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Abstract

We consider the two-group classification
problem and propose a kernel classifier based
on the optimal scoring framework. Unlike
previous approaches, we provide theoretical
guarantees on the expected risk consistency
of the method. We also allow for feature se-
lection by imposing structured sparsity us-
ing weighted kernels. ~We propose fully-
automated methods for selection of all tun-
ing parameters, and in particular adapt ker-
nel shrinkage ideas for ridge parameter selec-
tion. Numerical studies demonstrate the su-
perior classification performance of the pro-
posed approach compared to existing non-
parametric classifiers.

1 Introduction

Linear Discriminant Analysis (LDA) is a popular lin-
ear classification rule [13, Section 4.3], but it has two
limitations. First, it will underfit the data when the
best decision boundary is nonlinear. Secondly, LDA
uses all p features even though not all may contribute
to class separation. Including such “noise” features
into the classification rule can harm classification per-
formance.

To account for non-linearity, several authors consider
kernel discriminant analysis [4, 29, 31, 32]. While
the methods have good empirical performance, to
our knowledge there is a lack of theoretical guaran-
tees on the risk of the learned classifiers. Recently,
[12, 22, 25] provided such guarantees, however under
modified classification criterion with respect to worst-
case training data realization. At the same time, none
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of the above methods perform feature selection, and
as such will overfit in the presence of “noise” features.

On the other hand, several sparse generalizations of
LDA have been proposed [6, 10, 15], however the meth-
ods still result in linear classification boundaries.

This paper addresses the gap between kernel and
sparse LDA methods by using an optimal scoring
framework [19] to construct a kernel-based classifier.
Unlike previous approaches, we provide theoretical
guarantees on the risk consistency of the proposed ker-
nel optimal scoring. We also allow the method to per-
form feature selection by adapting the weighted kernel
idea from [1]. To avoid computational costs associated
with selecting multiple tuning parameters, we develop
a new Stabilization method for ridge parameter selec-
tion. The method is based on the shrinkage ideas from
[24] for stabilization of kernel matrices. Our empiri-
cal results indicate that the Stabilization method leads
to better error rates than generalized cross-validation
(GCV) [11, 16, 36], and we believe this method of pa-
rameter selection could be of independent interest.

In summary, this work makes the following contribu-
tions: (i) we develop a kernel LDA method based on
optimal scoring framework; (ii) we provide theoretical
results on the risk consistency of the proposed classi-
fier; (iil) we use weighted kernels to implement feature
selection within kernel LDA; and (iv) we propose a new
stabilization method for ridge parameter selection.

1.1 Related Work

In this section we draw connections between our work
and existing literature on kernelized optimal scoring
as well as sparse feature selection within kernels.

To our knowledge, the kernelized version of the optimal
scoring problem has not been considered in the litera-
ture except for [31]. Unlike [31], we fix the scores and
provide theoretical guarantees for the method. An-
other major distinction of our method is the feature
selection which is achieved by weighting the kernel and
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adding a sparsity penalty to the weights.

Weighted kernels with sparse weights have been con-
sidered in [1, 8] in the context of kernel regression and
kernel support vector machines. The framework can
not be applied to the original kernel LDA method [29],
however it could be adapted to the proposed kernel
optimal scoring problem due to its least squares for-
mulation.

Learning the optimal weight vector can be viewed
as a kernel learning problem. While most of the
kernel learning literature focuses on finding linear
or quadratic combination of predetermined kernels
[3, 33], learning the weights corresponds to adjusting
the feature support of the kernel matrix. This is also
distinctive from the sparse kernel learning literature,
where the kernel is assumed to be additive with re-
spect to the features [2, 34]. Our framework does not
impose additivity, thus enabling interactions between
the features.

1.2 Notation

For a vector v € R?, let |jv]|2 := /> :_, |v;|*> be the

Euclidean norm, |[v|l; := >%_, |v;| be the ¢! norm,
and ||v]|co := max |v;| be the £°° norm. Let (z,z’) :=
P | a2} be the Euclidean inner product in R?. For a
matrix M € R™*¥ let M; ; denote the (i, j) element of
M. Let [|[M|lop := supyy,=1 [[Mz[]2 be the operator

Vi) S5 (M2 be the
Frobenius norm. Let I be the n x n identity matrix.
Let 1 € R™ be the vector of all 1s, and let C' = I —
n~ 1117 be the centering matrix.

norm, and let ||M||p :=

2 Kernel Optimal Scoring

2.1 Linear Discriminant Analysis and
Optimal Scoring

Let {(x;,y;)}", be independent pairs, where x; € RP
is the vector of features, and y; € R? is the indicator
of class membership such that y;; = 1 if ith sample
belongs to class k, i € Cf, and y;; = 0 otherwise.
Let n; and ns denote the number of samples in each
respective class so that n = ni; + no. Let X € R"*P
and Y € R™*? denote the corresponding feature and
indicator matrices, and without loss of generality let
X be column-centered.

