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Abstract— We develop an algorithm for learning physicians’
prescription policies and the disease progression dynamics
from Electronic Health Record (EHR) data. The prescription
protocol used by physicians is viewed as a control policy which
is a function of an underlying disease state in a Markov Decision
Process (MDP) framework. We assume that the transition
probabilities and the policy of the MDP are parameterized
using some known features, such that only a small portion of
them are informative. Two ¢;-regularized maximum likelihood
estimation problems are formulated to learn the transition
probabilities and the policy, respectively. A bound is established
on the difference between the average reward of the estimated
policy under the estimated transition dynamics and the original
(unknown) policy under the true transition dynamics. Our
result suggests that by using only a relatively small number
of training samples, the estimate can achieve a low regret. We
validate our theoretical results on a test MDP motivated by a
disease treatment identification application.

I. INTRODUCTION

Electronic health records (EHRs) are widely used in the
U.S. healthcare system. They contain not only a large amount
of patients’ demographic information such as age and race,
but also longitudinal medical history including patients’
disease states and physicians’ prescriptions. However, due
to the limited tools and time, it is difficult for physicians
to make use of such massive amounts of data to tackle
medical problems. A meaningful but challenging problem
is to learn the prevailing prescription policy from EHRs
and to predict the disease progression of a patient under
various prescriptions, which can enable physicians to identify
a prescription policy that optimizes the patient’s long-term
health. In addition, for certain rare diseases, the amount of
relevant records may be small and an algorithmic approach
able to learn from limited data is desirable. Our objective is
to resolve these problems by utilizing EHR data.

There are many ways to mine EHR data. This paper
considers modeling the disease progression dynamics and
physicians’ prescription policy using an MDP model. We
propose two sparse logistic regression models to obtain the
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best estimates of the MDP dynamics and the physician’s pol-
icy from EHR data. We assume a parameterized “Boltzmann-
type” policy and a parameterized ‘“Boltzmann” conditional
transition probability law in the MDP model. The parameters
are obtained through maximum likelihood estimation, where
we introduce an ¢;-norm regularization on the parameters
according to the assumption that only a small portion of
the features, both for the conditional transition probabilities
and the policy, are informative. We prove that by using
only Q(log(n)poly(1/¢€)) examples, where poly(-) indicates
a polynomial function and # is the number of features used
in modeling the conditional transition probabilities or the
policy, our estimates achieve regret with order O(+/€). Con-
sequently, the estimated policy exhibits good performance
using only a relatively small number of training samples,
which is particularly meaningful for some rare diseases for
which there are limited available samples.

A. Related work

Mining EHR data to predict patients’ future states has
been studied by using a Markov chain model [1], Bayesian
networks [2], and deep learning [3]. While there are many
settings where this prediction could be useful, the above
methods have limited power in learning prescriptions. On
the other hand, although some recent works, including [4],
conduct prescription analysis based on EHRs, the sequential
nature of events in the EHRs is not taken into account.

Our previous works [5], [6] consider a problem of learning
a policy from demonstrations where the exact MDP model
is known. In this paper, we consider the substantially more
general case where the MDP dynamics are unknown and
need to be learned from the data.

B. Contributions

We propose two logistic regression models for estimating
both the conditional transition probability of the MDP and
the agent’s policy. A bound on the distance between the target
parameters and their estimates is derived. Having a good
estimate for transition probabilities is important, since we can
simulate an MDP with the estimated transition probabilities
and obtain the average reward of the estimated policy.
A bound on the regret is then obtained, which captures
the difference between the estimated average reward and
the average reward of the unknown policy in the original
(unknown) MDP model. In contrast to our previous related
work [5], [6], our algorithms in this paper make it possible
to obtain a good average reward estimate when the MDP
dynamics are not known.



The rest of the paper is organized as follows. In Sec. II,
we introduce our notation and the MDP model. In Sec. III,
we formulate the learning problem and describe the proposed
algorithm. In Sec. IV, we establish our main result on both
the difference of the target parameters and their estimates and
the regret of the estimated policy under the estimated MDP
dynamics. In Sec. V, we conduct a simulation analysis based
on a dynamic healthcare model and illustrate our theoretical
results. Conclusions can be found in Sec. VI.

