspired by prior work on
pipelined dynamic query reoptimizations [16], we develop
a distributed join operator that can dynamically adapt to
changing join selectivities as the query execution progresses
along different regions of a graph.

(iii) Implementation and evaluation. We have implemented a
prototype of GraphRex. Based on evaluations on the Cloud-
Lab testbed, we observe that GraphRex has dominant effi-
ciency over existing declarative and low-level systems on a
wide range of real-world workloads and micro-benchmarks.
GraphRex outperforms BigDatalog by factors of 11-109x,
Giraph by factors of 5-26X, and PowerGraph by 3-8X. In
addition, we find that GraphRex is more robust to datacenter
network practicalities such as cross-traffic and link degrada-
tion because our datacenter-centric operators significantly
reduce the amount of traffic traversing bottleneck links.

2 BACKGROUND

Today’s graph processing processing systems span multiple
layers. Applications are written in low-level languages like
C++ or Java; they run on frameworks including GraphX, Gi-
raph; which in turn run in large datacenter deployments like
those of Google, Amazon, Microsoft, and Facebook. These
systems are powerful, efficient, and robust, but difficult to
program and tune [11, 54].

2.1 Declarative Graph Processing

GraphRex uses Datalog as a declarative abstraction, drawing
inspiration from recent work [48, 54]. Datalog is a particu-
larly attractive choice for writing graph queries because of
its natural support for recursion—a key construct in a wide
variety of graph queries [38, 53].

Datalog rules have the form p :- g1, q2, ..., gn, Which can
be read informally as “q; and q; ... and g, implies p.” p is
the head of the rule, and q1, q2, ..., qn is a list of literals that
constitutes the body of the rule. Literals are either predicates
over fields (variables and constants), or functions (formally,
function symbols) applied to fields. The rules can refer to

Oversubscribed
Network

Rack Switches

Racks of
Servers

Figure 2: A canonical datacenter network. Racks con-
tain dozens of servers connected by a single switch.
Racks then connect via an oversubscribed network.

each other in a cyclic fashion to express recursion, which
is particularly useful for graph processing. We adhere to
the convention that names of predicates, function symbols
and constants begin with a lower-case letter, while variable
names begin with an upper-case letter. We use predicate,
table, and relation interchangeably.

Query 1: Connected Components (CC)
cc(A,min<A>) :- e(A,_)
cc(A,min<L>) :- cc(B,L), e(B,A)

Our example above shows a classical graph query that
computes connected components in a graph. This query
takes a set of edges e as inputs, with e(X,Y) representing
an edge from vertex X to vertex Y, and computes a cc tuple
for each vertex, where the first field is the vertex and the
second is a label for the vertex. The first rule initializes the
label of each vertex with its vertex id. In the second rule,
cc(A,min<L>) means that the tuples in cc are grouped by A
first, and in each group, the labels L are aggregated with min.
The rule is recursively evaluated so that the smallest label is
passed hop by hop until all vertices in the same connected
component have the same label. An equivalent program in
Spark requires upwards of one hundred lines of code.

Partitioning graph data. Distributed graph processing re-
quires specification of how the graph data and relations are
partitioned. Graph partitioning maps vertices (or edges) to
workers, and is useful when queries have consistent and pre-
dictable access patterns over data. In this paper, we assume a
default graph partitioning where vertex id is hashed modulo
the number of workers, although our optimizations are not
restricted to, and indeed are compatible with, more advanced
graph partitioning mechanisms. Relation partitioning refers
to cases where an attribute of a relation is selected as par-
tition key and all of its tuples with the same partition key
are put in the same location. For example, in Query 1 (CC),
cc has two attributes so it has two potential partitionings:
cc(@A,B) and cc(A, @B), where @ denotes the partition key.

2.2 Graph Queries in Datacenters

A crucial component for performance is an understanding of
the deployment environment, which in the case of today’s
largest graph applications, refers to a datacenter. Modern
datacenter designs, e.g., those of Google [56], Facebook [14],
and Microsoft [30], have coalesced around a few common
features, depicted in Figure 2, which are necessitated by
practical considerations such as scalability and cost.

At the core of all modern datacenter designs are racks of
networked servers [23, 41, 56]. The servers come in many
form factors, but server racks typically contain a few dozen
standard servers connected to a single rack switch that serves
as a gateway to the rest of the datacenter network [49]. The
datacenter-wide network that connects those rack switches
is structured as a multi-rooted tree, as shown in Figure 2.
The rack switches form the leaves of those trees [39].

The above architecture leads to several defining features in
modern datacenter networks. One example: oversubscription.
While recent architectures have striven to reduce oversub-
scription [10, 30], fundamentally, cross-rack links are much
longer and therefore more expensive (as much as an order of
magnitude) [41, 62]. As such, the tree is often thinned imme-
diately above the rack level, i.e., oversubscribed, and it may
be oversubscribed even further higher up. This is in contrast
to racks’ internal networks, which are well connected.

The result is that servers can often overwhelm their rack
switch with too much traffic. A 1:y oversubscription ratio
indicates that the datacenter’s servers can generate yx more
traffic than the inter-rack network can handle.! In essence,
these networks are wagering that servers either mostly send
to others in the same rack, or rarely send traffic concurrently.
In this way, network connectivity is not uniform. Instead, dat-
acenter networks are hierarchical, and job placement within
the network affects application performance. Ignoring these
issues can lead to poor results (see Figure 1).

3 GRAPHREX QUERY INTERFACE

The goal of GraphRex is to provide a high-level interface
with the performance of a system tuned for datacenters. To
that end, GraphRex presents a Datalog-like interface and
leverages an array of optimizations that reduce data and data
transfer. We illustrate our variant of Datalog with several
graph queries, most of which involve recursion:

Query 2: Number of Vertices (NV)

vhum(count<A>) :- e(A,B)

ITypical rack-level oversubscription ratios can range from 1:2 to
1:10 [14, 56]. Some public clouds strive for 1:1, but these are in the
minority [58]. Regardless, as we show in Section 6, other datacenter
practicalities can result in effects similar to oversubscription.

Query 3: PageRank (PR)
deg (A, count) :- e(A,B)
pr(A, 1.0) :- deg(A,_)
pr(A,0.15+0.85xsum<PR/DEG>)[10]
deg(B,DEG), e(B,A)

:- pr(B,PR),

Query 4: Same Generation (SG)

sg(A,B) :- e(X,A), e(X,B), A!=B

sg(A,B) :- e(X,A), sg(X,Y), e(Y,B)
Query 5: Transitive Closure (TC)

tc(A,B) :- e(A,B)

tc(A,B) :- tc(A,C), e(C,B)

Query 2 counts the number of vertices in a graph (NV). It
takes as input all edge tuples e(A,B) and does a count of all
unique vertices A. Query 3 computes page ranks of all vertices
in a graph (PR). Query 4 returns the set of all vertices that
are at the same generation starting from a vertex (SG). Query
5 computes standard transitive closure (TC). The Datalog
variant we use has similar syntax to traditional Datalog with
aggregation, where aggregate constructs are represented as
functions with variables in brackets (<>).

One extension we make to Datalog can be seen in PR:
a stopping condition denoted as “[..]” in the rule head, for
rules that may not converge to a fixpoint using traditional
incremental evaluation of aggregates in recursive queries [26,
38, 57, 59]. For example, in PR, instead of stopping the query
when no more new tuples are generated, we can impose a
bound on the number of iterations, e.g., “[10]”.

We also note that some of our queries involve multi-way
joins. For example, SG is a “same generation” query that gen-
erates all pairs of vertices that are of the same distance from
a given vertex (for example, given the root of a tree, SG gen-
erates a tuple for each pair of vertices which have the same
depth. If the graph has cycles, a vertex can appear in differ-
ent generations, significantly increasing query complexity).
In existing distributed Datalog systems, the syntactic order
is the sole determinant for the evaluation strategy of these
joins—they are simply evaluated “from left to right” [54, 59].
This is because in a distributed environment, there is no
global knowledge of relations and no easy way to find the
optimal join order. As we will show later, this naive order is
suboptimal in many cases, and GraphRex improves on this
by dynamically picking the best join order. Note that PR also
has a multi-way join, but there is no need of join reordering
for this particular case, because the cardinalities of pr, deg
and e never change in semi-naive evaluation.

4 QUERY PLANNING

Figure 3 shows the overall architecture of GraphRex, con-
sisting of a centralized coordinator and set of workers. The
coordinator first applies a graph partitioning, so that each

Worker

Vertex-level
Executor

o Runtime Optimizer

Worker

Vertex-level
Executor

Coordinator
Compiler

Logical

Declarative Interface

-—————L-—

Runtime Optimizer

Infrastructure

Figure 3: The GraphRex architecture. A compiler gen-
erates a logical plan from a Datalog query (4.1). The
static optimizer then constructs from the logical plan
a datacenter-centric execution specification (4.2) that
is optimized (5) before the final translation to and eval-
uation of the physical plan by workers. Grey lines de-
scribe dissemination of infrastructure configurations
and black lines communication for query execution.

worker has a portion of the graph. Then during query exe-
cution, the coordinator’s Query Compiler translates queries
into a logical plan.

A Static Optimizer then generates an execution specifi-
cation from that logical plan. Execution specifications are
similar to physical plans, but include our datacenter-centric
global operators. The final translation of these operators to
concrete physical operators is left until runtime, and depends
on both the placement of workers in the datacenter (which is
obtained through an infrastructure configuration) and data
characteristics. Each worker’s physical plan may differ. We
discuss this process in Section 5.