The optimal scoring problem [19] finds the discrimi-
nant vector B € RP and the scores vector § € R? by
solving

mirbirﬁnize Yo — X3|3

subject ton 10TY YO =1,0"Y'Y1=0.

Since the solution vector of scores has explicit form up
to asign, 6 = (y/n2/n1 —y/n1/n2) ", (1) is equivalent
to the linear regression problem

minimize Y8 — XB|3. (2)

The solution B corresponds to the discriminant vector
in LDA up to scaling [17, Section 3.4]. Thus, linear
discriminant analysis can be reduced to finding the
solution to problem (2).

2.2 Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces (RKHS) are com-
monly used in creating non-linear classifiers. The data
is mapped into a RKHS H via ® : RP — H with
an accompanying kernel k : RP x RP — R such that
(®(x),®(2")),, = k(x,2') for any z,2" € RP. We let
||-|l% be the norm induced by the inner product (-, -),.
By the reproducing property of H: (®(x), f),, = f(x)
for all x € RP and f € H. Thus, any classifier that
relies on the training data only through the inner prod-
ucts can be kernelized by substituting kernel evalua-
tions in place of inner products. This effectively cre-
ates a classifier in H rather than in RP.

Some commonly-used kernels are the gaussian ker-
nel k(z,2') = exp(—o 2|z — 2'||3) with ¢ > 0, the
polynomial kernel k(z,2') = (1 + (x,2'))? with d a
positive integer, and the sigmoid kernel k(z,2’) =
tanh(c(z,2’) +t) with ¢ > 0, t > 0. We refer the
reader to [32, Chapter 13] for a review on kernel con-
struction and selection. We let K € R"*™ denote the
kernel matrix K; ; := k(z;, ;) based on observed fea-
ture vectors {z; }7 .

2.3 Kernel Optimal Scoring

We derive the kernelized formulation of the optimal
scoring problem (2). Let f be the discriminant func-
tion in ‘H with corresponding map ® and kernel k. We
substitute each inner product =, 8 = (x;, ) with inner
product in H, (®(z;) — @, f)u, where we apply cen-
tering to ®(z;) via ® :=n"tY 1" | ®(z;) to take into
account column-centering of X. The corresponding
optimal scoring problem in H takes the form

(@(x1) — @, f>7-[

minimize |Y6 —
feH

(@(za) ~ @, f),,)
By the Representer Theorem [23], the minimizing f
lies in the finite-dimensional span of the centered data,
that is it is sufficient to consider minimization over
[ =0 a;[®(z;) — ®] for some a; € R. Combining
the Representer Theorem with kernel representation
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of inner-products in H leads to the equivalent coeffi-
cient space formulation of the kernel optimal scoring
problem:

rmm%nze Y0 — CKCaj2. (3)
ae

Kernel methods may over-fit the training data without
further restriction on the set of functions f € H, [13
32, 30]. A common approach is to restrict the norm
I f113, = aTCKCa, and we add a ridge penalty to the
objective function (3)

mlnlﬁmze {||Y0 CKCal3 + 'yaTCKCa} (4)
cRn

where 7 > 0 controls the level of regularization. For
numerical stability, we also add €/ with small ¢ > 0
to the ridge penalty so that CKC is replaced with
CKC +¢l. A similar adjustment is used in [29, 31].
We fix ¢ = 10~° throughout the manuscript. The
problem has a closed-form solution leading to

a = {(CKC)? + ny(CKC + 1)} 'CKCYD.  (5)

We call (4) the kernel optimal scoring problem or KOS.