II. NOTATION AND PRELIMINARIES

We use bold letters to denote vectors and matrices; vectors
are lowercase and matrices uppercase. Vectors are column
vectors unless explicitly stated otherwise. Prime denotes
transpose and |[a]|, = (Y, |a;|?)!/? represents the p-norm
of the vector a. We use script letters to denote sets.

We consider a finite-state Markov Decision Process
(MDP), denoted by a four-tuple (2°,<,P,R). Z is the
MDP state-space, e.g., patients’ state of disease. . is the
set of possible actions, e.g., physicians’ prescriptions for
patients. For any state-action pair (x,a) € 2 x o, P(y|x,a)
denotes the conditional transition probability from state x to
state y after taking action a. The function R denotes the one-
step reward function of the MDP, e.g., a utility function of a
patient. Finally, a policy function u is a function that maps
each state x to a distribution of actions and u(alx) denotes
the probability of taking action a at state x.

Particularly for MDPs with large state-action spaces, we
approximate the conditional transition probabilities and pol-
icy function using a class of functions. We consider the
following class of Boltzmann-type function approximations:

exp{&'y(x.a,y)}
Zze/i,/x exp{f/l/l(x, a, Z)} ’
!/
poal) = RO ILLA) @)
Loew exp{0°9(x,0)}
where the functions W : 2" x . x 2" — [0, 1]¥ and ¢ : 2" x
o/ — [0, 1]" are features mapping state-action-state tuples
(x,a,y) and state-action pairs (x,a), respectively. .45 is the
set of all possible next states starting at state x and & € RV
and 6 € R" are parameter vectors. In the interest of brevity,
we will refer to transition probabilities & and mean transition
probabilities induced by &. Similarly, we will say policy 6
and mean the policy with parameter 6.

Consider an MDP with conditional transition probabilities
P¢ using policy 6. Then the state x of the MDP follows a
Markov chain, and we denote its transition matrix as M(';,G?
where M g (y[x) = Yoc.r Lo (alx)Pe (y]x,a) for all state pairs
(x,y). Since the conditional transition probability and the
policy are Boltzmann-type, the Markov chain has a unique
stationary distribution denoted by 7 g(x). Therefore, the
state-action pair (x,a) also has a unique stationary distri-
bution, and we denote it by 7N¢ g(x,a) = 7 o(x)Ug(alx).
Moreover, we can define the average reward function as
R(&,0) = Y(4x) Ne0(x,a)R(x,a), where R is the one step
reward function.

P (y|x,a) = ()

III. PROBLEM FORMULATION

In many real-world settings of reinforcement learning,
including ones in the healthcare domain, we have access
to observations of states visited by an agent and the corre-
sponding actions. We do not though know the dynamics of
the system and are not able to simulate it. In this case, we
wish to learn both the policy of the agent and the conditional
transitional probabilities of the MDP from data.

In particular, consider a target conditional transition prob-
ability £&* and a target policy 8*, which are not necessarily
optimal. We seek to learn both these parameter vectors.
Denote by . = S(E%,0%) = {(xi,ai,yi) : i =1,...,m}
samples obtained by playing policy 6* in the MDP with
conditional transition probabilities £*. We assume a set of
state-action samples {(x;,a;):i=1,...,m} that are i.i.d. and
drawn from the stationary distribution 7¢ g. The next state y;
is chosen according to transition probability £ under state x;
and action a;. Then, the samples {(x;,a;,y;)} in .7 are i.i.d.
according to the distribution & ~ Pg«(y[x,a)ng- o+ (x,a). The
goal of this paper is to learn the conditional transition
probability matrix P+ and the target policy 6" from the
demonstrations in ..

This paper assumes that the parameter vectors are sparse,
which means there are only ¢ < N non-zero elements in
& and r < n non-zero elements in 6. This is because it is
relatively easy to include many features, while only a few
of them may play a very important role. We further assume
that 6 and & are bounded by K, elementwise.

Given the parameterizations in (1) and (2), logistic re-
gression is suitable for learning the parameters from data.
We introduce an ¢; constraint to induce sparse estimates.
Following [7], [5], we regress the conditional transition
probabilities as follows:

max logPe (vi|x;, a; 3
max ; gPe (yilxi, a;) 3)
s.L. 1€l < Be,

where Bg is a parameter that controls the sparsity of the
parameter vector estimate. Similarly, we regress the policy
of the agent using

m
ma lo i|xi 4
96,%2,’3' ,:21 g,ue(at|xt) €]
S.t ||9||1§Be,

where By is again a parameter affecting the sparsity of the
solution. Training from data is formulated as Algorithm 1.