Finally, each worker runs the Distributed Semi-Naive (GR-
DSN) algorithm designed for very fine-grained execution,
which is a distributed extension of the semi-naive algorithm
used in Datalog evaluation [42]. In semi-naive evaluation
(SN), tuples generated in each iteration are used as input in
the next iteration until no new tuples are generated. The
distributed variant relaxes the set operations by allowing for
tuple-at-a-time pipelined execution. GR-DSN is designed for
graph queries to allow massively parallel execution and tuple-
level optimizations. We include its details in Appendix B.

The above process occurs directly at the workers, which
receive the execution specification, generate a local physical
plan, and execute it, all with the help of two components:
(1) a Vertex-level Executor that uses GR-DSN to execute the
specification until a fixpoint; and (2) a Runtime Optimizer
that optimizes each global operator locally.

4.1 Logical Plan

From the query, the first step in processing it is to generate a
logical plan. In GraphRex, a logical plan is a directed graph,

sg(*A,*B)
N
cc(*ALL) I;I'A,B [Tag Tx=av=s
- ™~ O I>IQ

HA,L:mm<A> HA,L=mm<L1>
t
e(*A,*B) /N\ HB=}A,L1=L
e(*B,*A) cc(*B,L1) e(*X,*A) e(*X,*B)
(a) Query 1(CC) (b) Query 4 (SG)

Figure 4: Logical plans of CC (a) and SG (b).

DX e(xX,*A) sg(*X,*Y) e(+Y,*B)
AN

where nodes represent relations or relational operators, and
edges represent dataflow. Figures 4a and 4b show logical
plans for Queries 1 (CC) and 4 (SG), respectively.

An important part of logical plan generation in Graph-
Rex is a Vertex Identification phase, in which the compiler
traverses the plan graph starting from the edge relations and
marks attributes whose types are vertices with a * symbol.
These attributes are candidates for being the partition key.
As an example, in Figure 4a, since both attributes in the
input edge relation e(A,B) represent vertices, they are both
marked with the x symbol. Likewise, all attributes that have a
dependency to either vertex attribute A or B are also marked.

By the time we generate a physical plan, only one partition
attribute will be chosen for every relation. Later, we will
denote the selected attribute by prepending with an @ symbol.
At this stage, we can make the decision for two simple cases.
First, if a relation r only has one vertex attribute, then it
is trivially partitioned by that attribute. Second, the edge
table e is partitioned on the first key by default so that each
vertex maintains the list of outgoing neighbors. This is a
convenient placement for many practical graph applications,
such as PageRank, SSSP, that only require each vertex to
know its outgoing neighbors. All other partitioning decisions
are made during the placement of the SHUFF and ROUT
operators described in the following section.

4.2 Execution Specification

Traditional query planning proceeds directly from a logical
plan to a physical plan. In GraphRex, we add an additional
step to help identify opportunities for datacenter-centric op-
timization. The core of this process is the addition of Global
Operators to the logical plan to form what we term an exe-
cution specification. These operators are special in that they
govern communication across workers; oversubscription, ca-
pacity constraints, and congestion mean that their efficient
execution is a primary bottleneck in processing large graphs.
We describe each Global Operator below.

4.2.1 Join (JOIN)

Joins are one such operation that frequently incurs com-
munication in graph processing. In Datalog, (natural) joins
are expressed as conjunctive queries. GraphRex evaluates
them as binary operations; multi-way joins are executed as a
sequence of binary joins. Graphically, we represent these as:

t
JOIN
AN

In the case of binary joins, we simply insert a JOIN in
lieu of the logical operator . Recursive joins, where one
or more of the inputs are recursive predicates, are handled
similarly to BigDatalog [54]. Namely, if the recursion is lin-
ear, the non-recursive inputs are loaded into a lookup table
and streamed. If the recursion is non-linear, we load all but
one of the recursive inputs into a lookup table and stream
the remaining input. This enables us to reduce non-linear
recursion to linear recursion from the viewpoint of a single
new tuple. Figure 5 shows an example of a recursive join.
Multi-way joins require additional handling, as different join
orders can lead to drastically different evaluation costs (Sec-
tion 5.4). In GraphRex, multi-way joins are implemented
as a sequence of binary joins, where the order is chosen
at runtime and per-tuple. Existing distributed Datalog sys-
tems arbitrarily evaluate ‘left-to-right’ [54, 59]. We represent
this choice in the execution specification by enumerating all
possible decompositions of the multi-way join and routing
between them dynamically with the next operator.

4.2.2 Routing (ROUT)

The ROUT operator enables the dynamic and tuple-level
multi-way join ordering mentioned above. ROUTs take a
tuple and direct it to one among multiple potential branches
in the execution specification. This operator is only used in
conjunction with multi-way joins, and is represented as:

{
P

For example, Figure 6 shows the specification for Query 4
(SG) where the multi-way join e b sg > e in Figure 4b is
broken into (e > sg) = e and e X (sg M e). We generate
plans for the two possible orderings and insert a ROUT op-
erator that takes A and B as input to decide which will result
in better performance. We discuss how the ROUT operator
makes that decision in Section 5.4.

4.2.3 Aggregation (AGG)

Another important Global Operator is AGG, which aggre-
gates tuples. There are three types of aggregation in Graph-
Rex, two of which are mapped to Global Operators. The one
type of aggregation that is not mapped is purely local aggre-
gation, which operates on tuples with the same partition key,
for instance, in the left branch of Figure 5 (in the projection).
This type of aggregation does not need its own Global Op-
erator as its evaluation does not incur communication. The
other two variants are represented as follows:

t t
A?G[@X,mimb] A?G[min<L>]

Left to right, (1) also operates at each vertex, but requires
shuffling of inputs to compute the relation, and (2) covers

sg(*A,*B)

S~

[1a=mincas Tlai=ace
t

7
s Mo

t [, ROUT
e(@A,B) A(:-;G[@A,mmwl ?B OUTinel
Ou- JOIN JOIN
SHUFFiga 1) [lg=a11=L At * /NN PN /tC(J*A'.*\B)
ﬁw JOIN SHUFFjaay) €(@Y,B) e(@X,A) SHUFFigyg) TTxeav—s xcav-s Mee Taces I
t 4 NN l N\ TA,B A,C=B tA,B
JOIN e(@X,A) e(@XB) JOIN JOIN SHUFFx oy] SHUFF(gx y) A x M
7N SN AN e(*A,B) 2
e(@BA) cc(@BL1) e@XA) sg@X.Y) sg(Xw te(+A +C) e(+C,*B)
Figure 5: Execution Figure 7: Logical
specification of CC Figure 6: Execution specification of SG plan of TC.
global aggregation, where a single value is obtained across /t.c(,@AQ
the entire graph. For (1), the semantics are similar to a purely H{;,s [a e SHUFFiang) tc(A.@B)
. T . i P
local aggregatmn, but as (fommurucat.lon is requlred, Graph e(@AB) Mas SHUFF 1 0g) TTa.c-s SHUFF(s 0g)
Rex will eventually rewrite the specification in order to re- ! t f
. . JOIN Mas Mag
duce the data sent across the oversubscribed datacenter in- N t t
terconnect. The right branch of Figure 5 demonstrates this SHUFF(sac) e(@CB) e(@AB) J/?'ﬂ

case. For (2), aggregation is instead finalized at the coordi-
nator. For example, Query 2 (NV) computes the number of
vertices in the graph using a global aggregator. That value
is eventually collected by the coordinator and potentially
redistributed to all workers for subsequent use.

4.2.4 Shuffle (SHUFF)

Last, but arguably most important is the SHUFF operator
that encompasses all network communication in GraphRex.

t
t

SHUFFs are inserted into the execution specification when-
ever it is necessary to move tuples from one worker to an-
other between relations. Their placement is therefore closely
integrated with the process of relation partitioning, which in-
stantiates the partition attribute (@) from the set of partition
candidates (x) and inserts SHUFF operators where necessary.

Conceptually, there are two scenarios that require a SHUFF.
The first is when the tuples of relation r are not generated
in the location specified by r’s partition key. An example of
this is shown in Figure 5. The JOIN operation generates cc
tuples that have a distinct partition key (denoted by the @
sign) from the join key B. This results in the insertion of a
SHUFF operator after the join. The second scenario is when
the input relations to an operator are not partitioned on the
same attribute, such as the inputs to the join operator in
Figure 8a. In the example, there is a join operator for tc and
e on attribute C. If we partition tc on its first attribute, as in
Figure 8a, a SHUFF is needed to repartition the tuples in tc
on the second attribute so that the join can be evaluated.

In relation partitioning, the optimizer checks every possi-
ble partitioning and selects the one that incurs the minimum
number of SHUFFs. The details of partitioning algorithm
are shown in Appendix A. As a heuristic, we assume that
recursive rules are executed many times. To demonstrate

tc(@A,Q)
(a) (b)
Figure 8: Two potential partitionings for TC.

tc(A,@C) e(@C,B)

this, Figure 8a shows the execution specification where tc
is partitioned by the first key. The number of SHUFFs in
the plan is 2K, as there are two SHUFFs in each recursive
rule evaluation. In comparison, the other partitioning of tc
shown in Figure 8b requires fewer SHUFFs, i.e., K + 1; there
is a single SHUFF for the non-recursive rule as well as one
for each recursion. Our evaluation later shows that the latter
plan provides a greater than 2X improvement.

5 GLOBAL OPERATOR OPTIMIZATIONS

Translation from the Global Operators described above de-
pends on both context and the structure of the datacenter
network. Refining these operators is important as they can
incur significant performance costs in a large-scale datacen-
ter deployment. We note that translation of the execution
specification’s classic logical operators into equivalent physi-
cal operators follows standard database plan generation, and
we omit those details for brevity.