2.4 Classification of a New Data Point

In this section we describe how to use KOS for classifi-
cation. Let & be as in (5), and let f = 77" | @;[®(x;)—
®]. Given a new data point x € RP, let

(k(z1, ) k(xn,x))T

We define the projected value P(x) as the inner-
product between x mapped and centered in H and
f so that P(z) is equal to

K(X,z)=

<<I>(x) -~ 3, f>H = (K(X,2)T —n "1TK)Ca. (6)

The derivation of (6) is in the Supplement.

KOS classifies z € RP using nearest centroids clas-
sification on the projected values. Specifically, let
e = rle > ica, P(x:) be the mean projected values
of group k (projected centroid). We classify = € RP
according to the minimal distance to projected cen-
troids

argmin | P(z) — pgl-
k=1,2

3 Error Bounds for Kernel Optimal
Scoring

Problem (4) can be viewed as a regularized empirical
risk minimization problem

J?: argmin{Rcmp(f)+’Y”ng-L}a (7)
feH

where for a fixed f € H

emp Z |yT9 -

By duality, for every v > 0 there exists a 7 > 0 such
that

D=2, (8

f = argmin { Remp (f)} - (9)
lfllze<T
While the relationship between v and 7 is data-
dependent, Lemma 3 in the Supplement shows that
7 < Cmin(y~*,y~/?) for some constant C' > 0. For
technical clarity, we analyze (9) throughout.

There are two complications in analyzing the empirical
risk in (8): 6 is dependent on all y; through nq, na,
andAE is dependent on all x;. Hence, the error terms
ly; 0 — (®(x;) — ®, f) |* are dependent. The empirical
risk can be equivalently written as

Z v 60— —

with the minimizing 3 = —(®, f) since 17Y0 = o.
We therefore introduce a modified empirical risk using
population scores #* and an extra intercept parameter
B € R. The population scores 6* result from substi-
tuting 7, instead of ny/n in 6.

Definition 1. Let m, = P(i € C}) be the prior class
probabilities, k = 1,2. The population scores are de-

fined as 0% = (\/m2/m — /m1/m2)"

For a fixed f € H and 8 € R, the modified empirical
risk is

Remp(f, B) = (®(z), f) %,

Eemp fv (xi)7f>|2'

ZlyTQ*

Unlike the empirical risk, the modified empirical risk
is the average of iid terms. For a fixed f € H and
B € R, the corresponding expected risk is

R(f,B) :=Epyly 0" — B — (®(z), f) |*-

Let f be as in (9) and let 3 = —(®, f). We next
derive probabilistic bounds on the expected risk of f.
Throughout, we use the following assumptions.

Assumption 1. Let Tpax = max(m,m2), Tmin =
min(my, 7). There exists a constant C' > 0 such that

16 loo = v/Tmax/Tmin < C.

This assumption implies that the prior group proba-
bilities are not degenerate, that is m; =< ms.

Assumption 2. There exists a constant k > 0 such
that ||®(x)|lx < k for all x € RP. Equivalently,
SUp,ere k(z, z) < K2
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Assumption 3. The RKHS H is separable.

Remark 1. The gaussian kernel satisfies Assump-
tion 2 with kK = 1 and satisfies Assumption 3 by The-
orem 7 in [20].

Using (9), we define the set of admissible functions f as
={f €H:|fllu <7}, and the set of admissible

intercepts 8 as I == {8 € R: |B| <||6*|loo + KT}

Remark 2. The intercept B\ € I, by Assumption 2.

The extra term ||0*|oo comes from minimizing the
modified empirical risk.

Let

argmin_ Remp(f, B)- (10)
fEH, ,BEI,

(f.B) =

be the minimizers of the modified empirical risk over
the set of admissible functions and intercepts, and let

(f*,8%) = argmin R(f,p) (11)

feH, ,Bel,
be the minimizers of the expected risk over the set of
admissible functions and intercepts. Our proofs rely on
characterizing (i) the difference between (9) and (10),
and (ii) the difference between (10) and (11). The

detailed proofs are in the Supplement, and below we
state the main results.

Theorem 1. Under Assumptions 1-3, there exist con-
stants C1,Csy,C3 > 0 such that

p(R(7.5) >

< CyN;exp ( -

R(f*,") +¢)
Csne?
T )

where Nz = {1+ 2(||0*||oc + £7)/e} exp(Car2e72).

