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Abstract— We develop a data-driven approach for learning
and improving the prescription policy physicians use to treat
Type 2 diabetes. Our model combines regression, classifica-
tion and strategy optimization. We use regression algorithms
to predict the outcomes of prescriptions, and then adopt a
parameterized classification method to learn the physicians’
prescription policy. Finally, we improve the prescription policy
by optimizing over the parameters in the prescription policy
model. Compared with the original prescription policy, patients
who shift their treatment according to the recommended policy
see significant blood glucose reduction on average. The proposed
prescription recommendations offer a better therapeutic effect
than the state-of-art deterministic algorithms. Our framework
can also be applied to improving the prescription policy for
other diseases.

I. INTRODUCTION

There is an increasing percentage of the worldwide popu-
lation suffering from chronic diseases, mainly due to lifestyle
and diet choices. Diabetes, in particular, is one of the leading
chronic diseases and about 30.8 billion was spent in the U.S.
in 2017 on anti-hypoglycemic medications. Type 2 diabetes
patients account for 90% − 95% among all patients with
diabetes [1]. Improving the treatment efficiency is important
to improve patients’ long-term life quality, as well as reduce
health care costs. A promising solution is to provide person-
alized therapy recommendations for heterogeneous patients
based on their health history and characteristics [2].

Some existing research has modeled the prescription rec-
ommendation problem using ideas from dynamic systems
and control theory. For instance, [3] proposed a stress inter-
vention mechanism based on fuzzy control theory. [4] used
a Markov Decision Process (MDP) framework to develop
intervention strategies for breast and ovarian cancer. [5] used
Reinforcement Learning (RL) to learn dynamics and cost
functions.

Most of the related existing work has a number of key
limitations: (a) Unrealistic assumptions: RL-based methods
require simulation or accurate models to capture the (elusive)
interaction between patients and treatments. (b) Lack of
generalization: the design of a dynamic system is valid for
a specific disease and the models may vary from disease to
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disease. (c) Non-personalized recommendations: MDP-based
models assign patients into different “states” and provide
uniform recommendations at each state. (d) Limited scale:
MDPs suffer from the well known curse of dimensionality.

Our work in this paper develops a new “data-driven”
framework for personalized treatment recommendations that
does not require simulation. One of the major challenges of
personalized therapy recommendations is to assess patient-
specific effects of treatments, because the effects of the same
drugs may vary from patient to patient. Although clinical
trials can be utilized to evaluate the effects of one treatment,
it is impossible to assess the counterfactual efficacy of alter-
native treatments. Besides, large-scale clinical trials are eco-
nomically ineffective and time consuming. Fortunately, the
increasing availability of Electronic Health Records (EHRs)
gives us access to large amounts of patients’ medical data,
from which we can extract information about physicians’
prescription policies and patient-specific treatment efficacy.

There are two natural strategies for personalized treatment
recommendations based on data. The first strategy is to
directly learn from data a policy which accurately predicts
physicians’ prescriptions; this method utilizes doctors’ do-
main knowledge and the recommendations will be more eas-
ily acceptable by doctors; however, it is difficult to improve
the physicians’ policy by only learning from them. Another
recommendation strategy is to directly select the treatment
which optimizes the predicted prescription effects [6]; this
approach may produce problematic recommendations espe-
cially when the predictive model has low accuracy.

Our work combines these two strategies. Specifically, we
first learn the patient-specific effects of treatments using
regression. Then, we design a model to accurately predict a
doctor’s prescription policy based on patients’ EHRs. Finally,
we design a method to improve the current prescription
policies based on the prediction model of treatment effects
and the estimated doctors’ prescription policy model. Rather
than only using the prescription effect regression models as
in [6], we also utilize information from the learned pre-
scription models. This reduces the impact of low-precision
regression models and results in better treatment effects
in real experiments. Furthermore, our model produces a
probability as a confidence score for each recommendation,
which provides further information physicians can use.

