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Abstract— We augment linear Support Vector Machine
(SVM) classifiers by adding three important features: (i) we
introduce a regularization constraint to induce a sparse classi-
fier; (ii) we devise a method that partitions the positive class into
clusters and selects a sparse SVM classifier for each cluster; and
(iii) we develop a method to optimize the values of controllable
variables in order to reduce the number of data points which
are predicted to have an undesirable outcome, which, in our
setting, coincides with being in the positive class. The latter
feature leads to personalized prescriptions/recommendations.
We apply our methods to the problem of predicting and
preventing hospital readmissions within 30-days from discharge
for patients that underwent a general surgical procedure. To
that end, we leverage a large dataset containing over 2.28
million patients who had surgeries in the period 2011-2014 in
the U.S. The dataset has been collected as part of the American
College of Surgeons National Surgical Quality Improvement
Program (NSQIP).

Index Terms— Support Vector Machines, clustering, sparsity,
prescriptive analytics, medical informatics, machine learning.

I. INTRODUCTION

The Support Vector Machine (SVM) [1] is a binary clas-
sifier, widely used in practice due to its tractability for large
scale problems. To obtain an SVM classifier, one needs to
solve a convex quadratic problem with linear constraints,
which can be done for large problem instances involving
thousands of samples and hundreds of variables for each
sample. The goal of this paper is to exploit the SVM frame-
work to move beyond predictions and attempt to “control”
future outcomes by appropriately modifying some of the key
predictive variables. To that end, we develop a new method
we call Prescriptive Support Vector Machine (PSVM).

We will apply the new method to an important problem
in health care; preventing hospital readmissions. The need
for systematic, quantitative methods for addressing health
care problems is compelling. An estimated $3 trillion is
spent annually on health care in the U.S., a value that
exceeds 17% of the U.S. Gross Domestic Product (GDP)
— by far the largest among the 13 high-income Organization
for Economic Cooperation and Development countries. The
Centers for Medicare and Medicaid Services have identified
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hospital readmissions, defined as an additional admission to
address the same issue within 30 days after discharge, as
an important and potentially preventable source of excessive
resource utilization and increased cost of care [2].

An analysis of 2005 Medicare claims demonstrated that
about 75% of 30-day readmissions, representing about
$12 billion in Medicare spending, were potentially pre-
ventable [3]. As a result, through the enactment of the
Readmissions Reduction Program section of the Affordable
Care Act of 2012, readmissions have been increasingly
used as a quality of care metric, and their reduction is
mandated for certain diseases [2]. In this context, many
surgical departments in the U.S. are establishing processes
aimed at reducing 30-day readmissions. We refer to [4] for
a general discussion of the benefits and some potential risks
associated with the application of health analytics.

Several works exploit classical machine learning ap-
proaches, such as random forests, gradient tree boosting,
logistic regression, linear and kernelized SVM, and related
methods for predicting 30-day readmissions in patients with
heart failure [5], [6], [7]. Recently, the authors developed an
interpretable classification approach to predict chronic dis-
ease hospitalizations based on past Electronic Health Records
(EHRs), establishing convergence, sample complexity and
generalization guarantees [8], [9], [10]. Interpretability is
indeed critical for medical and health informatics, as well as
other areas, e.g., safety and security management. Without
interpretable models, physicians may not use “black box”
predictions even if they are highly accurate.

In this paper, we augment earlier SVM-based predictive
analytics along three directions. First, we use a sparsity-
inducing ¢;-norm-based constraint to obtain sparse classifiers
which can generalize better out-of-sample and provide inter-
pretability. Second, we leverage our work in [8], [10] to solve
a joint clustering and classification problem and discover
hidden clusters in the positive class and corresponding, per-
cluster SVM-based classifiers. The third direction is the
development of prescriptive analytics. In our setting, this
consists of a method which leverages the SVM-based pre-
dictive model to devise personalized interventions with the
potential to prevent a readmission by controlling/optimizing
the value of some variables characterizing the patient.