Theorem 2. Under Assumptions 1-3, there exist con-
stants Cq,Ca,Cs > 0 such that

P(R7.) > R+ )

Cane? )

< =
< e (= gt ye)

where Nz = {1+ 2(]|0*||cc + k7)/e} exp(Car?e72).
Theorem 1 bounds the expected risk of ]? compared

to the best in-class expected risk, whereas Theorem 2
bounds it in terms of the empirical risk of f.

4 Sparse Kernel Optimal Scoring

The regularized KOS problem (4) performs no feature

selection. All p features are used in construction of f

and the subsequent classification rule. In many appli-
cations, however, it is reasonable to expect that not all

Category
g 4
e 45 A
0 %6

1. 0 1 0 -0.5 0.0 0.5 1.0

Feature 2
o
°

Category
(o
A

Noise 2

-15 -10 -05 00 05 10
Noise 1

-i5 -10 -05 00 05 10

Figure 1: Simulated training and test data with four
features, only features 1 and 2 contribute to class sep-
aration.

e O
Category

0.0- D1
]2

Projection

-0.5-

KéS Spars:e KOS
Sparsity

Figure 2: Comparing the projection values (6) of the
test data in Figure 1 with and without sparsity.

features contribute to class separation. Including such
noisy features in the discriminant rule can lead to poor
classification performance. Figure 1 shows an example
based on simulated data with four features. Only the
first two features contribute to class separation, while
the third and fourth features are noise.

Figure 2 shows the projected data values (6) formed
by applying KOS to (i) all four features and (ii) only
the first two features. The class separation is perfect
based on the two “true” features, but the projected
values overlap with the addition of noisy features, thus
illustrating the need for feature selection within KOS.

To incorporate feature selection, we borrow the ideas
from [1] and introduce a weight vector w € RP,
where we restrict each feature as w; € [—1,1]. The
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weight vector is used to form the weighted ker-
nel matrix (Ky);; = k(wz;,wz;), where wr =
(w121, ..., wpxp) " is the Hadamard product between
the weight vector w and observed feature vector x. If
w =1, K, = K from Section 2.3. Otherwise, w can
be used to rescale features with respect to each other,
and more importantly perform feature selection. If
w; = 0 for some feature j, then the kernel matrix K,
is formed without the jth feature, successfully elimi-
nating that feature from the classification rule. The
main difficulty is that the optimal weight vector w is
unknown, and therefore has to be learned in addition
to learning the discriminant function f.

We adjust (4) to perform joint minimization over
the coefficient vector & € R™ and the weight vector
w € RP. To encourage feature selection, we add an
{1-penalty on w as in [1] leading to the following min-
imization problem:

1 ~
minimize {|Y9 — CK,,Cal3 + Mwl;
Q€R", weRr |

0T (CK,C + 5I)a} (12)

subject to —1<w; <lfori=1,...,p.

Here A\ > 0 is the tuning parameter that controls the
sparsity of the weight vector w, with larger values lead-
ing to sparser solutions. We call (12) sparse kernel
optimal scoring. Given the solution pair (@, &), we
perform classification as in Section 2.4 with Kg being
substituted for K and @z substituted for z in forming
the projected values P(z) in (6).

Remark 3. Unlike our restriction wy, € [—1,1], [1]
considers wy, € [0,1]. Both lead to w} € [0,1], but we
found that the latter may force all the weights to zero
even when A = 0. This behavior is avoided when the
weights are allowed to be negative.

4.1 Optimization Algorithm

In this section we describe the optimization algorithm
for problem (12) given the fixed values of v, A > 0.
Methods for parameter selection are presented in Sec-
tion 5. We define the objective function in (12) as

. 1~
Obj(w,a) = EHY@ — CK,Cal2 + Mwly (13)

+~va " (CK,C + el)a.

There are two challenges in solving (12): (i) non-
convexity of the objective function (13) in (o, w) and
(ii) non-convex mapping w — K,,. [1] propose to
overcome these challenges by (i) iterative minimiza-
tion over @ and w and (ii) linearization of the weighted
kernel matrix K,, with respect to the current value of

the weight vector. We adapt the algorithm from [1] to
problem (12).