The remainder of this article is organized as follows.
Sec. II decomposes the problem into three sub-problems:
treatment effect regression, learning doctors’ prescription
policies, and improving these policies. The detailed methods
for these subproblems are described in Secs. III–V. Sec. VI
illustrates the effectiveness of our approaches using a real
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EHR dataset. Sec VII draws some conclusions.

II. THE PROBLEM

As alluded to earlier, the proposed approach consists of
three components: (a) developing a predictive model to
estimate the prescription effects; (b) learning the doctors’
prescription policy based on patients’ EHRs; and (c) im-
proving the prescription policy to induce better outcomes.

For subproblem (a), we will use multiple regression
models to assess the effect of various treatments, based
on patients’ EHR. If the predicted effects from multiple
regression models are consistent, we can be highly confident
in the predictions. For subproblem (b), we consider learning
the doctors’ prescription policy as a multi-class classifica-
tion problem and propose a parametric model, where the
input features are the predicted prescription results and the
patient’s medical history, and the output is the prescription
policy. For subproblem (c), by appropriately modifying
the parametric policy, we are able to improve the current
prescription policy and achieve better glycemic control.

Notation: We use bold lowercase and uppercase letters for
vectors and matrices, respectively. Prime denotes transpose.
All vectors are column vectors. ‖ ·‖1 and ‖ ·‖2 denote the `1
and `2 norms, respectively. The matrix X ∈ Rn×d denotes
patients’ records, with rows corresponding to patients and
columns to patient features. The vector y ∈ Rn contains
the prescription effect (future glucose) of the physician’s
prescribed treatment for the n patients. Assume there are
L types of treatments. We split all the records based on the
treatment type and denote by X` ∈ Rn`×d the n` records
under treatment `, and by y` ∈ Rn` the true effect of that
treatment, for ` = 1, . . . , L.

III. PREDICTIVE MODEL OF THE TREATMENT EFFECTS

We use several classic regression models to predict the
effect of the `-th treatment type for all patients. A simple
linear model is the Least Absolute Shrinkage and Selection
Operator (LASSO) regression [7]:

(ŵ`
LA, b̂

`
LA) = argmin

w`,b`
‖X`w` + b` − y`‖22 + λ‖w`‖1, (1)

where w` contains the regression coefficients, b` is the offset,
and the parameter λ trades off training loss and model
sparsity. In practice, λ is determined by cross validation.
The Ordinary Least Square (OLS) regression is a special
case when λ = 0. Problem (1) is convex and easily solved
for large instances.

Non-parametric and nonlinear regression models, like
Random Forests (RF) and k-nearest-neighbor (kNN) based
methods, are also considered. RF regression is an ensemble
algorithm to build a complex model that trains multiple de-
correlated decision trees and forms average predictions from
the tree models [8]. Given a new sample, the kNN model
uses the average of its k nearest neighbors in the training set
as the prediction. The model lacks robustness to noise due to
the intrinsic local information property, and its performance
is known to be affected by computational complexity in high-
dimensional cases [9].

We will also consider a weighted kNN (WkNN) algorithm,
a variant of kNN used in [6], to provide a comprehensive
comparison. Instead of using the Euclidean distance as in
kNN, the WkNN model uses a weighted Euclidean distance,
where the weights of features come from the coefficients of a
linear regression model. We use the coefficients from LASSO
as weights in our implementation, because it outperforms
OLS regression in terms of regression accuracy.

We split the data into a training and test set, and use
5-fold cross-validation within the training set to determine
the model hyper-parameters. With the training set, we can
train the regression model using any of the aforementioned
regression algorithms. For any sample x, we denote by
ŷ(x, `) the predicted effect (future glucose) under treatment
type `. The test set can be used to evaluate the accuracy
of regression models; a classic performance metric is the
coefficient of determination:

R2 = 1−
∑

i(ŷi − yi)2∑
i(

1
n

∑
i yi − yi)2

,

which describes the proportion of the variance in the target
variable explained by the regression algorithm.

IV. LEARNING THE PHYSICIANS’ PRESCRIPTION POLICY

This section aims to learn the physicians’ treatment deci-
sion policy. To that end, we will use the patient’s features and
the predicted patient-specific effects of various treatments
obtained in Sec. III.