GraphRex introduces an array of synergistic optimiza-
tions (see Table 1), some of which can be used in combina-
tion, and some of which are intended as complements. Their
benefits stem from a variety of reasons, but the overarch-
ing principle is to reduce data and data transfer, particularly
across “expensive” links in the datacenter. Our results show
that these techniques result in orders of magnitude better
performance in typical datacenter environments.

5.1 Columnization and Compression

One important optimization in GraphRex applies to SHUFF.
In SHUFF, tuples to be shuffled are stored in message buffers,

Optimization Description Section
Columnization & Compression ~ Leverages workload characteristics to reduce the amount of data sent across the 5.1
network on every SHUFF.
SHUFF Hierarchical Network Transfer ~ Further reduces the amount of data sent over ‘expensive’ links by applying colum- 5.2
nization and compression hierarchically.
Join Deduplication To enforce distributed set semantics in JOINs, when a JOIN feeds into a SHUFF, 5.3
JOIN/ we push deduplication into the SHUFF evaluation in a datacenter-centric manner.
ROUT Adaptive Join Ordering To account for power-law degree counts, we sometimes allow ROUT to dynami- 5.4
cally chose a tuple-level join ordering. Only used when duplicates are uncommon.
Hierarchical Global Aggregation Applies our datacenter-centric approach to global aggregation. 5.5
AGG On-path Aggregation When SHUFF comes before a local AGG, we push the AGG down into the SHUFF 5.6

to pre-aggregate values, again in a datacenter-centric fashion.

Table 1: GraphRex’s Global Operator optimizations, when they apply, and where they are described.

which are then exchanged between workers. Rather than
directly shuffling those buffers between workers, Graph-
Rex (1) first sorts the data, (2) reorganizes (transposes) the
tuples into a column-based structure, and (3) compresses the
resulting data using the two techniques described below.

Although columnar databases are well-studied [5-7], their
primary benefit in the literature has been in storage require-
ments. Performance benefits, on the other hand, are tradition-
ally dependent on access patterns [32, 44]. GraphRex instead
sends columnar data by default due to its benefits to two
techniques—column unrolling and byte-level compression—
that are particularly effective on typical graph workloads.

The first technique, column unrolling, is a process where
we elide columns of known low cardinality, C, by creating
C distinct columnar data stores—one for each unique value.
For instance, in an adaptively ordered multi-way join, as
described in Section 5.4, each intermediate tuple must carry
with it an ID that denotes the join order and its place in
that ordering of binary joins. In this and many other queries,
column unrolling can all but remove the storage requirement
of those columns.

The second technique, byte-level compression, compresses
sorted and serialized streams using the Lempel-Ziv-class LZ4
lossless and streaming compression algorithm [4]. This pro-
cess is shown in Figure 9. Both sorting and columnization
significantly increase the similarity of adjacent data in typical
graph applications, resulting in higher compression ratios.
More optimal algorithms exist, but LZ4 is among the fastest
in terms of both compression and decompression speed. To
further reduce the overhead of this optimization, we only
sort over the partition key (V in the example of Figure 9). We
also limit compression to large messages, directly sending
messages that are under certain size. As typical message sizes
are bimodal, any reasonable threshold will provide a simi-
larly effective reduction of overhead (in our infrastructure, a
threshold of 128 bytes was robust).

VAB Sot VAB Columnize Vv A B
234]] (1.2 P1.1221 (13331 22411 |
[1,1.2] [11312] * Compress
(2,3,1] (2,3.4]

[13.2] [2.3.1] [1122113331 [2.2.4.1] |

Figure 9: Column-based organization for r(V,A,B),
where V is the partition key. Shaded is compressed.

Once the shuffle operation is finished, each worker de-
compresses, deserializes and transposes the received data
to access the tuples. We store the tuples in row form for
access and cache efficiency. We also heavily optimize mem-
ory copies, buffer reuse, and other aspects of serialization
and deserialization, but omit the details for space. Applying
columnization and compression together at a worker level
brings ~2x overall message reduction for the CC query, how-
ever, its effectiveness in typical datacenters can be magnified
by the next optimization we propose to SHUFF operator.

5.2 Hierarchical Network Transfer

GraphRex extends the benefits of the previous section by
executing Hierarchical Network Transfers as part of SHUFF.
This optimization reduces transfers over network, particu-
larly the oversubscribed portions described in Section 2.2.

Figure 10 depicts this process for a rack with two servers
and two workers per server. Specifically, transfers occur in
three steps: server-level shuffling, rack-level shuffling and the
final global shuffling. At each level, workers communicate
with other workers in the same group, and split their tuples
so that each partition key is assigned to a single worker in
the group. At each step, tuples are efficiently decompressed,
merge sorted, and re-compressed. The benefit of performing
this iterative shuffling and compression is that, with every
stage, the working sets of workers become increasingly ho-
mogenous and therefore more easily compressed.

To show the effect of this optimization, we present results
for Query 1 (CC) on a billion-edge Twitter dataset running in

Server

Rack Y,

Figure 10: An example hierarchical transfer. Each
worker groups its tuples by partition key, and sends
the them first within a server, then within a rack, and
finally to their destinations. A naive system would
send directly to other racks. Colors track where the
tuple was generated; numbers indicate the partition.

a 40-server, 1:5 oversubscription testbed (more results are in
Section 6). Table 2 shows the communication/total speedup
of two schemes: simple compression (directly on tuples) and
SHUFF (column-based hierarchical compression).

They are compared against a baseline that does not imple-
ment compression or infrastructure-aware network transfer.
Columnization combined with hierarchical network transfer
creates more total traffic, but with less going over oversub-
scribed links and better load balancing (see Section E for
an explanation). In this case, server-level shuffling reduces
the data by 4.6x, and rack-level shuffling reduces the data
by 6.2 in our datacenter testbed running 20 workers per
server. Together with our optimizations on memory manage-
ment and (de)serialization, SHUFF achieves a 9.8X speedup
in communication time and 7.2X in total execution time.

Comm Total

Only compression ~ 1.02x 1.02X
SHUFF 9.84x 7.2x

Table 2: Communication and total speedup of SHUFF
and row-based compression in CC on Twitter.

5.3 Join Deduplication

JOINs are among the most expensive operations in large
graph applications. One reason for this is the prevalence
of high amounts of duplicate data in real-world distributed
graph joins. For example, with Query 5 (TC) on a social
graph, users may have many common friends and thus many
potential paths to any other user.

In order to provide set-semantics for joins, previous sys-
tems perform a global deduplication on the generated tu-
ples [54]. GraphRex instead introduces Hierarchical Dedu-
plication, which takes advantage of datacenter-specific com-
munication structures to decrease the cost of deduplication
when it observes JOIN followed by a SHUFF. Note that when

Worker| Worker Level |Server Level |Rack Level
wi1 (1,2),(2,3),(3,4),(4,5)| (1,2),(3,4) (1,2)
w2 (1,2),(2,3),(3,4),(4,5)| (2,3),(4,5) (2,3)
W3 [(1,2),(2,3),(3,4),(4,5)| (1,2),(3,4) (3,4)
w4 (1,2),(2,3),(3,4),(4,5)| (2,3),(4,5) (4,5)

Table 3: An example of Hierarchical Deduplication
with a single rack of two servers, with two workers
per server. At each successive layer of the hierarchy,
workers coordinate to deduplicate join results before
incurring increasingly expensive communication.

the results of a JOIN are used directly (without an intermedi-
ate SHUFF), local deduplication is sufficient.

To illustrate the process of Hierarchical Deduplication,
consider again the deployment environment of Figure 10,
where we have four workers in a single rack. Assume also
that all four workers generate the same tuples {(1,2), (2,3),
(3,4), (4,5)}, where the first attribute in the relation is the
partition key. After the tuples are generated, workers insert
them into a hash set that stores all tuples they have seen thus
far. This results in the local state shown in the second column
of Table 3. Workers on the same server then shuffle tuples
among themselves, never traversing the network. The same
is done at a rack level: servers deduplicate tuples without ever
sending across the oversubscribed interconnect. In the end, of
the 16 tuples generated in the rack, only 4 are sent to the other
rack—a factor of 4 decrease in inter-rack communication.
Queries on real-world graphs, e.g., social networks and web
graphs, often exhibit even greater duplication because of
dense connectivity: in the execution of TC over Twitter, for
instance, 98.5% of generated tc tuples are duplicates.

Dup % Comm Total

Baseline 98.5% 39.9s 41.1s
Hierarchical Dedup 42.7% 2.7 s (14.8X) 4.3s (9.6X)

Table 4: Hierarchical Deduplication in TC on Twitter.
Dup % indicates duplicate tuples received at workers

Table 4 presents the Twitter/TC result on the testbed used
in the preceding section. We can see that, for workloads with
many duplicates, hierarchical deduplication can efficiently
remove most of them. In comparison, push-down techniques
at worker level and server level can only reduce the duplica-
tion ratio to 96.3% and 90.7% respectively, which shows that
deduplication should be performed at greater scale. The high
deduplication rate of JOIN results in a 14.8X communication
speedup and 9.6 total speedup. Even for workloads with
few duplicates, the overhead of this optimization is low.

5.4 Adaptive Join Ordering

In the case of multi-way joins, GraphRex sometimes chooses
a more aggressive optimization: Adaptive Join Ordering. To

Figure 11: Query 4 (SG) on an example graph.

that end, the ROUT operator decides, per-tuple, of how to
order the constituent binary joins of a multi-way join. A
key challenge here is predicting the performance effects of
choosing one order over another. One reason this can be
difficult is due to duplicates; different join orders may result
in tuples being generated on different workers, impacting
the occurrence of duplicates in unpredictable ways for the
current and future iterations.