There have only been very few works focusing on so-
called prescriptive analytics. An example is [11], [12], which
develop a data-driven framework to prescribe an optimal
decision in a setting where the cost depends on uncertain
problem parameters that need to be learned from data.

We apply our methods to a data set containing over 2.28



million patients who had surgeries in 2011-2014 in the
U.S. The data are collected as part of American College
of Surgeons (ACS) National Surgical Quality Improvement
Program (NSQIP) [13]. Earlier work studied risk factors
for 30-day readmissions for categories of surgical patients,
e.g., orthopaedic trauma injuries [14], knee and hip arthro-
plasty [15], and ventral hernia repair [16]. A simple readmis-
sion score using few variables was developed based on 2011
NSQIP data only in [17]. To the best of our knowledge, our
work is the first to develop analytics for 30-day readmissions
after general surgery using millions of NSQIP records.

The remainder of this paper is organized as follows. Sec. II
reviews SVM-based classification and the joint clustering and
classification method [10]. These are key building blocks for
the prescriptive method which is presented in Sec. III. The
data and pre-processing steps are outlined in Sec. IV. Exper-
imental results are in Sec. V and conclusions in Sec. VI.

Notation: All vectors are column vectors and are denoted
by bold lowercase letters. For economy of space, we write
X = (X1,...,Xgim(x)) to denote the column vector x, where
dim(x) is the dimension of x. We use prime to denote the
transpose of a vector. Unless otherwise specified, || - || denotes
the ¢, norm and |- ||; the ¢; norm. We will use ||x||, =
(Z?;Hll(x> [x;|?)!/P to denote the ¢, norm, where p > 1. We
will also use the notation [N] for the set {1,...,N}.

II. SVM BASED PREDICTIVE ANALYTICS

The SVM algorithm [1] seeks a separating hyperplane in
the variable space, so that data samples from the two different
classes reside on two different sides of the hyperplane. The
minimum over all the distances from the input data samples
to the hyperplane is called margin. The goal of SVM is to
find the optimal hyperplane that has the maximum margin. In
cases where data samples are neither linearly nor perfectly
separable, the soft-margin SVM tolerates misclassification
errors and can leverage kernel functions to map the features
into a higher dimensional space where linear separability is
possible (kernelized SVMs) [1].

A. SLSVM: Sparse Linear SVM

Following [8], [10] and our interest in interpretable clas-
sifiers, we formulate a Sparse version of Linear SVM
(SLSVM) as follows. We are given training data x; € RP
and labels y; € {—1,1}, i=1,...,n, where x; is the vector
of variables characterizing the ith patient and y; =1 (resp.,
yi = —1) indicates that the patient is (resp., is not) readmitted.
We will refer to the class with labels equal to 1 as the positive
class and the other class as the negative class.

We seek to find a hyperplane orthogonal to some vector
B € RP that passes from —fy € R, which can be done by
solving the following quadratic programming problem:

min
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In the above formulation, the first term is proportional to one
over the minimum distance between a hyperplane that passes
from —fy — 1 and a hyperplane that passes from —fy+ 1,
i.e., one over the thickness of a band (margin) in which we
would like to avoid placing any data points so as to increase
the separability between the two classes. The parameter C is
a tunable parameter and &; is a misclassification penalty for
each data point i. The constraint on ||B]|; imposes sparsity
in the variable vector B, thus, allowing only a sparse subset
of features to be selected for the classification decision.
The parameter T is also tunable and controls the level of
sparseness. There exist close connections to previous work,
such as elastic net regularization [18], £;-norm SVM [19],
and a robust optimization approach for obtaining appropriate
regularizers to learning problems [20]. A drawback of the
formulation (1) is that it is difficult to kernelize, while
kernelized elastic net has also been proposed in [21].