Recall that X ∈ Rn×d contains the patient records and
let u ∈ {1, · · · , L}n be the doctors’ prescriptions for each
patient. We let Ŷ ∈ Rn×LM represent the treatment ef-
fects predicted by all M regression methods {A1, . . . ,AM},
where the (m−1)L+l column of Ŷ represents the predicted
effects under prescription type ` from the mth algorithm Am.
We denote by Z = [X Ŷ] the combined input features, and
split them into a training set Ztrain and a test set Ztest.

Specifically, our objective is to obtain a mapping from the
input features Z to actions u. This is a multi-class classifica-
tion problem and can be solved by the multinomial logistic
regression (also called softmax regression) algorithm [10].
The probability of prescribing a type-` treatment for the
sample zi = (xi, ŷi) is:

P (ui = `|zi) =
exp((β`)′φ(zi))∑L
r=1 exp((β

r)′φ(zi))
, (2)

where β` is a weight vector and φ(zi) is a feature vector
transforming the ith record zi; the latter can be obtained
using feature selection methods such as recursive feature
selection [11].

Using training data Ztrain for ntrain patients and corre-
sponding output actions utrain, we obtain model parameters
β` in (2) by solving an `1-regularized multinomial logistic
regression problem:

min
β`

−
ntrain∑
i=1

log
exp((βui)′φ(zi))∑L
`=1 exp((β

`)′φ(zi))
(3)

s.t. ‖β`‖1 ≤ γ, ∀`.



This is a convex optimization problem and can be solved
efficiently, e.g., by an incremental gradient method with a
linear convergence rate [12].

In the testing phase, for a patient xtest, we first use the
regression approaches in Sec. III to predict the treatment
effects ŷtest, and then, given ztest = (xtest, ŷtest), we
predict the most likely treatment:

u∗(ztest) = argmax
`

exp((β̂
`
)′φ(ztest))∑L

r=1 exp((β̂
r
)′φ(ztest))

,

where β̂
`

is the optimal parameter derived from (3). The
out-of-sample classification accuracy is used to evaluate the
model accuracy and is defined as the percentage of correctly
classified samples among all samples in the test set.

V. IMPROVING THE CURRENT PRESCRIPTION POLICY

This section seeks to derive a recommended prescription
policy with better treatment effects (lower glucose for di-
abetic patients) by optimizing over the parameters of the
learned current policy. Given a sample x, a natural strategy
is to select an action which optimizes the predicted effects,
i.e.,

u∗A(x) = argmin
u

ŷA(x, u),

using the predictive model ŷA(x, u) of each regression
algorithm A ∈ {A1, · · · ,AM}.

At the same time, we prefer not to deviate too far from the
current prescription policy, because treatment changes may
be costly and introduce transient effects which may be unde-
sirable. An additional reason for “constraining” prescriptions
is that we can only rely on the predictive models to predict
the effect of the prescription and these models are not always
extremely accurate.

In this context, we formulate a new constrained softmax
regression problem, where the input features are still φ(zi)
but the target labels are u∗A(xi), forcing the model to learn
actions which optimize the predicted treatment effects. We
solve

min
β`

−
ntrain∑
i=1

log
exp((βu∗

A(xi))′φ(zi))∑L
`=1 exp((β

`)′φ(zi))
(4)

s.t. ‖β`‖1 ≤ γ, ∀`.

‖β̂
`
− β`‖2 < η, ∀`,

where γ and η are fixed positive numbers, and β̂
`
, ` =

1, . . . , L are optimal parameters obtained from (3). Notice
that the last constraint, restricts the difference between the
parameters β` of the new policy and the corresponding ones
for the original prescription policy.

Obtaining an optimal solution β` to (4) defines a proba-
bilistic recommended prescription. Specifically, for a patient
with features z one can select treatment l with probability

P (û(z) = `) =
exp((β`)′φ(z))∑L
r=1 exp((β

r)′φ(z))
.

