NetWarden: Mitigating Network Covert Channels without Performance Loss

Jiarong Xing

Adam Morrison

Ang Chen

Rice University

Abstract

Network covert channels are an advanced threat to the secu-
rity and privacy of cloud systems. One common limitation
of existing defenses is that they all come at the cost of per-
formance. This presents significant barriers to their practical
deployment in high-speed networks. We sketch the design of
NetWarden, a novel defense whose key design goal is to pre-
serve TCP performance while mitigating covert channels. The
use of programmable data planes makes it possible for Net-
Warden to adapt defenses that were only demonstrated before
as proof of concept, and apply them at linespeed. Moreover,
NetWarden uses a set of performance boosting techniques
to temporarily increase the performance of connections that
have been affected by channel mitigation, with the ultimate
goal of neutralizing its impact on performance. Our simula-
tion provides initial evidence that NetWarden can mitigate
several covert channels with little performance disturbance.
As ongoing work, we are working on a full system design and
implementation of NetWarden.

1 Introduction

Network covert channels are an advanced class of security
threats to cloud systems. An attacker can exfiltrate secret
information from compromised VMs via channels that are
not intended for carrying data. Two typical classes of network
covert channels are timing channels [7,8,15,24,27,34,38],
which modulate packet timing, and sforage channels [4, 9,
16, 18,22,29,33], which embed data inside packet headers.
As an example of the former, an attacker could use large and
small inter-packet delays (IPDs) to encode ones or zeros in a
secret message [8]. As an example of the latter, an attacker
could embed secret data in the TCP sequence number [9] or
ACK [28,29] fields. Covert channels can leak data without
raising suspicion from a firewall that typically only inspects
packet payload. Existing work has shown that both timing and
storage channels can propagate over long distances [8,28], and
the TCSEC criteria (Trusted Computer Security Evaluation
Criteria) require protection against both of them [11].

Over the years, researchers have developed a variety
of solutions to detect and mitigate network covert chan-
nels [5, 8,9, 14,30, 32]. For instance, in order to detect timing
channels, existing detectors rely on statistical properties of
legitimate traffic IPDs, such as first-order statistics (e.g., mean
and variance) [8], or higher-order entropy [14]. In order to
detect storage channels, existing detectors analyze packet

header fields that could be used to encode data (e.g., TCP se-
quence number [9]) and look for anomalies. Upon detection,
arange of mitigation techniques can then be applied, includ-
ing adding random delays to packet transmission [5, 14], or
setting a header field to a controlled value [9,30].

It is perhaps unsurprising that no detector—whether for
timing or storage channels—can achieve 100% accuracy. This
is because the characteristics of network traffic can be highly
non-deterministic, both in terms of timing and header values,
as they depend on subtle interactions between the hosts and
the network. For instance, a timing channel detector may
raise a false alarm if IPDs suddenly increase, but this may be
caused merely by congestion. As a trickier example, consider
the partial ACK channel [28]. Suppose that a connection has
transmitted N bytes of data, an attacker could send a partial
ACK to acknowledge the n-th byte, leaking a secret 8 = N — n.
As long as n is chosen to be in a valid range (i.e., between
the last ACK and N), the channel will successfully hide itself
in the permitted behaviors of TCP. Note that this example
reveals a deeper problem—designing a perfect detector is
close to impossible without having complete visibility into
what actually happened on all nodes (e.g., whether the [n..N]
bytes have been successfully received). However, if complete
visibility were attainable, then arguably we should not have
security holes to begin with. In fact, the partial ACK channel
was discovered ten years ago [28], but we are not aware of a
working defense even today.