IV. MAIN RESULTS

In this section, we establish theoretical results on the
performance of our proposed algorithm. We will first obtain
a bound on the target parameter vector and its estimate under
Algorithm 1. Then we will establish a bound on the regret
in the reward of the MDP.

We first define the Kullback-Leibler (KL) divergence
between two conditional transition probability vectors and
two policies. The KL divergence characterizes the difference



Algorithm 1 Training algorithm to estimate the target pol-
icy transition parameter £* (or target policy 6%) from the
samples ..

Initialization : Fix 0 <y <1 and C > gK (or C > rK).
Split the data set . into two sets .%| and .%, of size ym
and (1 — 7y)m respectively. .} is used for training and .%; is
used for cross-validation.

Training:

for B=0,1,...,C do

Solve the optimization problem (3) (or (4)) for each B on
the set .7}, and let &5 (or 6p) denote the optimal solution.
end for

Validation: Among the &g’s (or 0p’s) from the training
step, select the one with the lowest “hold-out:’ error on
S, ie, B=argmingeqo, . c}€x(Ep ) and set & =& (or
B_argmmBG{O I...c} 6.7 (0p) and set 6 = 0), where € (-)
and £y, (+) denote the expected negative log- hkehhood of the
transition probabilities and policy function on the set .73,
respectively.

between two distributions. For conditional transition proba-
bility vectors £, and &, at (x,a), the KL divergence between
them is

(ylx,a)
ZPgl (y)x, a)logﬁ

And for policies 6 and 0, at state x, the KL divergence
between them is

D(Pél (.|x7a) HP€2(|‘X a

Ho, (alx)
e, (alx)

Next, we need to define the average KL dlvergence under
some distribution. Recall 7g g and 7¢ ¢ denote the station-
ary distribution of the Markov chains for states and state-
action pairs under some conditional transition probability &
and policy 6. Then, the average KL divergence for con-
ditional transition probabilities D¢ o(P¢ [[Pg,) and policies
D¢ g(Ug, || tg,) are defined as follows:

an x,a)D (Pg, (-|x,a)|[Pg, (-|x,a)),
Z”ée

In [6], we obtained a bound of the average KL divergence
between the target policy g+ and its estimate [, as follows.

Theorem 1 ([6]): Let € >0 and 6 > 0. In order to guar-
antee that with probability at least 1 — &, 6 produced by
Algorithm 1 performs as well as 8%, i.e

De- g+ (1o-|lg) <&, &)

D(pg, (-[x)[ g, (%)) Zuel alx)log ———

D¢ g Pél |P§2

De g(tg, llHe,) D(ug, (%) g, (+[x))-

it suffices that
m =9 ((logn) -poly(r, K, C, H,l0g(1/8), 1/¢)),

where H is the maximum number of actions per state for
the MDP, and poly(x) denotes a polynomial in elements of
x. Specifically, in terms of only H, m = Q(H?).

Similarly, we bound the average KL divergence between
the target conditional transition probability Pg« and its esti-
mate P: in the following corollary. The proof is similar to
the one in Theorem 1 and hence omitted.

Corollary 2: Let € >0 and 6 > 0. In order to guarantee
that with probability at least 1 — &, & produced by Algo-
rithm 1 performs as well as £, i.e

it suffices that
m= Q((logN) -poly(q, K, C, M,log(1/8), 1/6))7

where M is defined as M = max, |- #;|. Specifically, in terms
of only M, m = Q(M?).

Next, we develop a bound on regret of the MDP. In
particular, the regret Reg(.%) is defined as

Reg(.#) =R(§",6") ~R(E.0),

where é and 6 are the estimated conditional transition
probability and policy parameters from the samples .7,
respectively.

In our previous work [6], we have established a bound
on the regret when the transition probability of the MDP
is known. As we argued, in the healthcare application we
focus on, it is difficult to know what is the exact disease
progression model. Also, for most systems, it is expensive,
even impossible, to perform simulations. For example, if we
wish to know what is the average reward of a policy estimate
in a disease progression model, we can not just let patients
follow this policy and observe their status over a long period
of time. Alternatively, if we have an estimate of the transition
probability of the MDP, we can easily simulate the MDP
with the transition probability estimate and find the reward
of the estimated policy. Then a natural question is, what is
the difference between the average reward in the simulated
MDP with estimated transition probabilities and policy and
the average reward in the actual MDP under the true target
policy. To arrive at an answer, we need some definitions and
lemmas.