Given the current value of the weight vector w, we form
the corresponding weighted kernel matrix K,, and up-
date o according to (5) with K substituted with K.
Given the current value of the coefficient vector «, we
update w by linearizing the kernel matrix. Consider
the first-order Taylor approximation of K,, with re-
spect to w centered at the previous value w1 ele-
mentwise:

Kw<xi7xj) =
Ko (@3,25) + {VuK oo (@, 2)} T (w - w),
where VK, -1 (z;,2;) € RP is the gradient of

k:(wxi,wxj) with respect to w evaluated at w1,
We substitute K,, in place of K,, within (12). Let
T € R™"*P be

Zz:l(ca)fv’w K’w(tfl) (xlv xl)—r

T .=
Z?:1(Ca)lvw Kw(t—n(JCmW)T

For fixed «, the minimization problem (12) with re-
spect to w can be written as

1o+ A }
minimize § —w w — w+ —||w
e { 30T Qu— 57w+ Jul, »

subject to —1 <w; <lfori=1,...,p;

where
Q= l(CT)TCT € RP¥P,
n
B = ETTC[Yéf CK -1 Ca + CTw =] (15)
n

—2714TTCa e R,

Problem (14) is of the same form as the penalized lasso
problem [18, Chapter 5] with extra convex constraints
on w. Therefore, we can use the coordinate-descent
algorithm to solve (14).

Consider optimizing (14) with respect to wy. From
the KKT conditions [5], the solution must satisfy

Wy = sign(wy,) min(|wg|, 1), (16)
where
- 1
Wk = 75/\/2 (5k - Z Qkiwi>a
Qrk o

and Sy/o(x) := sign(x) max{|z| — A/2, 0} is the soft-
thresholding function. The coordinate-descent algo-
rithm proceeds by applying the update (16) on each
feature k until convergence.
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Algorithm 1: Sparse Kernel Optimal Scoring
Input : X € R"¥P, Y € R"*2 5, oc>0,v>0,
A > 0, convergence threshold e¢op

Output: Discriminant coefficients @ and feature
weights w.

t+0
w® 1
(Kw(o))i’j — k(woxi, woxj), Kw(o) — {(Kwo)i,j}
repeat
t—t+1
Update a(*) according to (5) with K = K1)
Update w® using coordinate descent with
updates according to (16)
(Kw(t,))i,j — k(w(t)xi,w(t)mj)
until Obj(a® w®) — Obj(at=1) wlt=1) < e,
return a = a®, @ = w®

The full algorithm for (12) is summarized as Algo-
rithm 1. While the update of w is based on approx-
imation of objective function (13), in our experience
the objective function is always decreasing at each it-
eration. In case of convergence issues, one can use a
line search along a descent direction of w [1]. We refer
to [1] for further discussion of algorithmic convergence.

5 Parameter Selection

This section describes the selection of the kernel pa-
rameter (tailored to the gaussian kernel parameter o2),
ridge parameter -y, and sparsity parameter .

5.1 Gaussian Kernel Parameter Selection

We propose to use 5-fold cross-validation to mini-
mize the error rate. To reduce computational cost,
we only consider five tuning parameters based on the
{.05,.1,.2,.3,.5} quantiles of the set of squared dis-
tances between the classes

{llzi, — 24,13 : i, € C1, @i, € Ca}

This approach is similar to the one used in the R pack-
age kernlab [21], which takes values between .1 and .9
quantiles of the distance statistic ||z — /|| between
distinct data points taken from a random subset of
the full data. [7] and [21] state that good performance
can be achieved with any value of ¢ in this range. Our
approach is different in that (i) we select one value
based on CV, (ii) only look at the distances between
classes, and (iii) only consider lower quantiles. We
find that this yields good predictive accuracy, and we
conjecture that the reason is the presence of noise fea-
tures, which inflate the distance values ||z;; — x4, |2

This is supported by empirical observation that the
quantiles based on the full set of features will exceed
the corresponding quantiles based on the reduced set
of informative features.

5.2 Ridge parameter selection

Due to the computational expense of cross-validation,
we propose an alternative approach for ridge parame-
ter selection based on the shrinkage of kernel matrix.
[24] proposes to stabilize the kernel matrix via shrink-
age towards a target matrix and derives an optimal
value for the shrinkage parameter. Following [24], in
KOS we want to stabilize (CK,,C)? with the target
matrix CK,,C + €I, and therefore consider

(CKC)? +~(CK,,C +¢I)

for v > 0. Let t = v/(1 + ), then the optimal value

of t is t = min(max(0,t), 1), where

o (ndiagwmn%;ncm@)
R [CKCT;: |

Solving back for + gives the ridge penalty 3 = ¢/(1—t).
We call this approach Stabilization.