To compensate for detection inaccuracy, we could be more
aggressive in mitigation—e.g., applying a blanket defense to
all connections that might contain a channel. The obvious
consequence here is performance degradation. Since most
connections may be benign, an aggressive defense may un-
duly penalize legitimate flows. For instance, one extreme
defense against partial ACKs is to drop all ACK packets that
do not acknowledge N; but what if data from n to N has ac-
tually been dropped or garbled? A slightly milder defense,
as proposed later in this work, would be to rewind the ACK
number to the last-seen value; but it may still cause unneces-
sary retransmissions, i.e., performance penalty. Overall, we
are faced with a concrete instance of the more general phe-
nomenon that security comes with the cost of performance.
Unfortunately, performance is a non-negotiable requirement
in datacenters.

We sketch the design of a novel network primitive called
NetWarden, which is a broad-spectrum defense against net-
work covert channels in a performance-preserving manner.
The starting observation in NetWarden is that programmable

data planes in modern switch hardware provides a feasible
basis towards efficient and practical channel defense. Con-
cretely, programmable data planes can perform per-packet
operations over header fields, which enables NetWarden to
inspect and modify headers for storage channel mitigation
without stalling the traffic. Programmable data planes can also
support sophisticated data structures directly in switch hard-
ware, which NetWarden leverages to monitor each connection
and discover problematic protocol behaviors (e.g., abnormal
IPDs, incorrect ACKs). Moreover, both features can run at
linespeed with nanoseconds of extra delay.

Building upon programmable data planes as a starting ba-
sis, NetWarden also uses a set of performance boosting tech-
niques that can counteract the performance penalty due to
channel defense. These techniques are inspired by a recent
result in the security community, which has shown that the
TCP congestion control mechanism can be manipulated by
an attacker to artificially inflate the sending rate [19]. Net-
Warden borrows similar techniques from this attack result,
but uses them for a very different goal instead—boosting the
performance of connections affected by channel defense.

Concretely, NetWarden uses ACK boosting and receive
window boosting to increase the sending rate of a connec-
tion. ACK boosting creates the illusion of a fast network,
and receive window boosting creates the illusion of a high-
performance receiver, ramping up the sending window of
the data source. NetWarden also caches excess packets tem-
porarily at the switch; should any packets be dropped on their
way to the receiver, NetWarden can still serve the data to the
receiver as a proxy. NetWarden then uses them in combina-
tion with defense techniques that usually lead to performance
degradation—Dby borrowing and refining existing defenses
and customizing them to programmable data planes—so that
they neutralize each other’s effects.

This paper is intended as a first step towards a defense that
can mitigate network covert channels while preserving net-
work performance. We sketch the initial design of NetWarden
and provide preliminary evidence on its feasibility. We then
summarize the open research questions and conclude with
our ongoing exploration.

2 Overview

In this section, we describe more background on network
covert channels, introduce building blocks for a practical de-
fense, and then give an overview of NetWarden.

2.1 State of the art

Covert timing channels. Since Lampson proposed the no-
tion of covert timing channels in 1970 [23], researchers have
demonstrated that network covert channels can exfiltrate in-
formation over a long distance by modulating IPDs [8, 14,27].

The simplest channel, for instance, uses large and small IPDs
to transmit bits of one or zero. An attacker can further increase
the stealth of a channel by mimicking the IPD characteristics
of regular traffic [14].

Detection. Timing channel detectors rely on statistical tests
of IPD distributions. A simple example is shape test [8], which
uses first-order statistics (e.g., mean, variance) of IPDs to dis-
tinguish covert and normal traffic. More advanced detectors
could also use the distribution [32], regularity [8], or higher-
order entropy [14] of IPDs for channel detection. However,
practically, these detectors can only be used in an offline man-
ner, as streaming high-speed traffic through these statistical
detectors in real time would cause enormous overhead.

Mitigation. In principle, mitigating timing channels is easy.
A defense could be to inject random delays to network traffic,
with the goal of disturbing the IPD modulation [5]. How-
ever, this is only practical if detectors can precisely pinpoint
flows for delay randomization. Otherwise, false positives in
statistical detectors would cause normal flows to be penalized.