Definition 1 ([5]): The fundamental matrix of a Markov
chain with transition probability matrix Mg g induced by
conditional transition probability parameter & and policy 0
is

Zeg=(Agp +e7r’§‘9)*1,

where e denotes the vector of all 1's, Ag g =1—M¢ g and
g o denotes the stationary distribution associated with M¢ g.

Definition 2 ([5]): The group inverse of a square matrix
A denoted as A* is the unique matrix satisfying

AATA = A, ATAAT = A, AAT = A*A.
Definition 3 ([5]): Consider a matrix B with equal row
sums. Its ergodic coefficient is defined as

T(B)=  sup

v'e=0;||v|[;=1

1
IVB|| = 5 max}_ [bis —bjs|- (7
ij 5



Lemma 3: ([8, Lemma 11.6.1]) Given any two probability
vectors pi, p2 € R, we have

D(pip2) > 375 01— palf ®

Lemma 4 ([5]): For the stochastic matrices P; and P,

assume 7; and 7, are their unique stationary distributions,
respectively. Let E =P; —P;. Then,

|7y — 72|l < k|| 7K1, 9)

where k is a constant that can take one of the following
values: k = ||Z,]|1, or k = [|A%]|1, or k =1/(1—1(P2)), or
k= 1(Zy) = T(A%).

We now have all the ingredients for our main result.

Theorem 5: Given € > 0 and & > 0, suppose m =
Q((log(max(N,n))) -poly(r, K, C, M, log(1/6), 1/¢,H)
i.i.d. samples are used by Algorithm 1 to estimate 6 and 6.
Then, with probability of at least 1 — 8, we have

0)| < 2VIn2&Rma (1 +2k),

~

[R(E",07) —R(S,
where Rpax = MaX(y4)c 2« |R(xX,a)|, K is a constant that

depends on the conditional transition probability é and policy
6, and Kk can be any of the following: k = ||Z,]|;, or k =
| A%}, or k= 1/(1—1(Py)), or k = T(Z,) = T(A%).

Proof: We will follow the line of development in the
proof to Theorem III.3 in [5]. First, we bound the regret as
the sum of two parts:

Reg(.#) =R(&" 9) R(E.0)
=) Y[ o+ (x,0) =g 4 (x,@)|R(x,a

:; e+ g+ (%) ;He* (a|X)R(x a

- ; ﬂé,@(x) Z/.Lé (alx)R(x,a)
:Z e+ g+ (%) i[#e* (alx) — pg (alx)]R(x,a)
— g g ()] ;Hé(al)C)R(x,a)

x) Y [ue+ (alx) — gy (alx)R(x,a)
Z“e alx)R

Note that the first absolute sum has terms Y ,[tg+(alx) —
Ug(alx)] for all x that are related to the estimation error in
fitting the policy policy 8 to 8*. The second part has terms
Y. |7'c£’é (x) — T+ g+ (x)| that are related to the perturbation of
the stationary distribution of the Markov chain by applying
the fitted policy 6. In the following, we bound each term
separately. We begin with the first term:

Z”& o
SZﬂé*ﬂg

<Rmax Z 75};* ,0* (x
x

+ [é9 — Mg g (x (10)

Z ko~ (alx) — py (alx)|R(x,a)
ZI He+ (alx) — 1g(alx))| - [R(x,a)]
) Y (1o (alx) — g (al))|

meame; o (O (Rge (-1x) =g (b))l (11)
The bound in (11) is related to the difference in the log-
loss of the policies 0™ and 6.
By using Lemma 3, we obtain

Z Mo+ (alx) — g (alx)|R(x.a) (12)

IN

Rmaxzﬂé*.e*(x)\/zmﬂ) (g (-10) 125 (1))
< V2In2R -

\/zx‘,“‘:*,e*(x)D

= \/MRmax Dgﬁe*(.“e*”.“é)
< V2In2€Rmax.

In the first inequality, we applied Lemma 3 by setting p; =
Mg+ (-]x) and p = py(-|x) for each x. In the second inequal-
ity, we applied Jensen’s inequality. The final inequality is
obtained by Theorem 1.