Generalized cross-validation (GCV) [11, 36, 16] is an-
other common method for selection of ridge parameter,
however we found that it performs poorly compared to
proposed Stabilization method. Figure 3 compares the
selected ridge parameters as well as corresponding er-
ror rates for two methods. We generate 100 training
and testing datasets following the model in Section 6.1.
Each time we consider five possible kernel parameters
02 based on the distance quantiles as in Section 5.1.
We then select ridge parameters by either GCV or pro-
posed stabilization method, and choose the best spar-
sity parameter for each as in Section 5.3. We find that
GCV consistently selects smaller value for the ridge
parameter than our approach leading to higher error
rates. We conjecture that surprisingly poor perfor-
mance of GCV is due to the presence of noise variables,
although we do not have the formal justification.

5.3 Sparsity parameter selection

We select A using 5-fold cross-validation (CV) to min-
imize the error rate over a grid of 20 equally-spaced
values in [107%N\ pax, Amax]- We set Amax = 2||8]]0o,
where 8 is as in (15), since the solution @ to (14) is
zero if A > A\pax (see Lemma 1 in the Supplement).

6 Empirical studies

We compare the performance of the following methods:
(i) sparse kernel optimal scoring (Sparse KOS); (ii)
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Figure 3: Comparison between generalized cross-
validation (GCV) and proposed Stabilization method
for selection of ridge parameter v over 100 replications.
Top: Selected values of v; Bottom: Misclassification
error rates.

kernel optimal scoring (KOS); (iii) random forests; (iv)
kernel support vector machines (kernel SVM); (v) neu-
ral networks; (vi) K-nearest neighbors (KNN); and
(vii) sparse linear discriminant analysis (sparse LDA).

We implement sparse KOS using the gaussian kernel
with parameters selected as in Section 5, KOS is im-
plemented by setting A = 0 and w = 1. We use the
R package randomForest [27] to create a classifier with
50 decision trees. We use the R package kernlab [21]
for kernel SVM using the gaussian kernel with param-
eter selected as in Section 5.1. We use keras [9] to
implement a neural network with the ReLLU activation
function, 50 units, 100 epochs, and the default batch
size. We use class [35] for KNN with K = 5. We use
the R package MGSDA [15] for sparse LDA.

6.1 Simulated model 1

We generate data as in Figure 1 with p = 4 fea-
tures (z1,22,2s,24). The first two features satisfy
Va3 +x% > 2/3 if the ith sample is in class 1, and
V2 + 22, <2/3-1/10 if the ith sample is in class 2.
We generate 300 samples with each feature from the
uniform distribution on [—1, 1] and only leave samples
that satisfy one of the class requirements (n ~ 270).
The remaining two features are generated as indepen-
dent gaussian mnoise variables, x;; ~ N(0,27!) for
j = 3,4 and all samples i. We use 2/3 of the sam-

Pk

Sparse KOS KOS

)
N

Misclassification Error Rates
on Test Data
°

Random Forest Kernel SYM Neural Networks Sparse LDA

Classification Method

Figure 4: Misclassification error rates based on 100
replications of simulated model 1.

Il
il

=

Misclassification Error Rates
on Test Data
o

Random Forest Kernel SYM Neural Networks ~ KNN Sparse LDA

Classification Method

Sparse KOS KOS

Figure 5: Misclassification error rates based on 100
replications of simulated model 2.

ples for training, and 1/3 for testing, maintaining the
class proportions. We repeat the data generation pro-
cess and the split 100 times, the misclassification error
rates over test datasets are presented in Figure 4.

Sparse KOS performs the best out of all classifiers with
random forest being second-best. Sparse LDA per-
forms the worst, likely due to non-linear optimal clas-
sification boundary. Sparse KOS has excellent feature
selection in this study- giving nonzero weight to the
first two features in all 100 splits while giving w; = 1
for j = 1,2 in 98 out of 100 replications and w; = 0
for j = 3,4 in 99 out of 100 replications.