Covert storage channels. The simplest storage channels
(Type-I) can encode data in optional or unused TCP/IP header
fields, such as Type of Service (ToS), Urgent Pointer, and
IP identification (IPID) fields [12]. More advanced channels
(Type-II) encode data in header fields that are essential for
protocol correctness, such as the TCP initial sequence num-
ber [9]. A particularly tricky class of channels (Type-III) can
hide themselves in the inherent non-determinism of network
traffic, such as the partial ACK channel [28].

Detection. A common strategy for detection is to inspect
all header fields, and look for the existence of header fields
that are rarely used or contain suspicious values. However, the
need to inspect (and potentially modify) all packet headers
already makes most software-based detectors impractical.

Mitigation. Temporarily shelving performance concerns,
Type-I channels can be mitigated by setting optional header
fields to controlled values. Type-II channels can also be mit-
igated using a similar strategy, but the defense needs to be
stateful and apply the same actions to all packets in the flow to
maintain protocol correctness (e.g., adding a fixed offset to all
TCP sequence numbers [9]). Type-III channels are the hardest,
as they exploit the non-determinism in network traffic.

Limitations of existing defenses. To summarize, although
covert timing and storage channels have been studied exten-
sively, only proof-of-concept detection and mitigation systems
exist, and their deployment is hindered by a) the need to per-
form per-packet operations at linespeed (for detection), and
b) the performance penalty a naive countermeasure would
incur (for mitigation). As a result, the feasibility of designing
an efficient, practical, and performance-preserving defense
remains an open research question.

2.2 Towards a practical defense

We aim to answer this research question by designing Net-
Warden, which uses a combination of techniques to achieve a
practical covert channel defense.

Technique #1: Using programmable data planes. Our first
observation is that the advent of programmable data planes
provides a suitable basis for NetWarden. A recent trend in dat-
acenters is that the networking hardware is becoming increas-
ingly programmable, both at the hosts (e.g., smart NICs [26])
and in the network (e.g., programmable switches [6]). Pro-
grammable data planes provide a set of new features that
were originally designed for better networking, but we rec-
ognize that the same features map surprisingly well to the
requirements of covert channel defense.

First, this new type of hardware can perform per-packet
header operations at linespeed. The packet processing pipeline
on emerging switches can be programmed using high-level
languages, such as P4 [2], to specify custom match/action
behaviors and perform header modifications. This can be
used as a building block for storage channel defense. Second,
programmable data planes have a fine-grained timestamping
facility. This was originally designed for achieving higher
network visibility for diagnosis, but it also provides useful
support for timing channel detection. Finally, they support
sophisticated data structures that can sustain linespeed reads
and writes using stateful registers. We can use this feature for
per-connection monitoring and precise channel mitigation.

Technique #2: Fastpath/slowpath defense. Since pro-
grammable data planes were not designed with channel de-
fense in mind, there are many needed functionalities they
do not directly support. For instance, the timestamping fa-
cility only provides packet timestamps, but statistical tests
over IPDs are not implementable in switch hardware. Also, as
we will discuss later, the performance boosting defenses also
cannot be supported in the data plane. Therefore, another de-
sign principle of NetWarden is to offload as many primitives
as possible to the data plane as a fastpath defense, and then
perform a slowpath defense on the switch control plane for
the rest. The control plane of modern switches has general-
purpose CPUs and RAMs, and it is quite powerful. As a point
of comparison', the available CPU cycles per second and the
amount of RAM on a popular switch model [3] match these
of a T3.large VM instance on Amazon EC2 [1]!

Technique #3: Performance boosting. Finally, as we moti-
vated before, NetWarden specifically designs for a key goal
of performance-preserving defense. In addition to customiz-
ing existing (and performance-degrading) defenses for pro-
grammable data planes, we also design performance-boosting
defenses to neutralize the overall performance impact. These
defenses are more expensive to perform, because they need

lWf:dge 100BF-32X switch: 4x 1.6 GHz cores, 8GB RAM; Amazon EC2
T3.large VM instance: 2x2.5 GHz vCPUs, 8GB RAM.

y Covert timing channels
0 1 0 1

s imniai

y—

: H
E ToR switch

Figure 1: NetWarden can be deployed in a ToR switch as a
broad-spectrum defense against network covert channels.