B. JCC: Joint Clustering and Classification

In [8], [10] the authors have proposed a Joint Clustering
and Classification (JCC) problem based on the Sparse Linear
Support Vector Machine (SLSVM) framework. The SLSVM
method we saw in Sec. II-A can in fact be seen as a
special case of JCC where only one cluster is being used.
The classification problem under consideration satisfies the
following assumptions. (i) The negative class samples are
assumed to be i.i.d. and drawn from a single cluster with
distribution Py. (if) The positive class samples belong to L
clusters, with distributions P},...,PE. (iii) Different positive
clusters have different features that separate them from the
negative samples (see Fig. 1 for an example).
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Fig. 1: The positive class contains two clusters and each
cluster is linearly separable from the negative class.

Let xf and X; be the D dimensional positive and negative
samples, y;r,y; the corresponding labels, where i € [N"] and
JEINT] and‘yi+ =1, Vi and y; = —1, Vj. Assuming L
hidden clusters in the positive class, we try to discover: (a)
the L hidden clusters (denoted by a mapping function /(i) =
I, 1 €]L]) and (b) L classifiers (ﬁl,Bé) as the solution to the
following Joint Clustering and Classification (JCC) problem:
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where T! is a parameter controlling the sparsity of the
classifier in cluster /.

In formulation (2), we have introduced different misclassi-
fication penalties, éil(l), ¢ ]l for positive and negative samples.
In fact, the misclassification costs of the negative samples
are counted L times, since these samples are drawn from a
single distribution and are not clustered but simply copied
into each cluster. The parameters A~ and A" control the
relative weight of these misclassification costs from negative
and positive samples and should be appropriately selected to
negate the overcounting, specifically, we set AT = LA ~. The
constraint Y7 |B}| < T' is an ¢;-relaxation of the sparsity
requirement to the local classifiers, which is essential to
align the formulation with the problem assumptions and to
estimate more robust local classifiers. The selection of the
tuning parameters is discussed in more detail in [8], [10].

Two different approaches have been proposed for (2) [8],
[10]. The first, transforms the problem into a Mixed Integer
Programming (MIP) problem but can only solve small-scale
problems. The second approach is an alternating optimization
approach which applies to large-scale problems and also
gives rise to theoretical performance guarantees. It is shown
in [8], [10] that it is better to perform joint clustering and
classification instead of separating the two tasks.

III. SVM BASED PRESCRIPTIVE ANALYTICS

Prescriptive Support Vector Machines (PSVM) is a pre-
scriptive method we introduce in this paper that builds on
top of SLSVM and JCC.

Suppose we have generated the per-cluster optimal pre-
dictive hyperplanes using the JCC approach we described
in Sec. II-B. Let ¢ be an index set of variables for each
patient we can control/modulate by applying certain inter-
ventions/therapies. For each patient i in the positive class,
with variable vector x;, we are interested in optimizing the
value of the controllable variables x; 4, for d € €, so that the
patient is predicted to belong to the negative class.

There is, however, a cost for large changes to the value
of the controllable variables, which introduces a trade-off
between “flipping” the patient to the negative class and
implementing interventions that lead to large changes in the
controllable variables (see Fig. 2). The following formulation
optimizes a linear combination of the corresponding two
terms in the objective. Specifically, consider a patient i in
cluster I, where i € [NT], x; is vector of variables characteriz-
ing the patient, and y; is the patient’s variables after applying
the prescription/intervention. Let (ﬁl, [3(%) be the coefficients
associated with the predictive hyperplane discovered by JCC
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Fig. 2: The readmitted patients moved from the readmitted
side of the prediction hyperplane to the non-readmitted side.

in the [-th cluster. To determine y; we solve the following
convex optimization problem:
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where L; ; and U; 4 are bounds on the controllable variables
for each patient i. The parameter A trades-off the failure to
flip the patient to the negative side of the hyperplane with
the required change in the patient’s characteristics measured
by the term ||y; — x;||5. The higher the value of A, the more
attention is given to the goal of preventing a readmission. To
select an appropriate value for A we can use cross-validation,
based on some cost function that accounts for the cost of
reducing readmissions and the cost of prescriptions.