These probabilities provide additional information to physi-
cians, essentially stating the level of preference (or confi-
dence) in specific actions [13]. To obtain a deterministic pol-
icy, one can simply recommend the most likely proscription

u∗(z) = argmax
`

exp((β`)′φ(z))∑L
r=1 exp((β

r)′φ(z))
. (5)

When evaluating effects of the recommended prescription
policy, we will use this deterministic prescription policy and
the regression algorithms in Sec. III to predict its effects. The
treatment effects will be compared with the corresponding
effects of the original physicians’ prescription policy.

VI. EXPERIMENTAL RESULTS

In this section, we apply our framework to a data set with
Type 2 diabetic patients. The data set is from the Boston
Medical Center (BMC) – the largest safety-net hospital in
New England.

A. Data descriptions and preprocessing

We extract all demographic and medical records during
01/01/2001-12/31/2007 for patients who meet the following
criteria: (a) received at least one antiglycemic (blood glucose
regulation) agent prescription, including insulin, metformin,
sulfonylureas, etc; (b) did not have a diagnosis of Type 1
diabetes; and (c) had at least two laboratory test records of
long-term blood glucose, measured by glycated hemoglobin
(HbA1c) which reflects average glycemia over a 3-month pe-
riod. The HbA1c values represent the percentage of glycated
hemoglobin among total hemoglobin.

Our dataset includes 4116 such patients in total, for
which we capture: (1) Demographics: gender, age, race;
(2) Diagnoses: hypertensive disease, skin infections, etc. (3)
Procedures: e.g., transfusion of packed cells; (4) Admis-
sions: e.g., diabetes, heart failure, chest pain; (5) Service
Department: inpatient, emergency room, etc.; (6) Lab Tests:
hematology, chemistry, urinalysis tests; (7) Vital Signs: e.g.,
blood pressure, temperature, pulse; (8) Blood Glucose Regu-
lation Agents: insulin, anti-hypoglycemic, oral hypoglycemic
agents, etc.

We conduct a data preprocessing procedure to organize all
patients’ medical information in a uniform way. Specifically:
(a) For each patient, we group all patients’ EHR history into
3-month windows starting from one month before their first
HbA1c measurement. The selection of period length is based
on the 3-month observation period adopted in the diabetes
standards-of-care guidelines [14].
(b) To summarize the information of a patient in each
3-month window, the mean of continuous variables and
occurrence counts of categorical features are calculated,
respectively.
(c) There are mainly two types of glucose regulation drugs to
treat Type 2 diabetes, oral-type drugs including metformin,
sulfonylureas, etc.; and more powerful injectable-type drugs
like insulin, GLP-1 receptor agonists, etc. [14]. According
to the drug types used in a 3-month period, we group all



treatments into 3 types: no treatment, treatment with only
oral drugs, and treatment with injectable drugs involved.
(d) We are interested in predictions of key variables (HbA1c)
and treatment recommendations during a patient’s 3-month
“target” period, which can be any of the 3-month periods
available for this patient. We will use as input to predic-
tive/prescriptive models, patient features over the 2 preceding
3-month periods. Specifically, using index t to denote the
target period, a typical input sample is xt = (vt−2,vt−1,vt),
where vt−i contains EHR records in the period which is i
periods before the target period. Note that patients with long
medical history can have multiple such samples by shifting
the target periods. We denote by ut the current physicians’
prescription during the target-period, and by yt+1 the true
effect of physicians’ treatment or average HbA1c in the next
period.
(e) We remove samples when there are no HbA1c values
during the target-period t or the next-period t+1. For other
missing values, we replace the missing continuous valued
ones with their median values, and use an additional indicator
variable to represent missing categorical variables.

These preprocessing procedures lead to 15, 177 final sam-
ple records.

B. Experimental Results

Samples are split into a training set and a test set, with a
percentage of 2/3 and 1/3, respectively. For the samples in
the training set, we assume that the current-period (target-
period) treatment types and the true future (next-period)
HbA1c values are available. The whole learning and pre-
scription recommendation process is repeated for 10 runs,
with randomly selected training sets.