O

&

EE EEm v

SrcPort DstPort || cp
ACK =01101 ||header
Innocent payload

Covert storage channels

to involve the control plane and cannot run at linespeed. How-
ever, NetWarden only needs to apply them to a small number
of connections in a “default-off” fashion.

NetWarden. Combining these techniques, NetWarden can be
easily deployed on a Top-of-Rack (ToR) switch to protect a
rack of machines that host sensitive data (e.g., file servers).
NetWarden is also a broad-spectrum defense in that it can
serve as a general-purpose platform to support a wide range of
existing and new defenses. Figure 1 shows a concrete example
scenario for using NetWarden.

3 Solution Sketch

Next, we sketch a tentative design of NetWarden, describe
how it adapts existing defenses for programmable data planes,
and introduce its performance boosting techniques. Figure 2
shows the fastpath and slowpath components of NetWarden,
which collaboratively detect and defend against covert chan-
nels while preserving network performance.

3.1 The fastpath defense

The fastpath consists of three components: a) connection
monitoring, b) IPD characterization, and c) storage channel
defenses (that degrade performance).

Connection monitoring. NetWarden uses a per-connection
monitoring data structure in the fastpath, which is inspired
by the Dapper [13] system that performs TCP monitoring
for performance diagnosis. The data structure organizes TCP
connections in a key/value store, where the key is a TCP con-
nection’s four tuples (i.e., source/destination IPs and ports),
and the value is an index to a set of register arrays. Using this
index, we can further write into or read from stateful registers
that record the TCP state for each direction of this connection,
such as a) the highest ACK and SEQ numbers, b) the receive
window sizes, and c) IPDs observed for this connection. Ev-
ery time NetWarden receives a packet, it uses its four tuples
as key to index this table. If NetWarden finds an entry in the
table, it uses the packet’s header fields and timestamp to up-
date the monitored values in the register arrays. Upon a miss,
NetWarden needs to send this packet to the control plane for
entry installation.

Packet buffers Statistical tests

|| Nl '
|

Slow path (control plane)

Connection table State variables

Key (4-tuple) Val idx rwnd ACK time

10.0.0.2:22:1.2.3.4:80 %

=1 10.0.1.3:80:152.2.0.9:87
—

65535 182 0.045

6000 9182 | 0.053
2048 3817 | 0.029
1000 4523 | 0.061

10.0.0.4:22:150.12.0.1:53
10.0.0.4:21:150.12.0.2:52

wlo|N |k
wiNn|+k|o

Fast path (data plane)

Figure 2: NetWarden consists of a fastpath defense on the
data plane, and a slowpath defense on the control plane.

IPD characterization. If NetWarden keeps all IPDs for all
connections, it would soon run out of memory and need to
evict data to the control plane. Monitoring systems such as
Marple [31] use this design, because they passively observe
the traffic and only perform analysis offline. However, as an
online defense, NetWarden needs to run at linespeed, so it
should avoid such heavyweight evictions as much as possible.
To address this, a possible approach is to keep k counters
for a fixed numbers of IPD intervals [0,7,), [t2,13), - - -, [fx,).
When a packet comes in, NetWarden computes the IPD be-
tween its timestamp and the last-seen packet timestamp from
the same flow, and increments a counter for that IPD interval.
Such a data structure approximates the IPD distribution on
the data plane, and trades off some accuracy for efficiency.

Storage channel defenses. NetWarden also adapts a set of
existing defense techniques for programmable data planes.
Type-I channel defenses are the easiest, as they are simply
header modifications (e.g., setting fixed values to ToS, Urgent
Pointer, and IPID fields). Type-II channels require stateful
defenses. For instance, consider the TCP initial sequence num-
ber channel [9]. NetWarden can replace a sequence number s
with s, but then it also needs to apply the same offset s’ — s
to subsequent packets in order to preserve correctness. The
needed state is recorded in the connection table, which sup-
ports linespeed reads and writes. The main benefit NetWarden
provides for these defenses is efficient hardware support.