6.2 Simulated model 2

We generate data with p = 10 features and n = 400
samples such that z;3+sin(z;q+;1) < (z42)? if sample
i belongs to class 1, and x;3 + sin(zi4 + z41) > (742)?
if sample ¢ belongs to class 2. We use the uniform
distribution on [—1,1] for each x;;, so that the last 6
features are uniform noise. As with the previous ex-
ample, we use 2/3 of the samples for training, and 1/3
for testing, where the split is performed to maintain
the class proportions. We repeat the data generation
process and the split 100 times. The misclassification
error rates over test datasets are presented in Figure 5.

The lowest misclassification error rates are achieved



Sparse Feature Selection in Kernel Discriminant Analysis via Optimal Scoring

1.00- e & ©

=]
~
o

606050

Mean Absolute Value
o o <
> g

0.00 -
i 2 3 4 5 6 7 8 9 10
Feature
Figure 6: The mean absolute values of weights |w,| for
each feature across 100 replications of simulated model
2. The bars represent +2 standard errors.

Dataset Features Sample
size size
Blood donation [38] p=4 n = 748
Climate model failure [28] | p = 18 n = 540
Credit card default [37] p=24 n = 3,000

Table 1: Description of benchmark datasets

by sparse KOS, KOS, and neural network classifiers.
Sparse KOS behaves similarly to KOS because sparse
KOS is unable to consistently select true features.
Nevertheless, it gives higher weight values to true fea-
tures as displayed in Figure 6. As with the previous
example, sparse LDA performs the worst.

6.3 Benchmark datasets

We consider three datasets, summarized in Table 1,
which are publicly available from the UCI Machine
Learning Repository. We randomly split each dataset
100 times preserving the class proportions and use 2/3
for training and 1/3 for testing. We do not present the
error rates for sparse LDA due to its poor performance
on these datasets (it classifies every point to the largest
of two groups), the misclassification error rates for all
other methods are in Table 2.

In the blood donation study [38], the goal is to deter-
mine if a person will donate blood given four features:
Recency (months since last donation), Frequency (to-
tal number of donations), Monetary (total blood do-
nated in cubic centimetres), and Time since first do-
nation. Sparse KOS consistently gives large weights
(lw;| > 0.9) to every feature but Frequency. The lat-
ter gets large weight in only 50% of splits. Sparse KOS
performs similarly to KOS, and we conjecture this is
because all features are important for classification.

In the climate model study [28], the goal is to predict
if a climate simulation will crash based on 18 initial
parameter values. Sparse KOS consistently selects 4

Blood Climate Credit
Donation Model Default
Sparse 22.1 (0.18) | 4.9 (0.13) | 18.2(0.06)
KOS
KOS 22.2 (0.20) | 5.4 (0.12) | 19.1 (0.08)
Random | 24.3 (0.18) | 8.2 (0.06) | 19.1 (0.08)
Forest
Kernel 22.4 (0.12) | 8.7 (0.00) | 20.0 (0.08)
SVM
Neural | 23.9 (0.04) | 5.4 (0.15) | 21.7 (0.04)
Network
KNN 23.5 (0.20) | 7.6 (0.08) | 20.8 (0.08)

Table 2: Mean misclassification errors (%) over 100
random splits, standard errors are in brackets.

out of 18: features 1, 2 (variable viscosity parameters),
feature 13 (tracer and momentum mixing coefficient),
and feature 14 (base background vertical diffusivity).
Sparse KOS has the best classification performance,
which is likely due to feature selection.

The credit card data [37] has 30,000 data points, but
we restrict to n = 3,000 for computational simplicity.
The goal is to predict the default of a customer on
credit payments based on 24 features. Sparse KOS has
the best classification performance, followed by KOS
and random forests. Sparse KOS always selects feature
6 (the repayment status in September, 2005, the latest
monthly payment recorded) and rarely selects other
features. The most recent payment history is strongly
indicative of credit default.

7 Discussion

We propose a kernel discriminant classifier with sparse
feature selection, called sparse kernel optimal scoring,
which is implemented in the R package sparseK0S [26].
An advantage of sparsity is that it can improve classi-
fication performance (see Section 6) and lead to more
interpretable classification rules. The nonzero weights
produced by sparse KOS can be used to judge the im-
portance of features. While we have focused the dis-
cussion on the case of two classes, the method can be
generalized to multiple classes using optimal scoring
formulation in [14].

Sparse KOS requires the construction of a n x n kernel
matrix K and is therefore computationally prohibitive
for large n cases. Future research could investigate
the appropriate low-dimensional approximations of K
within the kernel optimal scoring framework.
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