For that reason, Adaptive Join Ordering is a complement
to Join Deduplication: when the number of duplicates is
high, the latter is effective, otherwise the optimization de-
scribed here is a better choice. We rely on programmers to
differentiate between the two when configuring the query.
In practice, this is typically straightforward (and akin to the
configuration of combiners in Hadoop/Spark), but profiling
and sampling could automate the process in future work.

To illustrate a simple example of how join ordering can
result in improved performance, consider the evaluation of
Query 4 (SG) over the graph in Figure 11. Starting at the
root, vertices a and b are in the same generation, so a tuple
(a,b) in sg is generated by the first rule. The evaluation of
the second rule is decided by how sg is partitioned:

o If the relation is partitioned by the first attribute, then
the join is evaluated from left to right ((e > sg) > e)
where (a, b) is sent to a to join with I}, (the adjacency
list of a) before the intermediate tuples are shuffled to
b to finish the join.

e If partitioned by the second key, then the join ordering
is from right to left (e > (sg < e)) where I}, is sent to a
to finish the join, less cost than the first order.

For this iteration, the left-to-right ordering used by exist-
ing distributed Datalog systems results in a factor of three
increase in intermediate tuples compared to right-to-left.
The opposite is true for the third generation. Real-world
graphs produce many such structural discrepancies due to
their power-law distributions of vertex degree. This distri-
bution can result in substantial performance discrepancies
between different join orderings, even within a single rela-
tion. Thus, static ordering—any static ordering—can result
in poor performance.

Optimization target. The goal of ROUT is as follows. Let T
be the bag of tuples generated by GR-DSN query evaluation.
T consists of tuples generated in every iteration, so we have

T = Zf:o Tr where Ty is the bag of tuples generated in
iteration k and K is the iteration where a fixpoint is reached.
ROUT’s optimization objective is:

K

min |T| = minz Ty |
k=0

Intuitively, more tuples mean increased cost of tuple gen-
eration and shuffling. More formally, let 7" be the bag of
intermediate tuples—those that are generated in the inter-
mediate binary joins in order to complete the multi-way

join—and Tkﬁ be the bag of output tuples of the head relation
(for example, sg in SG), so T = Tlf‘ + Tf, and we have:

K
min T| = min)" (|T¢] + |T/])
k=0

As mentioned previously, GraphRex makes an assump-
tion that there are no duplicates in generated tuples. Formally,
this simplifies optimization in two ways. First, if there are
no duplicates, any ordering generates the same Tkﬁ (because
of the commutativity and associativity of natural joins) so
|Tkﬂ | becomes a constant. Second, the ordering of one itera-
tion does not affect another. This independence allows us to
optimize each iteration without worrying about later ones.
With this assumption, we now have

K
min |T| = Zmin(|T,f‘|)+C (1)
k=0

where C is a constant representing the number of output
tuples generated in the evaluation.

Ordering joins. With the above, GraphRex picks a tuple-
level optimal ordering using a precomputed index.

For every newly generated tuple that goes through the
ROUT operator, GraphRex enumerates all possible left-deep
join orders, computes the cost (i.e., the number of tuples
in Tk”‘ that the order generates) for each order, and selects
the order with the minimum cost. Then, GraphRex sets the
partition key of this tuple based on the join order, and sends
it to the destination for join evaluation. For example, in SG,
for every new sg tuple (a,b), there are two possible join
orders: ((e > sg) ™ e) and (e (sg > e)). The cost for the
first order is the degree of a because (a, b) is sent to a first for
the first binary join and then I}, is sent to b for the second
binary join. Similarly, the cost for the second order is the
degree of b. The degrees of all vertices are precomputed as
an index, and thus efficiently accessible at runtime.

Generality. For n-way joins, the possible options grow to

("), where i is the position of the recursive predicate, e.g.,

e ™ sg X e is a 3-way join with sg in position 2. Note that

the recursive predicate in position 0 or n leads to only 1 or-
dering. GraphRex scales efficiently by preloading necessary
information as indexes whose total size grows as O(n|V).
Regardless, typical values of n are small and there are only a
small number of possible orders. See Appendix C for details.

1st 2nd 3rd 4th

%of LR 77.47% 80.64% 87.65% 88.16%
%of RL 22.53% 19.36% 12.35% 11.84%

Table 5: The percentage of tuples using each join order
during the first four iterations of SG on SynTw. LR is
(e 1 sg) e and RL is e < (sg < e).

Table 5 shows the percentages of tuples in the optimal
query plan of the first four iterations of SG on SynTw, a
synthetic graph of Twitter follower behavior (see Section 6
for more information). For most tuples, LR ordering is opti-
mal, but for a non-negligible fraction, it is not. Because of
this variability, Table 6 shows that, compared to static order-
ing, Adaptive Join Ordering brings 2.7x and 2x speedup to
communication and execution time respectively.

Comm Total

Static ordering 34s 93s
Adaptive Join Ordering 1.3s(2.7X) 4.6s(2X)

Table 6: Comparison of adaptive and static ordering.

5.5 Hierarchical Global Aggregation

As mentioned in Section 4.2, there are three types of aggre-
gations, two of which are translated to Global Operators.
This section describes our optimizations for the global AGG,
which is used to compute and disseminate a single global
value to all workers via the coordinator. A naive implementa-
tion would create a significant bottleneck at the coordinator.
A classic alternative is parallel aggregation, in which workers
aggregate among themselves in small groups, then aggregate
the sub-aggregates, and so on. GraphRex improves this by
leveraging knowledge of datacenter network hierarchies.

Figure 12 shows an example of this process. First, each
worker applies the aggregate function on its vertices and
computes a partial aggregated value, then it sends its partial
value to a designated aggregation master in the server. When
the server master receives partial values from all workers
in the same server, it again applies the aggregate function
to update its partial value and then it sends the value to the
rack master, which updates its own partial value and finally
sends that value to the global aggregation coordinator.

As in previous instances, hierarchical transmission sig-
nificantly reduces traffic over the oversubscribed network.
As the computations and communications of Hierarchical

Rack Switch

Server

@

Worker
@ @

Figure 12: Hierarchical Global Aggregation in a rack.
After worker-level aggregation, intermediate aggre-
gates are shuffled (1) at a server-level, and (2) at a rack-
level before finishing global aggregation.

Global Aggregation are distributed at each network hierar-
chy, the overhead to the aggregation coordinator is also re-
duced. Table 7 shows the performance of Hierarchical Global
Aggregation in the query of counting vertex number (NV)
on Twitter. The baseline is infrastructure-agnostic, which
means the global aggregation is implemented in an AllRe-
duce manner where all workers send their partial aggregated
values to the coordinator. Hierarchical Global Aggregation
results in 41X speedup in communication and reduces query
processing latency from 2.26 s to 0.16 s.

Comm Total

2.154 s 2.26s
0.052s (41.4x) 0.158 s (14.3X)

Baseline
Hier. Glob. Agg.

Table 7: Evaluation of Query 2 (NV) on Twitter.

5.6 On-path Aggregation

Finally, the other AGG operator computes a value for each
vertex, but requires a SHUFF first. In this case, GraphRex
pushes AGG down into SHUFF so that every worker only
sends aggregated tuples. The key insight is that tuples that
are shuffled to the same vertex can be pre-aggregated. On-
path Aggregation again leverages hierarchical shuffling: at
each level in the network, it consolidates the tuples for the
same vertices to efficiently and incrementally apply aggre-
gation and reduce the number of shuffled tuples.

Table 8 shows the performance of On-path Aggregation
in CC on Twitter, where the baseline is aggregation at the
destination, which means that all tuples are shuffled through
the network first, and then aggregated using (min). On-path
Aggregation brings 10X speedup in the communication, and
the end-to-end query processing latency is reduced by 7.8x.

Comm Total

119.8s
11.997 s (10X)

124.29 s
15.97 5 (7.8X)

Baseline
On-path Aggregation

Table 8: Evaluation of Query 1 (CC) on Twitter.

6 EVALUATION

In this section, we evaluate the performance of GraphRex
with a representative set of real-world graph datasets and
queries in order to answer three high-level questions:

e How competitive is the performance of GraphRex? We
compare GraphRex with BigDatalog [3], which is shown
to outperform other distributed declarative graph pro-
cessing systems (such as Myria [59] and SociaLite [53]),
Giraph [1], and PowerGraph [28], two highly-optimized
distributed graph processing systems.

e How robust is GraphRex to datacenter network dynam-
ics? We emulate typical network events that affect the
connectivity between servers, vary network capacity, in-
ject background traffic following typical traffic patterns
in datacenters, and test systems under such dynamics.
How scalable is GraphRex? We evaluate how GraphRex
scales with additional datacenter resources for large-
scale graph processing.

Due to space constraints, we have included more experiments
in the Appendix, including more results (App. F) and the
analysis of communication patterns in GraphRex (App. E).

6.1 Methodology

Setup. Our CloudLab datacenter testbed consists of two
racks and 20 servers per-rack. Each server has two 10-core
Intel E5-2660 2.60GHz CPUs, 160 GB of DDR4 memory, and a
10 Gb/s NIC. In aggregate, the testbed has 6.4 TB memory and
1.6 K CPU threads. Mirroring modern datacenter designs [14,
30, 56], our testbed is connected using a 10 Gb/s leaf-spine
network [10] with four spine switches by default, resulting
in an oversubscription ratio of 1:5.