Type-III channels exploit the non-determinism of network
traffic, such as the partial ACK channel [28]. To the best of
our knowledge, NetWarden is the first system that can de-
fend against this channel, using a technique that we call ACK
rewinding. If NetWarden sees an ACK packet that acknowl-
edges an offset that is lower than the highest sequence number
seen in this connection, it rewinds the ACK value to a smaller
value. Such a value could be a previous ACK number before
the last burst of packets were received, or it could be a pre-
vious ACK number offsetted by a controlled amount; either
way would mitigate the partial ACK channel. This comes at
the cost of unnecessary retransmissions, but such inefficiency
would be addressed later by performance boosters.

3.2 The slowpath defense

The slowpath defense runs on the switch control plane. In
addition to installing match/action entries upon a table miss, it
has three more modules for channel defense: a) statistical IPD
tests, b) timing channel defense, and c) performance boosters.

Statistical IPD tests. This module queries the IPD intervals
for selected connections, and performs statistical tests for tim-
ing channel detection. As a defense platform, NetWarden can
easily support existing detectors (e.g., Kolmogorov-Smirnov
test [32] or regularity test [8]), or new detectors that may be
developed in the future. The main novelty here is to offload
IPD characterization to the data plane, which is heavyweight
and needs to be performed per packet, and to perform statis-
tical tests in software on aggregated IPD data. As ongoing
work, we are also exploring whether certain simple tests (e.g.,
detecting skewed distributions) can be done on the data plane.

Timing channel defense. This module injects random delays
to packets in suspicious connections to disrupt potential tim-
ing modulation. NetWarden temporarily buffers such packets
in the control plane, and sends them to the destination in any
desired order and at a time of its own choice. This obviously
may lead to packet reordering and increased delay, but our
performance boosters would counteract this impact.

Performance boosters. The performance boosters in Net-
Warden can temporarily increase the performance of certain
TCP connections. However, this may cause data packets to
be transmitted at a time when the receiver is not yet ready to
process them, so the control plane needs to be involved for
buffering. We discuss them in detail in the next subsection.

3.3 Performance boosting

TCP performance depends on a) the amount of available data
to send, b) the network condition, and c) the receiver’s ability
to process new data. NetWarden cannot control a), but it can
create the illusion that b) and c) are better than they actually
are, and increase the TCP performance as a result.

ACK boosting. This technique prefetches data from the
sender by generating ACK packets from NetWarden. When
NetWarden sees an incoming packet from the sender, it for-
wards the packet to the receiver, and at the same time, im-
mediately generates an ACK on behalf of the receiver. This
hides the latency for a) the data packet to propagate to the
receiver, b) the receiver to process the data and generate the
real ACK, and c) for the ACK to propagate back to the sender.
In effect, it creates the illusion of a shorter RTT as perceived
by the sender, thus ramping up the sending rate faster. Al-
though NetWarden forwards all data packets to the receiver,
it still needs to buffer the prefetched data in the control plane
temporarily, in case it needs to serve the data to the receiver
again if packets are dropped from NetWarden to the receiver.
The buffered data can be gradually removed when the actual
ACKs from the receiver arrive at NetWarden. Such ACKs do

not need to be forwarded to the sender, since from the sender’s
perspective, the corresponding data packets have already been
successfully received. This technique works more effectively
when NetWarden is deployed close to the sender (data source),
which corresponds to typical scenarios where NetWarden is
co-located with a rack of servers that host sensitive data.

Receive window boosting. This technique generates an ACK
packet on behalf of the receiver with a large receive window,
creating the illusion of a high-performance receiver. This aims
to remove any limit posed by the actual receive buffer size
when the sender is computing the sending window (i.e., the
minimum between the congestion window and the receive
window). As before, the prefetched data is buffered in the
control plane, and NetWarden serves the data as a proxy.