1) Modeling of the prescription effects: In each run,
we group all samples in the training set according to the
treatment types during the current period. Based on all
training samples with treatment type `, a treatment effect
prediction model is trained by the regression algorithms
in Sec. III. The inputs for models are {X`, y`}, in which
X` ∈ Rnl×d is the set of nl records where the patients’
current treatment type is `, and y` is the corresponding
treatment effect (future HbA1c), for all ` = 1, 2, 3. We
repeat the treatment regression experiments for 10 runs with
randomly selected training sets. Table I shows the mean and
standard deviation (std) of the out-of-sample accuracy (R2)
of all regression algorithms under various treatment types.
Random Forests (RF) achieve the highest accuracy and kNN
the lowest. We will use the predicted treatment effects from
all regression models except kNN in learning and improving
the doctors’ prescriptions.

Exploiting the feature selection capability of LASSO,
we show in Table II the ten most important features for
predicting future HbA1c under oral medication; the table lists
results from the model with the highest accuracy through
10 runs. The features are ranked by the absolute values
of their corresponding coefficients in the model. Larger
coefficients imply a stronger positive association between
the feature and the response. The most important features

include: HbA1c history and oral treatment history, various
types of glucose, blood pressure, age and mean corpuscular
hemoglobin, which is the average mass of hemoglobin in red
blood cells. Endocrinologists would agree that there is a high
correlation between these factors and HbA1c.

TABLE I
R2 OF REGRESSION METHODS FOR FUTURE HBA1C PREDICTION

` = 1 ` = 2 ` = 3

LASSO mean(R2) 0.55 0.51 0.45
std(R2) 0.01 0.01 0.02

WkNN mean(R2) 0.55 0.52 0.47
std(R2) 0.01 0.01 0.02

kNN mean(R2) 0.28 0.23 0.25
std(R2) 0.01 0.01 0.002

RF mean(R2) 0.57 0.53 0.51
std(R2) 0.01 0.01 0.01

TABLE II
IMPORTANT FEATURES FROM LASSO FOR PREDICTING FUTURE HBA1C

UNDER ORAL MEDICATION

Rank Feature Coef

1 Target-period HbA1c 0.67
2 HbA1c of the period 6 months before the target period 0.18
3 HbA1c of the period before the target period 0.16
4 Target-period point-of-care glucose 0.14
5 Target-period blood glucose tested by finger stick 0.13
6 Target-period erythrocyte mean corpuscular -0.08

hemoglobin (MCH RBC Qn)
7 Hospital admission due to deep vein thrombophlebitis -0.08

with a comorbidity
8 Oral treatment was prescribed during the period 0.07

before the target period
9 Target-period blood pressure 0.07

10 Age 0.07

2) Learning the current prescription policy: For each
sample x we first obtain the predicted HbA1c under each
possible treatment using the models of Sec. VI-B.1 (except
kNN); let ŷ(x) denote the vector with these predictions. We
form a new feature vector z(x) = (x, ŷ(x)) and, as discussed
in Sec. IV, transform it to φ(z) to provide an input to (2)
from which we predict the current doctor’s prescription by
selecting the most likely one.

Table III lists the mean and standard deviation (std) of
the accuracy, defined as the percentage of correctly predicted
prescriptions. Rows corresponding to ŷLA, ŷWkNN , and ŷRF

used the predicted future HbA1c from LASSO, WkNN, and
RF regression, respectively, as features φ(z) in order to
predict the current prescription. The last row uses features
from the patient’s EHR and demographic features. It is not
surprising that using more information (as the last row does)
leads to significantly better accuracy. It is also interesting
that the best method for predicting future HbA1c (RF) does
not provide the best input feature for predicting the current
prescription.