Queries. We have selected a set of representative queries
to evaluate GraphRex. General Graph Queries include Con-
nected Components (CC, Q1), PageRank (PR, Q3), Single
Source Transitive Closure (TC, Q5), Single Source Short-
est Path (SSSP, Q6), and Reachability (REACH, Q7). Among
those queries, CC and PR are compute-intensive and TC,
SSSP and REACH are more communication-intensive. We
also evaluated local and global Aggregation queries (CM, Q8)
(sum and min aggregators produced similar results) as well
as Multi-way Join queries like Same Generation (SG, Q4).

Query 6: SSSP (SSSP)
sssp($ID,0) :- e($ID,_,_)
sssp(A,min<C1+C2>) :- sssp(B,C1), e(B,A,C2)
Query 7: Reachability (REACH)

reach($ID) :- e($ID,_)
reach(A) :- reach(B), e(B,A)

Query 8: CountMax (CM)
:- e(A,$ID), e($ID,B)
;= inout(_,CNT)

inout (A, count)
maxcount (max<CNT>)

Datasets. As shown in Table 9, we have selected four real-
world graph datasets, all of which contain billions of edges.
Twitter and Friendster are social network graphs, and UK2007
and ClueWeb are web graphs.

Graph # Vertices | # Edges | Data Size
Twitter (TW) 52.6 M 2B 12GB
Friendster (FR) 65.6 M 3.6B 31GB
UK2007 (UK) 105.9M 37B 33GB
ClueWeb (CW) 978.4M 42.6B 406 GB

Table 9: Large graphs in the evaluation.

System configurations. We compare against the latest ver-
sions of in-comparison systems, and configured them to
achieve the best performance in our datacenter. We provi-
sioned them with sufficient cores and memory and optimized
other parameters, such as the number of shuffle partitions
in BigDatalog, the number of containers in Giraph, and par-
tition strategies in PowerGraph. When possible, we used the
query implementations provided by these systems, and im-
plemented the remainder from scratch. Not all systems were
able to support all queries easily/efficiently; we omit those
as needed. BigDatalog, for instance, has difficulty supporting
PageRank because it cannot limit the number of iterations.
The original paper [54] also omits PR. Similarly, PowerGraph
cannot easily support SG, because a) vertex adjacency lists
are not readily accessible, and b) it forces message consoli-
dation, which would be very inefficient for SG.

6.2 System Performance

We first evaluate the performance of GraphRex against state-
of-the-art systems in terms of query processing times.

General graph queries. Table 10 compares the overall per-
formance of GraphRex, BigDatalog, PowerGraph, and Gi-
raph across different graphs and queries. CC and PR require
more computation than other queries. Even in these cases,
the oversubscribed network is enough of a bottleneck that
GraphRex outperforms other systems by up to an order of
magnitude. Against BigDatalog and CC, this order of mag-
nitude improvement is consistent. PowerGraph and Giraph,
due to their specialization to graph processing, perform bet-
ter than BigDatalog, but they are still significantly slower
than GraphRex, if they complete (between 3.2x and 17.3X).
We note that the largest graph, CW, caused out-of-memory
issues on both BigDatalog and Giraph; our deduplication and
compression alleviate some issues with working set size.
On more communication-intensive queries, i.e., TC, SSSP
and REACH, GraphRex achieves even greater speedups. On
on these too, BigDatalog failed to complete on the largest
graph, CW. For TC, GraphRex outperforms BigDatalog and
Giraph by up to two orders of magnitude, and PowerGraph

cC PR TC REACH

GR. BD. Giraph P.G. GR. BD. Giraph P.G. GR. BD. Giraph PG. GR. BD. Giraph PG.

W Time 10.3s 119.8s 49.1s 35.6s 13.4s - 68.6s 43.2s 3.1s 336.8s 50.8s 11.8s 2.8s 90s 26.7s 11.5s
SpdUp 11.6X 4.7x 34X N/A 5.1x 3.2Xx 109.4X 16.5x 3.8% 32x 9.5x 4.1X

FR Time 15.3s 278.6s 79.3s 60.5s 18.5s - 148.7s 60s 5.1s 898.5s 81.8s 20.4s 5.2s 236.1s 49.01s 20.7s
SpdUp 18.2x 5.2X 4.0% N/A 8.1x 3.2x 176X 16X 4x 45.6X 9.5%X 3.99%

UK Time 30.9s 452.8s 274.4s 164.6s 9.6s - 1499s 73.6s 185s 866.3s 192.1s 86.1s 17.6s 361.02s 152.6s 87.1s
SpdUp 14.7x 8.9x 5.3X N/A 15.6x 7.7x 46.9xX 10.4x 4.7X 20.5xX 8.7x 4.9X
cw Time 472.6s OOM 8159.5s 1808s 188.7s - OOM 668.8s 207.4s OOM 5395.2s 978.7s 187.1s OOM 4909.7s 969.2s
SpdUp N/A 17.3x 3.8 N/A N/A 3.5% N/A 26X 4.7X N/A 26.2x 5.2X

Table 10: Execution time and speedup for GraphRex (G.R.) compared to BigDatalog (B.D.), Giraph and PowerGraph
(P.G.). We present results for four queries (CC, PR, TC, and REACH) (Figure 1 shows results for SSSP), and four
graph datasets (TW, FR, UK, CW). OOM indicates an out-of-memory error. Note that B.D. does not support PR.

100

100

BigDatalog 3 BigDatalog =2

Giraph == Giraph ==
PowerGraph PowerGraph
GraphRex mm 18.6 GraphRex mm

3.7

Execution time (s)
Execution time (s)

0.1

0.1

(a) Twitter (b) Friendster

Figure 13: Aggregation query evaluation with CM.

by more than 4X on average. Some of this stems from Graph-
Rex’s automatic relation partitioning (Section 4.2.4). BigDat-
alog, by default, partitions by the first key, which happens to
be a poor choice in this case. Manually partitioning by the
second key leads to 2x better performance, but this is still
much slower than GraphRex as it lacks our other optimiza-
tions. For SSSP (results in Figure 1), GraphRex outperforms
BigDatalog by 28—54x on the workloads BigDatalog could
complete, and outforms PowerGraph and Giraph by an aver-
age of more than 5% and 10x. Finally, for REACH, GraphRex
achieves up to 45.6X higher performance than BigDatalog
and up to 26.2x speedup over PowerGraph and Giraph.

Aggregation queries. Figure 13 shows the results of an ag-
gregation, Query 8 (CM), on TWand FR. Since we have found
similar results on UK, and BigDatalog cannot handle CW, we
have omitted these results. Here, BigDatalog performs better
than Giraph, achieving 2.8X and 5X better performance on
TW and FR, respectively, similar to PowerGraph. GraphRex
is almost an order of magnitude faster than all of them as a re-
sult of our AGG Global Operator optimizations (Sections 5.5
and 5.6) and their ability to avoid traversal of the oversub-
scribed network. GraphRex finishes within one second.

1000
BigDatalog

Giraph ==
GraphRex mm

120.86
87.25 -

(848 291.64

100

34.62 136.18

25.16

Execution time (s)

BiasedTree SynTw Citation

Figure 14: Multi-way join query evaluation with SG.

Multi-way join queries. Multi-way joins are challenging
even on small social network and web graphs. Consider SG as
an example: since such graphs are well-connected, all vertices
will eventually be at the same generation. This would result
in an output size of |V'|, where |V| is the number of vertices;
so a small graph with 1M vertices would result in 1T sg
tuples. Therefore, we have used three alternative datasets to
evaluate SG: (1) BiasedTree, which amplifies the imbalance
in Figure 11 by setting the degree of the high-degree vertices
to 10K and increasing the depth of the tree to 10, (2) SynTw,
a synthesized graph simulating follower behavior in Twitter
but without cycles, and (3) Citation, which is a real-world
graph of paper citation relationships that we collected from
public sources. While numbers of edges are relatively small
(0.1M, 35.7M, and 20.4 M, respectively), the generated tuple
sets are large: 1B, 70 M, 6 B tuples during the evaluation of
SG when using the best static join order.

Figure 14 shows our results (PowerGraph is omitted as
noted earlier). For fairness, we ensured that Giraph and Big-
Datalog used the best static join order for the query. Even
so, GraphRex significantly outperforms both. Adaptive Join
Ordering, by picking the most efficient join ordering for ev-
ery tuple, reduces the number of generated tuples to 0.2 M,
17 M, and 3 B. The resulting performance improvement is

600 200

BigDatalog ‘ BigData‘log
Giraph Giraph
500 - PowerGraph -©- T PowerGraph -6~
. GR-Baseline &~ _. 150 | GR-Baseline -8 i
o GraphRex -l G GraphRex -
o 400 E >
£ £
=] =]
5 300 4 5§ 100 4
F=] =]
5 5
g g
3 200 4 !
50 —O/&/e/ef
100 M 4
—a—a—=a
ol—8—" o L3 ! ! |
10 50 100 4 3 2 1

#Spine Switches

Link degradation

Figure 15: System per-
formance under varying mance with varying #ag-
link degradations. gregation switches.

3.3% in the worst case, with an upper bound of 2-3 orders of
magnitude in the extreme case (BiasedTree).

Figure 16: System perfor-

Summary: This set of experiments shows that, as a declar-
ative system, GraphRex consistently and significantly out-
performs existing systems—both declarative and low-level—
particularly on large-scale graph workloads.

6.3 Robustness to Network Dynamics

We next evaluate the robustness of GraphRex to network
dynamics, which are common in datacenter networks.