4 Initial Validation

We have built a preliminary NetWarden prototype for initial
validation. Our prototype is written in P4 (for the fastpath)
and Python (for the slowpath), and runs in a software-based
simulator [3]. It implements a) a simple defense against a stor-
age channel that encodes data in the receive window size field,
by setting the window size to a smaller (therefore safe) value,
b) a defense against a timing channel that uses large/small
IPDs by injecting random delays, and c) the receive window
boosting and ACK boosting techniques. In the timing channel
setup, the server is sending a file to the remote client; in the
storage channel setup, the client is uploading a file to the
server; in both cases, the server attempts to exfiltrate data
via covert channels. NetWarden is directly connected to the
server for defense.

Baseline systems. Our main comparison is between a) the
simple defenses (e.g., shrinking receive window size, adding
random delays), and b) the performance-boosting defenses,
both in terms of defense effectiveness and performance im-
pacts. We have additionally used a scenario without any de-
fenses (i.e., native performance, but vulnerable to attacks) as
the baseline. Since our initial prototype runs in software simu-
lation, we note that the high-level trends are more meaningful
than the actual (software-based) measurements.

Defense effectiveness. We found that both defenses are ef-
fective against the tested channels. When there is no defense
deployed, using the storage channel, the attacker can success-
fully embed data in the receive window; using the timing
channel, it can achieve a decoding error rate as low as 4%.
When either defense is applied, the storage channel based on
the receive window size is no longer usable; for the timing
channel, the simple defense increases the decoding error rate
from 4% to 50%, and the performance-boosting defense in-
creases the error rate to 49.3%, both rendering the decoding
close to a random guess.

Performance impacts. For the storage channel attack, the
data transfer took 49.52s to finish under the simple defense.

60 70
[0} Q

€ 30 £ 35
'_

0 0

N S B N S B
Defense Defense
(a) Storage channel (b) Timing channel

Figure 3: NetWarden mitigates network covert channels in
a performance-preserving manner. N: no defense; S: simple
defense; B: performance-boosting defense.

This is in comparison to the “no defense” baseline, where the
transfer took 32.98s. Therefore, the simple defense inflates the
transfer time by 50.1%, a significant performance degradation.
Using the performance-boosting defense, however, NetWar-
den achieved a transfer time of 33.09s, which only represents a
0.3% increase. For the timing channel, “no-defense” achieved
a 58.15s transfer time, the simple defense inflated this to
68.91s (a 18.5% increase), and the performance-boosting de-
fense only took 59.76s (a 2.8% increase).

Summary. The preliminary results above suggest that Net-
Warden seems to be a promising defense against network
covert channels with minimum performance loss.

5 Related Work

We have already discussed related work on timing and storage
channels, so we focus on other related projects here.

Normalizers. Normalizers can eliminate ambiguities in pro-
tocol payloads, preventing attacks due to inconsistent TTL
values [17] or TCP retransmissions [35-37]. The key ap-
proach is to normalize traffic payload to a deterministic byte
stream. However, even deterministic payload streams can con-
tain covert channels; NetWarden focuses on the latter.

Active wardens. Existing research has developed active war-
dens for covert channel defense [9, 12,25], but most wardens
are only proof-of-concept systems that are hard to deploy due
to their inefficiency. In addition, none of the existing wardens
has considered performance preservation as a key design goal.
Programmable data planes. Programmable data planes
have been used for a wide variety of tasks [10,13,20,21,31,39].
NetWarden is most related to Dapper [13] on TCP perfor-
mance diagnosis. However, the primary goal of NetWarden is
to use programmable data planes for security.