To understand the commonality of features used for pre-
dicting the response and the treatment, we extracted the



30 most important features from the best LASSO regres-
sion model for each treatment type obtained in Sec. VI-
B.1. Removing duplicate features yields 71 features which
are informative in predicting future HbA1c. Similarly, we
considered the most important features used by the models
developed in this section to learn the doctor’s prescription
policy, which yielded 53 features. These two distinct sets of
features have only 14 features in common. This implies that
instead of considering only the predicted HbA1c (as in [6]) to
make a treatment recommendation, physicians’ prescription
decisions seem to rely on additional information from the
patient’s medical history. This motivates the type of models
we consider in the next section, seeking to make prescription
decisions using both predicted future HbA1c and additional
information from the EHR.

TABLE III
THE ACCURACY OF LEARNING PRESCRIPTIONS

Features Accuracy Accuracy
(Mean) (STD)

ŷLA 0.60 0.016
ŷWkNN 0.51 0.004
ŷRF 0.49 0.004

EHR and predicted future HbA1c 0.83 0.003

3) Improving the current prescription policy: The para-
metric softmax regression model of Sec. V is adopted to
improve the current prescription policy. We compare our
recommendation strategy, called rec2, with the recommen-
dations from [6], called rec1:
rec1 (policy in [6]): For each sample xi, the recom-
mended treatment for the target period is urec1(xi) =
argminu ŷt+1(xi, u) only if the predicted future effect
ŷt+1(xi, u

rec1(xi)) is significantly better than the current
HbA1c yt(xi, ut−1(xi)), otherwise the treatment prescribed
in the previous period ut−1(xi) is adopted. Specifically,

urec1t (xi) ={
ut−1(xi), if minu ŷt+1(xi, u) > η yt(xi, ut−1(xi)),

argminu ŷt+1(xi, u), otherwise.

The threshold η represents the level of conservatism which
can be set by the decision makers; we use η = 95% in our
experiments. Other than the patients’ current HbA1c and the
previous-period treatment type, this recommendation strategy
only relies on the predicted future HbA1c.
rec2 (our policy): As described in Sec. V, for each patient
with features xi in the training set, the true HbA1c at period
t + 1, yt+1(xi, ut(xi)), and the current prescription ut(xi)
are both available. We first create new treatment labels which
optimize the predicted prescription effects:

u∗t (xi) ={
ut(xi), if minu ŷt+1(xi, u) > η yt+1(xi, ut(xi)),

argminu ŷt+1(xi, u), otherwise.

This rule adopts the labels u∗t (xi) = argminu ŷt+1(xi, u)
if the predicted resulting HbA1c ŷt+1(xi, u

∗(xi)) leads
to a significant improvement over the true future HbA1c,
otherwise the current-period prescribed treatment is being
used. Then, a softmax regression model is trained according
to equation (4) with patients’ input features zi and new labels
u∗t (xi), The recommended treatment for sample zi is the
predicted treatment label obtained from (5):

urec2(xi) = u∗(zi).

Both of the above recommended policies depend on the
predicted prescription effects, hence, each predictive model
results in two corresponding policy recommendations (Ta-
bles V – VII). We compare the future predicted HbA1c
resulting from the two prescription recommendations on
the patients whose recommended treatments shift (vary)
from their current-period original treatments prescribed by
physicians. Table IV shows the average counts and ratios of
shifted treatments under the two prescription policy recom-
mendations (columns) based on various regression models
(rows).

Tables V to VII present the relative HbA1c improvement
for patients whose treatment is modified. In each of these
tables: (a) the 2nd column shows the average true future
HbA1c for patients who use the original physicians’ pre-
scription; (b) the 3rd to 5th columns list the average future
HbA1c predicted by different regression models when using
the recommended prescriptions, and the last column shows
the average of these predictions; (c) the “Improvement”
rows show the relative improvement of each recommendation
compared to the original prescription policy. 1 For instance,
according to the LASSO-based recommendations in Table
V, rec1 leads to a 2.3% average relative improvement from
the original future HbA1c of 8.24% to 8.06%, whereas rec2
leads to a 7.0% average relative improvement from the orig-
inal future HbA1c of 8.35% to 7.77%. In all Tables V-VII,
our recommendation strategy rec2 consistently outperforms
rec1.