Network degradation. One such class is link degradations,
where the link capabilities can experience a sudden drop
due to gray failures, faulty connections, or hardware is-
sues [27, 63]. To emulate this, we randomly select a single
rack switch uplink and throttle its capacity to X, %, and ¥
of its original capacity. Note that a degradation of a sin-
gle server’s access link would decrease performance for all
systems equally. We deploy five systems and test their per-
formance with CC on Twitter (results are similar for other
graphs and queries): GraphRex, BigDatalog, Giraph, Pow-
erGraph, and ‘GR-Baseline’, a version of GraphRex with
Global Operator optimizations disabled.

Figure 15 shows performance under different degrees of
link degradation. Because GraphRex minimizes traffic sent
through bottleneck links, it is by far the most robust to degra-
dations of those links. In fact, a %, degradation shows almost
no effect at all (10.61s vs 10.3 s); even in the ¥« case, Graph-
Rex finishes in 17.24 s. In comparison, GraphRex-baseline
experiences significant delay, taking 140 s in the %, case, and
433 s in the % case. Among all systems, PowerGraph is most
sensitive to network dynamics (16X slower than normal for
the % case. Other systems are also severely impacted.

Oversubscription variation. We next evaluate the effect
of over-subscription. We emulate this by adding/removing
spine switches from the testbed. Less spine switches means
less inter-rack capacity and greater over-subscription. Due to
hardware constraints, we only vary the number of switches
in the spine layer from 4 to 1.

GraphRex —#— PowerGraph —e— Giraph BigDatalog GR-Baseline —&—
100 T T T T T T T

80 1

40 - 1

Percentage (%)

0 I I il I I L I
0 20 40 60 80 100 120 140 160

Running Time (s)

Figure 17: The CDF of performance with random back-
ground traffic. Each dot represents a complete run.

Figure 16 shows results for CC on TW. Results for other
graphs are included in Appendix F.1. The over-subscription
significantly degrades the performance of other systems:
PowerGraph performance drops 52% (36 s to 54 s) between 4
and 1 spine switches, BigDatalog drops 31% (120 s to 157 s),
Giraph 20% (49 s to 59 s), and GR-Baseline 23% (124 s to 152's).
For reasons similar to the prior section, GraphRex’s perfor-
mance only changes 7% (10.3s to 11.1s) over the same range.

Background traffic. Finally, since datacenters typically host
multiple applications, applications often experience unpre-
dictable “noise” in the network in the form of background
traffic. To evaluate GraphRex and the other systems in its
presence, we inject background traffic using a commonly
used datacenter traffic pattern [12, 13, 36]. Following the
existing methodology, we generate traffic flows from ran-
dom sender/receiver pairs, with flow sizes and flow arrival
times governed by the real-world datacenter workloads [13].
Overall, we generated five representative traffic traces, each
with an average network utilization of 40%. Details of the
generated traces are included in Appendix D. We ran CC
on TW in each system with background traffic, and note
that other query workloads have similar findings. As Fig-
ure 17 shows, the performance variation is significant for
other systems, with standard deviations (o) of 3.6 (P.G.), 4.3
(Giraph), 3.9 (B.D.) and 4.2 (GR-Baseline). GraphRex, on the
other hand, achieves o = 0.96, which is much more robust,
and its performance is significantly better than other sys-
tems, with average speedups of 4.6x (over P.G.), 5.2X (over
Giraph), 10.1x (over B.D.), and 10.6X (over the baseline).

Summary: The datacenter-centric design in GraphRex in-
creases robustness to network dynamics, even in harsh net-
work conditions with significant link degradation, over-sub-
scription, and random background noise.

6.4 Scalability Analysis

Finally, we evaluate scalability compared to other systems.
We examine how adding servers to the job affects perfor-
mance. Specifically, we vary the number of servers per rack

200 T T T T T
BigDatalog
Giraph
PowerGraph -6~
150.7
507 GraphRex -l -

-
a
=]

119.8s

-
o
o

- 89.7s

Execution time (s)

44.8s 49.1s

70\9%9\9\9—35%—

20.97s
.\.\l—l‘.‘m;S
. . ! n

| .
10 12 14 16 18 20
#Servers/Rack

a
=]

Figure 18: Scalability with the number of servers.

G.R. B.D. Giraph P.G.
Running Time 19.95s 142.31s 86.09s 42.33s
Two-rack Speedup 1.93x 1.18X 1.76X 1.2x

Table 11: The performance in single rack.

in our two-rack testbed from 10 to 20 with a step of 2. Fig-
ure 18 shows the result of running CC on TW. For all sys-
tems, the running times decrease when more servers are
added. However, more servers per rack also leads to higher
oversubscription, which poses scalability bottlenecks. As
a result, BigDatalog and PowerGraph only achieve around
1.3% speedup when we double the number of servers; Giraph
achieves a 1.8X speedup, yet it still has lower performance
than PowerGraph. In contrast, GraphRex, in our represen-
tative datacenter configuration, scales almost linearly: 2x
speedup when server count doubles.

We saw a similar result when scaling up the number of 20-
machine racks from one to two, as shown in Table 11. Here
too, doubling the number of racks almost doubled Graph-
Rex performance. Giraph also scaled well achieving 1.76x
speedup, but the other systems did not. Appendix F.2 includes
results for other workloads.

We also did COST [47] and scale-up/out analysis. Due to
space constraints, we included the results in our technical
report [61]. Appendix F.3 contains performance evaluation
with Timely Dataflow [46], a distributed dataflow system
optimized for both high throughput and low latency.

7 RELATED WORK

Many graph processing systems have been proposed, includ-
ing Pregel [45], Giraph [20], GraphX [29], PowerGraph [28],
GPS [52], Pregelix [19], GraphChi [37], and Chaos [50]. Graph-
Rex adopts a Datalog-like interface and computation model
in order to explore the space of optimizations for large graph
queries running on modern datacenter infrastructure.

Declarative data analytics: SociaLite [38] and Emptyh-
eaded [8] are Datalog systems optimized for a single-machine
setting. Hive [2] and SparkSQL [15] are distributed, but only
accept SQL queries without recursion. BigDatalog [54] and

Datalography [48] explore an intermediate design point (Dat-
alog compiled to SparkSQL and GiraphUC); however, they
ignore infrastructure-level optimizations and can be worse
than the systems they are built on. GraphRex instead lever-
ages Datalog for graph-specific and datacenter-centric opti-
mizations, and outperforms existing systems significantly.

Performance optimizations. Several existing proposals [9,
21, 24, 31, 33] have explored the network-level optimization
of groups of related network traffic flows, e.g., in a shuffle
operation. GraphRex is distinguished by its deep level of
integration with the Datalog execution model and its opti-
mizations for graph workloads.

Graph compression and deduplication. Recent work has
used data compression on graphs. Blandford et al. [17, 18]
propose techniques to compactly represent graphs. Ligra+ [55]
further parallelizes these techniques. GBASE [35] and SLASH-
BURN [40] perform compression for MapReduce to reduce
storage. GraphRex is mostly related to C-Store [5], a column-
oriented database, and we have further proposed novel tech-
niques like the compressed transpose data structure.

Prior work has also explored deduplication, e.g., via MapRe-
duce combiners [25, 60] and mechanisms for distributed set
semantics [22, 54]. Our system pursues the same goals, but
our key contribution is to adapt these techniques to create
datacenter-centric optimizations for relational operators.

8 CONCLUSION

GraphRex is a framework that supports declarative graph
queries by translating them to low-level datacenter-centric
implementations. At its core, GraphRex identifies a set of
global operators (SHUFF, JOIN/ROUT, and AGG) that ac-
count for a significant portion of typical graph queries, and
then heavily optimizes them based on the underlying dat-
acenter, using techniques such as hierarchical deduplica-
tion, aggregation, data compression, and dynamic join or-
ders. With a comprehensive evaluation, we demonstrate that
GraphRex works efficiently over large graphs and outper-
forms state-of-the-art systems by orders of magnitude. Gen-
eralizing our techniques to not rely on graph-specific proper-
ties (e.g., the ability to preload join cardinalities for Adaptive
Join Ordering) is left to future work.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thoughtful
comments and suggestions. We appreciate the significant
development efforts from Jiacheng Wu and Yucheng Lu, and
the valuable comments from James Cheng, Susan David-
son, Chen Chen, Yang Li and Mohan Yang. This work was
funded in part by NSF CNS-1801884, CNS-1513679, CNS-
1703936 and NSF CCF-1763514, and DARPA contracts No.
HR001117C0047 and No. HR0011-16-C-0056.

REFERENCES

[1] Apache Giraph. http://giraph.apache.org/.

[2] Apache Hive. https://hive.apache.org/.

[3] BigDatalog. https://github.com/ashkapsky/BigDatalog.

[4] Lz4 - extremely fast compression. http://1z4.github.io/lz4/.

[5] D.]J. Abadi, S. R. Madden, and M. C. Ferreira. Integrating compression
and execution in column-oriented database systems. In SIGMOD, 2006.

[6] D.J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs. row-
stores: How different are they really? In Proc. SIGMOD, 2008.

[7] D.J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden. Materialization
strategies in a column-oriented DBMS. In Proc. ICDE, 2007.

[8] C.R.Aberger,S. Tu, K. Olukotun, and C. Ré. EmptyHeaded: A relational
engine for graph processing. In SIGMOD ’16.

[9] F. Ahmad and et al. ShuffleWatcher: Shuffle-aware scheduling in
multi-tenant mapreduce clusters. In USENIX ATC ’14, 2014.

[10] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. SIGCOMM ’08. ACM, 2008.

[11] O. Alipourfard and et al. Cherrypick: Adaptively unearthing the best
cloud configurations for big data analytics. NSDI'17, 2017.

[12] M. Alizadeh, T. Edsall, and et al. CONGA: Distributed congestion-
aware load balancing for datacenters. In Proc. SSGCOMM, 2014.