6 Ongoing Work

NetWarden is ongoing work, and there are quite a few open
issues to be explored as next steps. First, we are developing

principled approaches to identifying the boundary between
the fastpath and the slowpath for an “optimal” division of
labor. Second, estimating how much performance boosting
NetWarden should perform for a connection requires a careful
design. If we boost the performance of a connection too much,
this would consume the bandwidth of contending flows. We
would like to design defenses that not only preserve perfor-
mance for a single connection, but also ensure fairness across
TCP flows. Moreover, since many TCP variants exist, we
would like to understand how NetWarden should perform the
boosting differently, or whether we could design a universal
strategy for preserving performance. Last but not least, our
prototype and experimental results are in a very preliminary
stage. We plan to continue our investigation on NetWarden by
developing a full hardware-based prototype and evaluating it
with realistic traffic speeds and deployment scenarios.

7 Acknowledgments

We thank Qiao Kang, Kuo-Feng Hsu, and the anonymous
reviewers for their valuable feedback. This work was partially
supported by an NSF grant CNS-1801884.

References

[1] Amazon EC2 instance types. https://aws.amazon.c
om/ec2/instance-types/.

[2] The P4 language repositories. https://github.com
/p4lang.

[3] Tofino: World’s fastest P4-programmable Ethernet
switch ASICs. https://www.barefootnetworks.c
om/products/brief-tofino/.

[4] C. Abad. IP checksum covert channels and selected
hash collision. USA, University of California, 2001.

[5] A. Belozubova, A. Epishkina, and K. Kogos. Random
delays to limit timing covert channel. In Proc. Euro-
pean Intelligence and Security Informatics Conference
(EISIC), 2016.

[6] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McK-
eown, M. Izzard, F. Mujica, and M. Horowitz. Forward-
ing metamorphosis: Fast programmable match-action
processing in hardware for SDN. ACM SIGCOMM
Computer Communication Review, 43(4):99-110, 2013.

[7] S. Cabuk. Network covert channels: Design, analysis,
detection, and elimination. PhD thesis, Purdue Univer-
sity, 2006.

[8] S. Cabuk, C. E. Brodley, and C. Shields. IP covert timing
channels: Design and detection. In Proceedings of the
ACM Conference on Computer and Communications
Security (CCS), 2004.

[9] D. M. Dakhane and P. R. Deshmukh. Active warden
for TCP sequence number base covert channel. In Pro-
ceedings of the International Conference on Pervasive
Computing (ICPC), 2015.

[10] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and
R. Soulé. NetPaxos: Consensus at network speed.
In Proceedings of the Symposium on SDN Research
(SOSR), page 5. ACM, 2015.

[11] Department of Defense. Trusted computer system eval-
uation criteria (TCSEC). (DoD 5200.28-STD), 1985.

[12] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil. Eliminat-
ing steganography in Internet traffic with active wardens.
In Proceedings of the International Workshop on Infor-
mation Hiding (IH), 2002.

[13] M. Ghasemi, T. Benson, and J. Rexford. Dapper: Data
plane performance diagnosis of TCP. In Proceedings of
the Symposium on SDN Research (SOSR), pages 61-74.
ACM, 2017.

[14] S. Gianvecchio and H. Wang. Detecting covert timing
channels: An entropy-based approach. In Proceedings of
the ACM Conference on Computer and Communications

Security (CCS), 2007.

[15] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia.
Model-based covert timing channels: Automated mod-
eling and evasion. In Proceedings of the International

Workshop on Recent Advances in Intrusion Detection
(RAID), pages 211-230. Springer, 2008.

[16] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts.
Covert messaging through TCP timestamps. In Pro-
ceedings of the International Workshop on Privacy En-
hancing Technologies (PETS), pages 194-208. Springer,
2002.

[17] M. Handley, C. Kreibich, and V. Paxson. Network intru-
sion detection: Evasion, traffic normalization and end-to-
end protocol semantics. In Proceedings of the USENIX
Security Symposium, 2001.

[18] A. Hintz. Covert channels in TCP and IP headers. Pre-
sentation at DEFCON, 10:16, 2002.

[19] S.Jero, E. Hoque, D. Choffnes, A. Mislove, and C. Nita-
Rotaru. Automated attack discovery in TCP congestion
control using a model-guided approach. In Proceed-
ings of the Network and Distributed System Security
Symposium (NDSS), 2018.