We next bound the second term in (10) using techniques
from perturbation analysis of eigenvalues of a matrix:

(1o (P g (-1x)

13)

;(”g,@( — Tex g+ Z”e (alx)R

< ;mm — g g (x \;wé alx)R(x,a)|

< Rmaxglﬂgﬂé(x)—ﬂg*,e*(x)\;u@(aIX)

= Rmax ) |7 (%) = T+ o (x)] (14)
< Rmax;Hné*’e*(Mg*,e*—ME’Q)HI. (15)

Here, (14) follows by noting that Y, tiy(alx) =1 for all x.
(15) can be obtained using Lemma 4.

We now apply the definition of the conditional transition
probability P¢ associated with policy 6 to the last equality.
Then,

||7l'%*_’9* (M‘:*ﬂ* _M«%,@) |1

;[Pg*(ylxva)#e*(aIX) g(ylx a)ly(a |x)]‘
ggné*ﬁ
+227r5*.6* ) ttg+ (alx) Z‘Pé (y|x7a)—P5*(y\x,a)’
R

+Y 7 o (1.0) ¥ [Pe (01x,0) — P (v, a)
x,a y

~ Hylab) |

|xa[

1y (al)]

(16)

where (16) follows by noting that ¥, P(y|x,a) =1 for all
(x,a). Now, using the steps (12) - (13), Theorem 1 and



Corollary 2, we can bound (11) as

Y (e (%) = = g+ (x)) Y g (alx)R(x,a)

X

<2v2€IN2KRmax.- 17
Finally, combining (13) and (17) and applying the bound in
Theorem 1, the result in Theorem 5 follows. |

We note that the constant k in Theorem 5 is referred to
as condition number. The regret is thus governed by the
condition number of the estimated policy under the estimated
transition dynamics; the smaller the condition number, the
smaller is the regret.

V. A HEALTHCARE DYNAMICS AND POLICY LEARNING
EXAMPLE

A. Background Settings

In this section, we propose an MDP model to simulate
the drug effects on patients with some chronic disease. The
state of the MDP is denoted as x = (x1,x), where xj, x; €
{0,...,10}. Here x| represents the severity of the disease and
X represents the severity of comorbidities or complications
the patient may be facing. The actions of the MDP are related
to the drugs prescribed to the patients. Suppose there are two
types of drugs that focus on different diagnostic features, i.e.,
a type-1 drug mainly relieves the disease symptoms, while
a type-2 drug works on the comorbidities or complications.
Therefore, the action set can be represented as a = (a;,a2),
where g; € {0, 1} indicates whether the patient takes the type-
i drug or not.

We assume the following: P(x;;1|x;,a,) depends only on
state difference z, = X, — X, and action a,. The state can
only transit to its neighboring states, specifically, ||z|[; <1
for all x, and a,. The conditional state transition dynamics
under all actions are described in Table I. We also assume a
bouncing boundary condition for this MDP.

TABLE I
STATE TRANSITION PROBABILITIES CONDITIONED ON ACTIONS.
7 = (00) (Oﬂl) (0771) (7110) (170)
a,=(0,0) 07 0.1 0.05 0.05 0.1
a; =(1,0) 0.4 0.1 0.05 0.35 0.1
a, =(0,1) 0.4 0.1 0.35 0.05 0.1
a=(1,1) 02 0.1 03 0.3 0.1

When the patient takes no drug, i.e., a, = (0,0), both x;
and x, will tend to remain the same or increase. When
the patient takes type-1 drug, i.e., a, = (1,0), the drug
relieves the disease symptoms. When the patient takes type-2
drug, i.e., a, = (0,1), the drug relieves the comorbidities or
complications. Finally, when both drugs are taken together,
ie., a, = (1,1), the drugs’ effects are less powerful due to
their interactions.

Suppose that the patient collects the corresponding im-
mediate reward when he (or she) enters a certain state.
Physicians (experts) adopt some policy to maximize the long-
term average reward of patients. We are interested in learning

their policy and the transition dynamics from observed state-
action-state tuples. We associate a reward Ry to the best state
(0,0), and assume the associated reward “spreads”according
to a Gaussian distribution. Specifically, the immediate reward
for state X is

1 =[x

2
267

R(x,a) = R(x) =Rp

e
oV2arm

for all a, where Ry specifies the amplitude of reward and
o adjusts the discounting rate of reward as the disease state
gets worse. Such a continuous reward function is adjustable
to achieve desirable behavior [9]. We set Rp =30 and 6 =5
in our experiment.