TABLE IV
COUNTS AND RATIOS OF PATIENTS WITH MODIFIED TREATMENT

Shifted rec1 rec2
Treatments (ours)

uLASSO Count 5697 5207
(Ratio) (37.54%) (34.31%)

uWKNN Count 7959 7161
(Ratio) (52.44%) (47.18%)

uRF Count 3795 4902
(Ratio) (25.00%) (32.30%)

4) Analysis of the recommended prescriptions: To under-
stand the patients’ treatment distributions under the original
and the recommended prescription policies, we analyze an
illustrative example when using the LASSO-based treatment
recommendations from rec2 with maximal relative improve-
ment through 10 runs. All patients’ records are grouped by

1All HbA1c values are percentages but we omit the % symbol for brevity.



TABLE V
RELATIVE HBA1C IMPROVEMENT FOR PATIENTS WHOSE TREATMENT

HAS BEEN MODIFIED BASED ON LASSO REGRESSION

uLASSO Original ȳLA ȳWkNN ȳRF Avg(ȳ)

rec1 8.24 7.85 8.21 8.10 8.06
(Improvement) (0) (4.7%) (0.4%) (1.7%) (2.3%)

rec2 8.35 7.66 7.88 7.77 7.77
(Improvement) (0) (8.3%) (5.7%) (7.0%) (7.0%)

TABLE VI
RELATIVE HBA1C IMPROVEMENTS FOR PATIENTS WHOSE TREATMENT

HAS BEEN MODIFIED BASED ON WEIGHTED kNN REGRESSION

uWkNN Original ȳLA ȳWkNN ȳRF Avg(ȳ)

rec1 7.57 7.53 7.05 7.59 7.39
(Improvement) (0) (0.5%) (6.9%) (-0.3%) (2.4%)

rec2 7.90 7.61 7.20 7.58 7.47
(Improvement) (0) (3.6%) (8.7%) (4.0%) (5.4%)

their current-period HbA1c values using severity cutpoints
[5.7%, 6.5%, 7.0%, 9.0%] [14]. We plot the counts of pa-
tients’ records versus their HbA1c group labels in Fig. 1.
For the first group (HbA1c ≤ 5.7%), our recommendations
lead to less patients using drugs. For the 2nd–4th group of
patients (HbA1c ∈ [6.5%, 9.0%]), the number of patients
who are given oral drugs increases while the number of
patients who do not take drugs or are given injectable drugs
decreases. For the 5th group (HbA1c ≥ 9.0%), the number of
patients using oral and injectable agents increases, while the
number of patients who do not take drugs decreases. This
is consistent with the diabetes care guidelines [14]. With
our recommendations, prescriptions are more in line with
standard-of-care guidelines and HbA1c is better controlled.

VII. CONCLUSIONS

We proposed a framework for learning and improving
doctor prescriptions. Our approach combines procedures for
predicting the effect of various treatments, learning from data
a policy used by physicians, and optimizing the prescription
policy to improve outcomes. We developed a multi-class
classification model which was able to learn the physicians’
prescription policy reflected in the data. By incorporating
information from the predicted outcome of the treatment
and the learned current prescription policy, we proposed an
approach to improve the current prescription policy, reducing
the influence of low-accuracy regression models and leading
to better patient outcomes. We applied our methods to the

TABLE VII
RELATIVE HBA1C IMPROVEMENTS FOR PATIENTS WHOSE TREATMENT

HAS BEEN MODIFIED BASED ON RANDOM FORESTS REGRESSION

uRF Original ȳLA ȳWkNN ȳRF Avg(ȳ)

rec1 8.67 8.14 8.43 8.10 8.223
(Improvement) (0.00%) (6.15%) (2.80%) (6.52%) (5.16%)

rec2 8.55 7.85 8.01 7.79 7.881
(Improvement) (0.00%) (8.17%) (6.30%) (8.86%) (7.77%)

HbA1c Group Labels
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Fig. 1. Distribution of original and recommended prescriptions for various
HbA1c subgroups.

problem of selecting a drug class to treat Type II diabetes.
The proposed framework can also be adapted to making
personalized treatment recommendations for other diseases.
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