[13] M. Alizadeh and et al. Data center TCP (DCTCP). In SIGCOMM, 2010.

[14] A. Andreyev. Introducing data center fabric, the next-generation
facebook data center network. https://goo.gl/rE8wKL, 2014. Facebook.

[15] M. Armbrust and et al. Spark SQL: relational data processing in spark.
In SIGMOD 15, 2015.

[16] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query
processing. 2000.

[17] D.K.Blandford, G.E. Blelloch, and I. A. Kash. Compact representations
of separable graphs. In Proc. SODA, 2003.

[18] D.K. Blandford, G.E.Blelloch, and I. A. Kash. An experimental analysis
of a compact graph representation. In Proc. ALENEX, 2004.

[19] Y.Bu and et al. Pregelix: Big(ger) graph analytics on a dataflow engine.
PVLDB, 2014.

[20] A. Ching and et al. One trillion edges: Graph processing at facebook-
scale. PVLDB, 2015.

[21] M. Chowdhury and et al. Managing data transfers in computer clusters
with Orchestra. SIGCOMM ’11. ACM, 2011.

[22] X. Chu, L F. Ilyas, and P. Koutris. Distributed data deduplication.
PVLDB, 2016.

[23] Cisco Systems. Data Center Design Summary, August 2014.
https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/
Aug2014/DataCenterDesignSummary-AUG14.pdf.

[24] P. Costa and et al. Camdoop: Exploiting in-network aggregation for
big data applications. In NSDI ’12. USENIX, 2012.

[25] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on

large clusters. In OSDI’04, San Francisco, CA, 2004.

S. Ganguly, S. Greco, and C. Zaniolo. Extrema predicates in deductive

databases. J. Comput. Syst. Sci., 51(2):244-259, 1995.

[27] P. Gill and et al. Understanding network failures in data centers:
measurement, analysis, and implications. In SIGCOMM, 2011.

[28] J. E. Gonzalez and et al. PowerGraph: Distributed graph-parallel com-
putation on natural graphs. In OSDI, 2012.

[29] J. E. Gonzalez and et al. GraphX: Graph processing in a distributed
dataflow framework. In OSDI 2014.

[30] A.Greenbergand etal. VL2: A scalable and flexible data center network.
SIGCOMM Comput. Commun. Rev., 2009.

[31] K. Hasanov and A. L. Lastovetsky. Hierarchical optimization of MPI
reduce algorithms. In PaCT 2015.

[32] Intel. Optimize data structures and memory access patterns to improve
data locality. https://goo.gl/xQ3ZGT, 2012. Intel.

26

=

[33] V. Jalaparti and et al. Network-aware scheduling for data-parallel jobs:
Plan when you can. SIGCOMM ’15, 2015.

[34] M. Kabiljo and et al. A comparison of state-of-the-art graph pro-
cessing systems. https://code.facebook.com/posts/319004238457019/
a-comparison-of-state- of-the-art-graph-processing-systems/.

[35] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos. GBASE: An
efficient analysis platform for large graphs. In Proc. VLDB, 2012.

[36] N.Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. HULA: Scalable
load balancing using programmable data planes. In Proc. SOSR, 2016.

[37] A.Kyrola, G. E. Blelloch, and C. Guestrin. GraphChi: Large-scale graph
computation on just a PC. In OSDI 2012, pages 31-46, 2012.

[38] M.S.Lam, S. Guo, and J. Seo. Socialite: Datalog extensions for efficient
social network analysis. In ICDE ’13, 2013.

[39] C.E. Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE Trans. Comput., 34:892-901, October 1985.

[40] Y. Lim, U. Kang, and C. Faloutsos. Slashburn: Graph compression and
mining beyond caveman communities. IEEE TKDE, 2014.

[41] V. Liu and et al. Subways: A case for redundant, inexpensive data
center edge links. CONEXT ’15. ACM, 2015.

[42] B.T.Loo and et al. Declarative networking: language, execution and
optimization. In SIGMOD ’06.

[43] Y. Low and et al. GraphLab: A new framework for parallel machine
learning. UAI'10. AUAI Press, 2010.

[44] Z.Majo and T. R. Gross. Matching memory access patterns and data
placement for NUMA systems. In Proc. CGO, 2012.

[45] G.Malewicz and et al. Pregel: a system for large-scale graph processing.
In SIGMOD ’10.

[46] F. McSherry. Timely dataflow. https://github.com/frankmcsherry/
timely-dataflow.

[47] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what COST?
In HotOS 15, 2015.

[48] W.E.Moustafa and et al. Datalography: Scaling datalog graph analytics
on graph processing systems. In IEEE BigData 2016.

[49] Open Compute Project. Server/SpecsAndDesigns, June 2018. http:
/[www.opencompute.org/wiki/Server/SpecsAndDesigns.

[50] A.Roy and et al. Chaos: scale-out graph processing from secondary
storage. In SOSP 2015, 2015.

[51] A.Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the
social network’s (datacenter) network. In SIGCOMM 15, 2015.

[52] S. Salihoglu and et al. GPS: a graph processing system. In SSDBM ’13.

[53] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed Socialite: A Datalog-
based language for large-scale graph analysis. PVLDB, 2013.

[54] A.Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zaniolo.
Big data analytics with Datalog queries on Spark. In SIGMOD 16, 2016.

[55] J. Shun and et al. Smaller and faster: Parallel processing of compressed
graphs with Ligra+. In Proc. Data Compression Conference, 2015.

[56] A. Singh and et al. Jupiter rising: A decade of clos topologies and
centralized control in Google’s datacenter network. In Sigcomm, 2015.

[57] S. Sudarshan and R. Ramakrishnan. Aggregation and relevance in
deductive databases. In VLDB *91, pages 501-511, 1991.

[58] W. Vogels. https://twitter.com/werner/status/25137574680.

[59] J. Wang and et al. Asynchronous and fault-tolerant recursive datalog
evaluation in shared-nothing engines. PVLDB, 2015.

[60] Y. Yu and et al. Distributed aggregation for data-parallel computing:
Interfaces and implementations. SOSP *09, 2009.

[61] Q.Zhang and et al. Optimizing declarative graph queries at large scale
(technical report). http://netdb.cis.upenn.edu/papers/graphrex_tr.pdf.

[62] D. Zhuo and et al. RAIL: A case for redundant arrays of inexpensive
links in data center networks. In NSDI ’17, 2017.

[63] D. Zhuo and et al. Understanding and mitigating packet corruption in
data center networks. In SIGCOMM, 2017.

A RELATION PARTITIONING

Algorithm 1 shows the specific relation partitioning algo-
rithm that is adopted in the Static Optimizer. For each rela-
tion r, if there is only one attribute being marked as “*’, then
r is partitioned by that attribute, because that is the only
vertex attribute that can maintain the tuples of r; otherwise
the static optimizer enumerates every possible partitioning
and selects the one with the minimum number of SHUFFs.
We assume the heuristic that recursive rules are executed
many times. This assumption is reasonable as practical graph
queries often run more than one iteration because of the
dense connectivity between vertices in real-world graphs.

B GRAPHREX DSN EVALUATION

The Distributed Semi-Naive in GraphRex (GR-DSN) pseu-
docode is shown in Algorithm 2. Here, w; represents a worker

Algorithm 1 Static Relation Partitioning

1: v_atts < get the list of marked attributes of r

2: if size of v_atts = 1 then

3: Mark the attribute as the partition key

4: else

5. v «— arg min,(the number of SHUFF operators in the
physical plan based on partition key v € v_atts)

6: Mark v as the partition key

Algorithm 2 Distributed Semi-Naive in GraphRex

1: function INIT(v)
2. NewTuples, < eval(BaseRules, I,)
3. AllTuples, < NewTuples,,

. function RECUR(v)

NewTuples,, < eval(RecurRules, I, NewTuples,,)
NewTuples,, < NewTuples, — AllTuples,,
AllTuples,, < AllTuples, |) NewTuples,,

N o

8: function ONRECV(v)

9: NewTuples, < NewTuples,, |) v’s received tuples
10: NewTuples, < NewTuples, — AllTuples,

11: AllTuples, < AllTuples, |) NewTuples,,

12: for each vertex v € V; do

13 init(v)

14: loop until the coordinator signifies to terminate
15: for each vertex v € V; do

16: if the size of NewTuples,, > 0 then
17: recur(v)
18: if the size of NewTuples, = 0 then
19: sleep(v)

\ecur()

recur()

Figure 19: Vertex states in DSN.

that stores the subgraph V;, and each vertex v maintains its
own vertex id id,, and the edge list I,.

The GR-DSN algorithm works as follows. Initially, w; ini-
tializes each vertex with init function (line 12-13). Specifi-
cally, w; creates a local table r,, for each vertex v and each
relation r except edge relation. Recall that the logical plan
already ensures that all relations are indexable by vertex. In
the init function (line 1-3), base rules are evaluated, which
generates the initial tuple set NewTuples in each relation,
and the entire tuple set AllTuples is initialized to be the same
set. w; then loops to iteratively evaluate recursive rules. In
each iteration, w; checks if new tuples were generated in
last iteration (the A tuples in semi-naive evaluation [42]) at
vertex v and uses recur function to evaluate recursive rules
one time, otherwise calls sleep to deactivate v (line 14-19).
Inside recur, the recursive rules are evaluated based on I,
and NewTuples of last iteration to generate new NewTuples
(line 5), and then the deduplication is performed to eliminate
redundant evaluation (line 6) and the resulting tuples are
merged to the entire tuple set (line 7).