The key step of our learning method is to design appropri-
ate features for the regression. Inspired by the reproducing
kernel Hilbert space method [10], we select some representa-
tive state based on which the features are defined. Regarding
the transition dynamics, we assume

eXP{g/‘l/(XHl —x;,a,)}
Taez exp{&y(x—x,a,)}

and define the representative states belonging to {(i, j) :i,j €
{-1,0,1}}, where the corresponding features are:

P; (Xet1[xe,3,) =

)]
1 2

V2 ’
0, otherwise,

if a=a,,

ll’ij(za a) =

where Z = X; 11 — X;.
Similarly, assuming that the expert policy has the form
!
Y exp{O9(x,0))
we define the representative states belonging to {(i,j) :i,j €
{0,2,4,6,8,10}}, where the corresponding features are:

9;;(x,2) = ) Pe(ylx,a)fi;(y),
y

in which y is a potential next state from x, and
) O 1) ol
f~- y = —e 2
l]( ) \/2771:
B. Simulation and Learning Performance

For the MDP specified above, we use value iteration to find
the optimal policy as the target policy, and generate the state-
action samples based on this policy. Given the state-action
samples, we have two objectives: one is to estimate and
evaluate the conditional transition probability under actions
P(x,+1|x%;,a,), and the other is to learn and evaluate the
physician’s (expert) policy (i (a;|x;). We compare the average
rewards with three policy estimates as follows:

1) ¢;-regularized policy: The policy is trained by the ¢;-

regularized logistic regression using Algorithm 1.

2) Unregularized policy: The policy is trained by solving
the logistic regression problems using Algorithm 1 but
without the /;-regularization.

3) Greedy policy: the policy where a patient takes the
drug which maximizes the expected immediate next
step reward.
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Fig. 1. The average reward of the MDP under different policy estimates
for different sample sizes.

To investigate the performance of our proposed algorithm
under different sample sizes, we implement Algorithm 1
for finding the conditional transition probability and policy
estimates using different sample sizes. For a fixed sample
size, we sample data and perform regression for 100 times
and evaluate its average performance. The average reward of
different policy estimates is shown in Fig. 1.

We observe that the average reward of the ¢;-regularized
policy is close to the one of the target policy, which is
consistent with the result in Theorem 5. Additionally, the
¢;-regularized policy outperforms both the greedy policy and
the unregularized policy, especially when the sample size is
small. This indicates the importance of the ¢;-regularization.

Also, we compare two different conditional transitional
probability estimates as follows:

1) ¢;-regularized policy: The conditional transition proba-
bility is trained by the ¢;-regularized logistic regression
using Algorithm 1.

2) Unregularized policy: The conditional transition prob-
ability is trained by solving the logistic regression
problems using Algorithm 1 but without the /-
regularization.

Fig. 2 shows the KL-divergence of the target and estimated
conditional transition probability Dg« g+(Pg- ||P§) =¢€(&)—
€(&") as a function of the sample size. We observe that
the regularized conditional transition probability estimate is
more accurate than its unregularized one, especially when
the sample size is small. Also, we can see in the figure
that an accurate estimate is achieved by the regularized
algorithm with only very few samples, which is consistent
with Corollary 2. Note that our algorithm works well even
when the target conditional transition probability and policy
do not even follow the parameterized form in (1) and (2)
respectively.

VI. CONCLUSION

This paper considers a problem of learning the dynamics
and policy of an MDP based on demonstrations. We imple-
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Fig. 2. Average KL divergence of the different conditional transition
probability estimates for different sample sizes.

ment a sparse logistic regression algorithm to estimate the
parameterized conditional transitional probabilities and pol-
icy. Theoretical results are established for obtaining a bound
on the difference in target parameters and their estimates.
In addition, we derive a bound on the regret of the policy
estimates.

The proposed algorithms can be applied in many real
world MDP estimation problems, such as mining Electronic
Health Record data. Our algorithms are shown to achieve
satisfactory performance in the simulated disease progression
models. The learned conditional transition probabilities and
the prescription policy are useful for analysis of chronic
disease progression and drug effects.
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