Notice that problem (3) can be solved independently for
each patient who is predicted to belong to the positive
class (readmitted). Thus, it is naturally distributed and can
obtain a prescription for each at-risk patient with only local
computations. The form of the problem (3) depends on the
selection of the £, norm; for instance, when p =2, we have
a quadratic programming problem and when p = 1, we have
a linear programming problem.

IV. DATA AND PREPROCESSING

In this section we describe the data set we use to test and
validate our methods.

A. NSQIP Dataset Description

The ACS-NSQIP was created to improve surgical tech-
niques and outcomes and catalogs over 300 variables on
comorbidities, intra-operative events, and 30-day outcomes
using prospective random sampling [13]. It contains no
protected health information.

The NSQIP dataset contains variables such as:



« Demographic and health care status characteristics, such
as age, gender, race, body mass index, smoking, di-
abetes, hypertension requiring medication, and admit-
tance from the emergency room.

¢ Procedure information (e.g., CPT code [22], ICD9
code [23]), the American Society of Anesthesiologists
(ASA) classification, and wound classification.

o Pre-operative, intra-operative, and post-operative vari-
ables, including hospital length of stay information,
superficial/deep/organ space surgical site infections, and
existence/description of complications (e.g., pneumonia,
infections, bleeding, thromboembolic events, etc.).

« Laboratories, pre-operative and post-operative values.

After data pre-processing steps we describe below, there

were a total of 2,288,938 de-identified patients, 135,293
of whom were readmitted within 30 days, resulting in a
readmission rate of 5.91%. A total of 230 variables were
available for analysis, most of which were binary and integer
with the remaining being continuous.

B. NSQIP Dataset Preprocessing

Data pre-processing steps we applied were as follows:

« Patients who died within 30 days from discharge were
not included in the total of 2,288,938 patients, as these
events compete with readmission.

« Categorical variables (e.g., race, discharge, destination,
insurance type, CPT code, ICD9 code) were numerically
encoded by what is typically referred to as one hot
encoding, which amounts to introducing a new indicator
variable for each category.

« Missing values of categorical variables were treated as
new categories and missing values of numerical vari-
ables were replaced by k-nearest-neighbors imputation.

o Features with small standard deviation (< 0.005) were
removed.

e One of every two features which were highly linearly
correlated (absolute value of correlation > 0.8) was
removed.

« Feature scaling was applied for all features to bring all
values into the [0,1] range, specifically, all variables
were normalized by subtracting the minimum and di-
viding by the range.

The variables were further separated into two classes:
pre-operative variables and post-operative variables. Pre-
operative variables are those that can be known before or
during the main surgical procedure while post-operative vari-
ables, including complications, can only be determined after
the surgery has been completed. The reason for considering
these two classes of variables is that some post-operative
variables may be affected by the controllable variables which
may be modulated using our prescriptive method.

C. Controllable Variables

We consider three types of controllable variables on which
to intervene using prescriptive analytics:

o Pre-operative lab tests: sodium, Blood Urea Nitrogen

(BUN), serum creatinine, serum albumin, bilirubin,

SGOT (Serum Glutamic-Oxaloacetic Transaminase), al-
kaline phosphatase, White Blood Cell count (WBC),
hematocrit (HCT), platelet count, Partial Thromboplas-
tin Time (PTT), Prothrombin Time (PT), and Interna-
tional Normalized Ratio (INR) of PT values.

« Length of stay at the hospital: total length of stay, days
from admission to operation, days from operation to
discharge.

o SSI (Surgical Site Infection) or Infection: occurrences of
deep incisional SSI, occurrences of organ space SSI, and
post-operative occurrences of Urinary Tract Infection
(UTD).

Pre-operative lab values could be altered through appro-
priate medications and treatment before the operation to
bring them closer to levels not associated with readmission.
The length of stay at the hospital could be to shortened, or
lengthened as appropriate. Recommendations can also target
the tightening of infection control measures that affect the
variables described in the third item above. In the work we
report in this paper we focus on the pre-operative hematocrit
(HCT), as it is a variable that can be directly impacted
(increased) through blood transfusion. The predictive models
also suggest that pre-operative hematocrit (HCT) is one of
the most important controllable variables.