[20] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé,
C. Kim, and I. Stoica. NetChain: Scale-free sub-RTT
coordination. In Proceedings of the 15th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI), pages 35-49, 2018.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://github.com/p4lang
https://github.com/p4lang
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,
C. Kim, and I. Stoica. NetCache: Balancing key-value
stores with fast in-network caching. In Proceedings of

the 26th Symposium on Operating Systems Principles
(SOSP), pages 121-136. ACM, 2017.

E. Jones, O. Le Moigne, and J.-M. Robert. IP trace-
back solutions based on time to live covert channel.
In Proceedings of 12th IEEE International Conference
on Networks (ICON), volume 2, pages 451-457. IEEE,
2004.

B. Lampson. A note on the confinement problem. Com-
munications of the ACM, 16, 1973.

K. S. Lee, H. Wang, and H. Weatherspoon. PHY covert
channels: Can you see the idles? In Proceedings of the
11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 173-185, 2014.

G. Lewandowski, N. B. Lucena, and S. J. Chapin. Ana-
lyzing network-aware active wardens in IPv6. In Pro-
ceedings of the International Workshop on Information
Hiding (IH), pages 58-77. Springer, 2006.

M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,
and K. Atreya. IncBricks: Toward in-network computa-
tion with an in-network cache. ACM SIGOPS Operating
Systems Review, 51(2):795-809, 2017.

X. Luo, E. W. W. Chan, and R. K. C. Chang. TCP
covert timing channels: Design and detection. In Pro-
ceedings of the IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2008.

X. Luo, E. W. W. Chan, and R. K. C. Chang. CLACK:
A network covert channel based on partial acknowledg-
ment encoding. In Proceedings of the IEEE Interna-
tional Conference on Communications (ICC), 2009.

X. Luo, E. W. W. Chan, R. K. C. Chang, and W. Lee. A
combinatorial approach to network covert communica-
tions with applications in web leaks. In Proceedings of
the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2011.

G. R. Malan, D. Watson, F. Jahanian, and P. Howell.
Transport and application protocol scrubbing. In Pro-
ceedings of the IEEE International Conference on Com-
puter Communications (INFOCOM), 2000.

S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun,
M. Alizadeh, V. Jeyakumar, and C. Kim. Language-
directed hardware design for network performance mon-
itoring. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIG-
COMM), pages 85-98. ACM, 2017.

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

P. Peng, P. Ning, and D. S. Reeves. On the secrecy of
timing-based active watermarking trace-back techniques.
In Proceedings of IEEE Symposium of Security and
Privacy, 2006.

C. H. Rowland. Covert channels in the TCP/IP protocol
suite. First Monday, 2(5), 1997.

G. Shah, A. Molina, M. Blaze, et al. Keyboards and
covert channels. In Proceedings of the USENIX Security
Symposium, 2006.

U. Shankar and V. Paxson. Active mapping: Resisting
NIDS evasion without altering traffic. In Proceedings
of the IEEE Symposium on Security and Privacy, 2003.

G. Varghese, J. A. Fingerhut, and F. Bonomi. Detecting
evasion attacks at high speeds without reassembly. In
ACM SIGCOMM Computer Communication Review,
volume 36, pages 327-338. ACM, 2006.

M. Vutukuru, H. Balakrishnan, and V. Paxson. Efficient
and robust TCP stream normalization. In Proceedings
of the IEEE Symposium on Security and Privacy, 2008.

X. Wang and D. S. Reeves. Robust correlation of en-
crypted attack traffic through stepping stones by manipu-
lation of interpacket delays. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), pages 20-29. ACM, 2003.

N. Yaseen, J. Sonchack, and V. Liu. Synchronized net-
work snapshots. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM), pages 402-416. ACM, 2018.

	Introduction
	Overview
	State of the art
	Towards a practical defense

	Solution Sketch
	The fastpath defense
	The slowpath defense
	Performance boosting

	Initial Validation
	Related Work
	Ongoing Work
	Acknowledgments