In the eval function, the corresponding part of execution
plan is evaluated; and the executor consults the dynamic opti-
mizer to execute each global operator efficiently. In particular,
A SHUFF operator sends around new tuples according to
their partition key. If a vertex v receives tuples, the callback
function onrecv is invoked to handle the tuples. Specifically,
the received tuples are merged to NewTuples,, and dedupli-
cated, and also added to AliTuples, (line 8-11).

Vertex states. A vertex in GraphRex could be in one of
three states: initialized, running and sleeping. A vertex enters
initialized after calling init to evaluate the base rules, and
transitions to running on calling recur, where the recursive
rules are iteratively evaluated in GR-DSN.

A significant difference from traditional, centralized semi-
naive evaluation is that when a vertex has no new tuples, it
transitions to sleeping; if later, new tuples are received, the
vertex will be activated again and transition into running
again. This design ensures that the distributed evaluation
converges globally rather than locally at a vertex level. The
recursion reaches a fixpoint when: (1) all vertices in the
graph are at the sleeping state, and (2) no tuples are being
shuffled, i.e., no vertex received new tuples. The coordinator

1 Intra-rack only Total -
Inter-rack —

0.8 - 1

0.6 1

Cumulative Fraction
Overall Traffic (GB)

0 5x10°1x1071.5x1072x1072.5x1073x107
Flow Size (Byte) Seconds

0 200 400 600 800 1000 1200 1400 1600 1800

(a) Flow size distribution in (b) Summarized pattern of
real data centers. background traffic.

Figure 20: Background traffic generation.

sends termination signal to workers when either the specified
number of iterations or the fixpoint is reached.

C GENERALIZATION OF JOIN ORDERING

Here we explain how adaptive join ordering is applied to
a 4-way join example: r(X,Y) :- e(X,A), r(A,B), e(B,0C),
e(C,Y). Given a new r tuple, there are three possible left-
deep join orders: (1) (((e > r) > e) > e), (2) ((e > (r >
e)) X e), and (3) (e > ((r < e) > e)). The costs (in terms of
the numbers of intermediate tuples) of the three orders for
r(v1,v2) are: (1) C; = InDeg(v1) + InDeg(v1) X OutDeg(v2),
(2) C; = OutDeg(v2) + InDeg(v1) x OutDeg(v2), and (3)
C3 = OutDeg(v2)+Out?Deg(v2), where InDeg(v) is v’s inde-
gree, OutDeg(v) is v’s outdegree and Out?Deg(v) is v’s two-
hop outdegree. Therefore, the global information needed by
GraphRex for this query is: the indegrees of all vertices, the
outdegrees of all vertices and the two-hop outdegrees of all
vertices, which is O(|V|) where V is the set of vertices. This
information can be computed offline and loaded by Graph-
Rex as index, so that when GraphRex enumerates the three
orders for a tuple, the costs of the orders can be efficiently
computed and GraphRex selects the order with minimum
cost for this tuple. Similarly, the adaptive join ordering can
be extended to other values of n for n-way joins.

D DATACENTER TRAFFIC GENERATOR

We generate background traffic by using the commonly used
datacenter flow patterns from DCTCP [13]. Figure 20a shows
DCTCP flow size distribution, and Figure 20b shows an ex-
ample of the random background traffic that we inject into
our testbed (the first half hour). The blue line represents the
total volume of intra-rack only traffic in each second, and
red line represents inter-rack traffic. We note that inter-rack
traffic also consumes the bandwidth of intra-rack links. The
total traffic volume in every second is represented in black
line. We control the overall network utilization as 40%.

(a) The baseline. (b) GraphRex.

Figure 21: Heat maps of traffic volume (number of
bytes sent between servers, values are log 10 scale) for
CC on Friendster. GraphRex (b) saves 94.8% traffic com-
pared to the infrastructure-agnostic baseline (a).

No network

LO'W

Figure 22: Heat map of cross-server communication.

E COMMUNICATION PATTERN

Figure 22 shows the communication cost distribution in
the datacenter, with three layers: (1) communications inside
servers require no network traffic (the left diagonal in the
server matrix), (2) communications between servers in the
same rack require traffic to be sent intra-rack (the light blue
areas), and (3) communications between servers in different
racks, which incur the highest traffic cost.

Figure 21 compares GraphRex against the infrastructure-
agnostic baseline in terms of the communication patterns. Al-
though the baseline has server-level locality, i.e., each worker
sends more traffic to the workers in the same server than
the workers in other servers, it ignores the network struc-
ture and treats all other servers as the same. However, the
communication pattern in GraphRex results in two benefits.
Reduced traffic: GraphRex prefers low-cost communications
to reduce high-cost traffic due to its infrastructure-aware
design, minimizing the amount of inter-rack traffic by incur-
ring additional intra-rack communication. As a result, in this
example, it reduces the traffic cost by 94.8%.

Fewer connections: In the baseline, every worker directly
builds N — 1 connections with all other workers for shuffling,
where N is the number of parallel workers. In GraphRex,
each worker establishes W — 1 connections with other work-
ers in the same server first, where W is the number of work-
ers in the same server; then, at the rack level, it establishes at

— T 700 —— T
BigDatalog BigDatalog
400 Giraph b 600 - Giraph
PowerGraph -6~ PowerGraph -©-

350 - GraphRex - 7 500 GraphRex -l

300 |- B
200 ,O//’e/ef’@,
100 70,/6/’9/67
100 + B

4 3 2 1 4 3 2 1
#Spine Switches #Spine Switches

Execution time (s)
Execution time (s)

Figure 23: Performance
on Friendster.

Figure 24: Performance
on UK.

most S — 1 connections with other servers in the same rack,
where S is the number of servers in the same rack. Finally, it
establishes at most R— 1 connections with other racks, where
R is the number of racks in the datacenter. Therefore, the
number of connections that each worker builds in GraphRex
is O(W + S + R). In the naive approach, assuming that all
racks have the same number of servers and all servers have
the same number of workers, we have O(W X S X R) instead.
In summary, The infrastructure-centric design minimizes
traffic cost by reducing traffic sent over bottleneck links.

F ADDITIONAL RESULTS

We show results on more workloads in this section.

F.1 Spine Switch Count

Figure 23 and 24 compare the performance of GraphRex
with other systems when querying CC on FR and UK when
we vary the network capacity by changing the number of
spine switches from 4 to 1. The results show similar trend
as on TW that GraphRex is the most robust system when
network performance varies. Among other systems, Power-
Graph is fastest when network capacity is not constrained,
and it is also the most sensitive system to network changes.
Its performance is lower than Giraph on FR when network
capacity is low. Giraph and BigDatalog are also significantly
impacted when the number of switches drops. We omit other
queries for space and note that the finding of GraphRex be-
ing the most robust system still holds.

F.2 Server-rack Ratio

Figure 25 and 26 present the performance of different sys-
tems for CC on FR and UK, respectively, when the number of
servers in the cluster changes. GraphRex achieves the high-
est speedup when the number of servers in the datacenter
doubles: 1.8% on FR and 1.7x on UK. Although PowerGraph
always has the best performance, it does not scale as well
as other systems, and on UK, its performance does not con-
tinue to improve when the number of servers in each rack

450 - 700 T

T T
BigDatalog

Biglﬂatalo;;
400 Giraph T 600 - Giraph |
PowerGraph -©- PowerGraph -6-
. dop GraphRex - 7 = GraphRex -
O @ 500 - q
v 300 - B p
S 250 ¢ R 5 400 ¢ 1
5 s
;::’ 200 [T g 300 l
g 150 | B g
& & 200 79\6\8_—6/6\0,
100 B
H%G—Q—Q‘Q = B
50 1)| 100
0 n %8 —n o L . ol . .
10 12 14 16 18 20 10 12 14 16 18 20

#Servers/Rack #Servers/Rack

Figure 25: Scalability on Figure 26: Scalability on
Friendster with #Servers. UK with #Servers.

™ FR UK cw

Timely 25.96s 44.5s 23.5s 464.9s
GraphRex 13.4s 18.5s 9.6s 188.7s

Table 12: Scale-out performance comparison.

2 40 - T GraphRex —=— Timely
o 35| Timely 4 100 T T T T
.g 30 | GraphRex - 4
c 25 .
'% 20 g 80 - 4
o 15 + -
£ 10 n L I S
w 4 3 2 1 o 60 4
[=2
#Spine Switches 8
— c
<l T T S 40t 4
@ 400 Timely 105
£ 300 | GraphRex - |l =
b=
=]
(v
] 0 . | . .
w

15 20 25 30 35 40

Link degradation Running Time (s)

Figure 27: Comparison with Timely.

is higher than 16. Adding more machines improves the per-
formance of Giraph and BigDatalog, but their scalability is
not as good as GraphRex which minimizes the impact from
network constraints, and scales better with more resources.

F.3 Comparison with Timely Dataflow

Table 12 compares the distributed performance between
GraphRex and Timely in PageRank. GraphRex outperforms
Timely by 1.9%, 2.4%, 2.4X and 2.5X on TW, FR, UK and CW,
respectively. Figure 27 shows experiments under different
network situations. As we can see, GraphRex is more ro-
bust than Timely. Upper-left figure shows that when the
number of spine switches drops from 4 to 1, the speedup of
GraphRex over Timely increases from 1.9X to 2.4%, lower-
left figure shows that link degradation severely impacts the
performance of Timely, and the speedup of GraphRex over
Timely goes up from 2.5X to 6.8X when the link capacity
drops from %, to %w. The right figure presents the CDF of
running times of GraphRex and Timely under random back-
ground traffic, showing that GraphRex has better and more
stable performance (o = 0.7) than Timely (o = 3.7) when
noise is present.