V. PERFORMANCE EVALUATION AND EXPERIMENTAL
RESULTS

A. Prediction Results

1) Prediction Accuracy: In the readmission prediction
problem, one typically considers two distinct performance
metrics computed out-of-sample, i.e., over a test set not
seen during training. These metrics are the false positive
rate (or false alarm rate, or one minus the specificity of
the test) and the detection rate (or the true positive rate, or
sensitivity of the test). A Receiver Operating Characteristic
(ROC) curve, is a curve that evaluates the performance of a
binary classifier as the decision threshold is varied, created
by plotting the true positive rate against the false positive
rate at different threshold settings. To have a single metric
to compare different ROC curves, we will consider the Area
Under the ROC Curve (AUC). An ideal prediction model
has an AUC equal to 1, whereas a random prediction would
yield an AUC of 0.5. Anything with an AUC greater than
0.7 is considered a moderately good predictive model.

We randomly chose 60% and 20% of the patients in the
dataset to form the training and validation set and keep the
remaining 20% of the patients as a test set.

We compared the methods we presented in Sec. II with
some standard machine learning methods, namely, Random
Forest (RF) [24] and Logistic Regression (LR) [25]. The
Random forest [24] is a large collection of decision trees and
it classifies by averaging the decisions of each tree. Logistic
regression is widely used as a base for comparison in medical
machine learning studies. In this work, a logistic regression
model was fitted with an additional regularization term: an
£>-norm term (similar to ridge regression) [25].



In Table I, we compare the performance of the various
classification methods: Random Forests (RF) [24], SLSVM,
¢p-regularized logistic regression (L2LR) with pre-operative
variables and post-operative variables [25]. JCC was also
applied to the problem but resulted into a single positive
cluster, which is identical to SLSVM. In Table I, the 2nd
column reports AUC using only pre-operative variables and
the 3rd column lists the corresponding AUC using all (pre-
operative and post-operative) variables.

Methods were implemented in Python (Python Soft-
ware Foundation, https://www.python.org/) [26] and Matlab
(MathWorks, Natick, MA). For random forests, the number
of trees grown was 500. Cross-validation was used to tune
parameters of all methods, e.g., the number of variables
randomly sampled as candidates at each split for RF, reg-
ularization strength for SLSVM and L2LR.

TABLE I: Performance of the various classification methods.

Method  pre-op AUC  post-op AUC
L2LR 72.32% 83.53%
RF 73.11% 84.91%
SLSVM 72.28% 83.48%

Based on the results of Table I, using post-operative
variables results into substantially better performance. AUCs
of all the methods were similar, perhaps because the NSQIP
dataset contained a large amount of data and a sufficient
number of highly predictive features. It is interesting that we
can predict with such a high accuracy 30-day readmissions.
In fact, just this information can be extremely useful as the
health care system can target at-risk patients and monitor
them post-discharge to reduce the risk of readmission.

2) Important Variables: For each variable, we computed
a two-tailed p-value using Welch’s ¢-test, where the null
hypothesis was that the two cohorts (readmitted and non-
readmitted patients) have equal means. We found 177 vari-
ables with a p-value less than 107°.

Using this analysis, the variables with the most statistically
significant values in the two patient cohorts (readmitted and
non-readmitted), were: (i) return to Operating Room (OR)
after the main surgery and before discharge, (ii) length of
stay, (iii) occurrences of Surgical Site Infection (SSI, either
organ/space SSI, superficial SSI, deep incisional SSI), (iv)
occurrences of urinary tract infection, (v) occurrences Deep
Vein Thrombosis (DVT)/thrombophlebitis, (vi) occurrences
of pulmonary embolism, (vii) pneumonia occurrences, (viii)
estimated probability of morbidity, (ix) occurrences of sepsis,
(x) occurrences myocardial infarction, (xi) occurrences of
progressive renal insufficiency, (xii) stroke with neurological
deficit, (xiii) disseminated cancer, (xiv) patient currently
on dialysis (pre-op), (xv) pre-operative HCT, (xvi) total
operation time (in minutes), and (xvii) Body Mass Index
(BMI).

B. Prescriptive Results

In this section we evaluate the effectiveness of prescrip-
tions obtained by solving problem (3) for each patient. We

focus on optimizing the patient’s pre-operative hematocrit
(HCT) using a blood transfusion. Transfusions infuse blood
into the patient bloodstream and, typically, a discrete number
of bags, each containing 100cc of blood, gets prescribed. We
will limit the number of bags of blood given to a patient to
3, corresponding to 300cc of blood, which can be considered
as a safe upper limit for blood transfusion. Each bag of
blood given to patient increases HCT by roughly 3%. We
thus define 4 possible treatments as follows:

o Treatment 1: No transfusion.

o Treatment 2: 1 bag of blood transfusion.

o Treatment 3: 2 bags of blood transfusion.

o Treatment 4: 3 bags of blood transfusion.

Since we do not have in the NSQIP data information on
whether a blood transfusion has been performed, we assume
a baseline treatment depending on the patient’s HCT as
follows:

« For female patients, if HCT<37, 0 bags of blood are
assumed to have been given; if 37<HCT<40, 1 bag of
blood is assumed to have been given; if 40<HCT<43,
2 bags of blood are assumed to have been given; and,
if HCT>43, 3 bags of blood are assumed to have been
given.

« For male patients, if HCT<41, 0 bags of blood are
assumed to have been given; if 41<HCT<44, 1 bag of
blood is assumed to have been given; if 44<HCT<47,
2 bags of blood are assumed to have been given; and,
if HCT>47, 3 bags of blood are assumed to have been
given.

We then use formulation (3) to obtain a prescription for
each patient in a test dataset, using the ¢, norm (p = 2) in the
penalty associated with the prescribed change in the patient’s
HCT. In the absence of ground truth, we then evaluate the
effect of the prescription using a variety of prescriptive
methods. We will compare the readmission rate when pre-
scriptions are being implemented with a baseline rate set to
be equal to the actual readmission rate of 5.85% for patients
in the test set. To be able to compare the readmission rate
with or without the prescriptions, we calibrate each predictive
model by selecting a decision threshold (i.e., a point on the
ROC curve corresponding to the model) so that the model
yields the same readmission rate of 5.85% in the absence of
any prescriptions.

Table II reports the results. The first column lists the
predictive model used to evaluate the effects of the prescrip-
tions. The second column lists the readmission rate after
the optimal prescription is applied to each patient in the
test set. The third column lists the readmission rate in the
absence of any prescriptions. The average reduction of the
readmission rate across the three predictive models is 1.24%,
which implies a 21% decrease compared to the baseline
readmission rate of 5.85%. The average percentage change
of HCT due to the prescriptions is equal to 4.40%.

VI. CONCLUSIONS

We developed a new framework to decide prescriptions
or other interventions that reduce the rate of an undesirable



TABLE II: Effect of optimal prescriptions.

Method  Prescriptive rate ~ Baseline rate
L2LR 4.95% 5.85%
RF 4.70% 5.85%
SLSVM 4.18% 5.85%

event. We build this prescriptive capability based on an
SVM-based predictive model. Decisions can be decomposed
for each subject (patient).

We applied this new framework to a large dataset of 2.28
million patients tracked by the ACS-NSQIP over a four year
period (2011-2014). We considered personalized decisions to
potentially increase the pre-operative HCT for each patient
through a blood transfusion. The objective of the prescriptive
method is to prevent 30-day readmissions and reduce the
corresponding readmission rate.

Our results show that our prescriptive SVM approach
reduces the readmission rate by an average of 1.24% from
the readmission rate of 5.85% in the absence of prescriptions.
This amounts to a relative percentage decrease of 21%.
Considering that more than $12 billion were spent in 2005
by Medicare on potentially preventable readmissions, these
types of readmission rate reductions can lead to dramatic
savings on an annual basis. Future work will consider
kernelized methods and speeding them up them for large-
scale datasets.
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