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Abstract

During a radiology reading session, it is common that the radiologist refers back to the prior history of the patient
for comparison. As a result, structuring of radiology report content for seamless, fast, and accurate access is in high
demand in Radiology Information Systems (RIS). A common approach for defining a structure is based on the anatom-
ical sites of radiological observations. Nevertheless, the language used for referring to and describing anatomical
regions varies quite significantly among radiologists. Conventional approaches relying on ontology-based keyword
matching fail to achieve acceptable precision and recall in anatomical phrase labeling in radiology reports due to such
variation in language. In this work, a novel context-driven anatomical labeling framework is proposed. The proposed
framework consists of two parallel Recurrent Neural Networks (RNN), one for inferring the context of a sentence and
the other for word (token)-level labeling. The proposed framework was trained on a large set of radiology reports
from a clinical site and evaluated on reports from two other clinical sites. The proposed framework outperformed the
state-of-the-art approaches, especially in correctly labeling ambiguous cases.

Introduction

In today’s image-driven care practice, radiology reports are commonly used to capture and store clinical observations
and the corresponding interpretations by radiologists and to communicate relevant information to the primary care
physicians (PCP) and patients. A typical radiology report contains information about abnormalities and disorders
observed in the image, which may correspond to multiple organs and anatomical structures. Structuring report content
helps with appropriate ingestion of information at every step of the clinical care workflow and eventually, improve the
quality of care. As a result, during the last decade, there has been significant interest in the automatic structuring of
report content.

Every observation within the medical image(s) has a corresponding anatomical site of reference. Therefore, a promis-
ing approach for the automatic structuring of radiology report content is based on identification and sorting of the
observations according to their corresponding anatomical site. Nevertheless, the language used for referring to and de-
scribing anatomical regions varies significantly among radiologists. Sometimes, the radiologist describes the anatomi-
cal site with an elongated phrase (e.g., ‘inferior aspect of the glenohumeral joint space, adjacent to the scapular body’).
Often, radiologists refer to anatomical regions using custom generated abbreviations (e.g., ‘semi. vesc.’ referring to
‘seminal vesicle’). In other occasions, the transcribed anatomical phrase refers only to a part of an anatomical re-
gion without explicitly mentioning the site itself, such as ‘wall’, ‘left lobe’, or ‘right segment’. This may result in
ambiguities to resolve for a machine learning method as it could refer to multiple organs.

Anatomy inference in radiology reports can be performed at word/token, sentence, or document level. The desired
level varies based on the application. For example, in order to determine relevant prior imaging studies, a radiologist
can take advantage of a solution that could determine the target anatomy of the study at the document (report) level.
On the other hand, sentence-level labeling can be used to help with co-referencing problems, such as linking diagnoses
to observations that may be found in different sections of the radiology report. Finally, token-level annotations can be
used for structuring report context into a searchable database.

The aim of the proposed work is to develop a solution for automatic labeling of anatomical phrases in radiology reports
at the token level. Figure 1 demonstrates a snippet from a radiology report with highlighted and labeled anatomical
phrases.

Previous efforts for concept labeling can be categorized into three types of approaches: 1) dictionary/ontology lookup;



Figure 1: A snippet from a radiology report with labeled anatomical phrases. The figure is generated using the BRAT
annotation tool.1

2) rule/grammars/pattern matching; and 3) data-driven machine learning. As the name implies, dictionary-based
approaches rely on existing domain knowledge resources such as ontologies to build keyword dictionaries and the
labeling is achieved via string matching. RADA2 (Radiology Analysis tool), and cTAKES3 (clinical Text Analysis
and Knowledge Extraction System) are among common dictionary-based entity labeling tools. In grammar-based
approaches, rules are learned and generated based on repeatable patterns, and morphologies and semantics. In order
to provide standard labeling, grammar matching approaches are guided by standard ontologies. MedLEE4, 5 (Medi-
cal Language Extraction and Encoding System) and Metamap6 are among the earliest proposed grammar-based ap-
proaches.

Machine learning-based annotators refer to classification models that are learned from clinical text datasets. The
anatomical annotation problem is intrinsically related to the Named Entity Recognition (NER). The aim of NER al-
gorithms is to identify and classify target concepts such as anatomical phrases, morphological abnormalities, etc.
Deployment of deep learning models for NER-related problems has demonstrated promising results. Deep learning
for NER has been successfully proposed for different applications in the medical domain including de-identification,7

medical events labeling,8 and clinical concept extraction.9 Typical architectures proposed for NER applications, es-
pecially for sequence labeling problems, include bidirectional Recurrent Neural Networks (RNN) models10, 11 and
bidirectional RNN-based Conditional Random Field (CRF) variants.12, 13

Despite the promising performance of RNN models for different sequence labeling tasks, capturing the long-term
dependency is a remaining shortcoming. This is a major limiting factor for anatomy labeling task. Consider the
following sentence: ‘The right lobe of the lung is clear, but the 5mm ground glass nodule in the upper left lobe may
require further follow up’. It is straightforward to determine the anatomical label for ‘right lobe of lung’ as it contains
the organ name; however, in order to determine the label for ‘upper left lobe’ at the end of the sentence, the anatomy
cue existing in ‘right lobe of lung’ in the beginning of the sentence should be taken into account. Such distance relation
would be difficult for an RNN model to learn through its memory-based architecture.

In this work, we propose a context-driven approach for automatic labeling and normalization of anatomical phrases
in radiology reports. The proposed framework consists of two parallel RNNs. Given a sentence from a report, the
first RNN model is used to determine the anatomical context at the sentence-level. The second RNN generates token-
specific feature vectors. Finally, the sentence-level feature vector and the token-specific feature vectors are combined
to derive the most appropriate anatomical label for each token in the sentence. The proposed framework enforces
decision-making using the context of the sentence for anatomy annotation.

The main contributions of the proposed work is as follows:

• A context-driven deep learning approach is proposed for anatomical phrases labeling in radiology reports. Given



the complexity of the NER tasks in radiology informatics due to the specific language found in radiology reports,
context is proven to play a significant role in achieving an acceptable performance. To the best of our knowledge,
this is the first work proposing to utilize context to improve a NER tool performance for a clinical application.

• The proposed study highlights an important finding regarding memory capacity of the RNN models: In this
study, we demonstrated that despite the expectations, the long short-term memory architecture of RNN models
is not sufficient to guarantee context learning even within the same sentence and as a result, we propose an
additional RNN encoder dedicated to solely capture and learn the context.

Clinical Data

Radiology reports from two different clinical sites, University of Washington (UW) and University of Chicago (UC),
as well as reports from a publicly available database, referred to as MIMIC-III14, were used for training and testing.
Radiology reports from UW and UC were collected with Institutional Review Board (IRB) approvals. All reports
were de-identified by offsetting dates with randomly generated numbers. All other HIPAA protected patient health
information including name, date of birth and address were removed. The following describes the distribution of the
data:

• Word embedding model training: 1,567,581 radiology reports for examinations performed between January
1, 2010, and February 28, 2017, from the radiology information system at UW were extracted, processed and
used for training the word embedding model.

• Anatomy labeling training set: 560 radiology reports from UW (referred to as UW560), excluded from the
word embedding training set, were randomly extracted and manually labeled using eight anatomical labels as
follows: Brain, Breast, Kidney, Liver, Lung, Prostate, Thyroid, and Other referring to all other anatomical sites
(e.g., Spine, Heart). The remaining non-anatomical tokens in the report were automatically labeled as Null. The
reason for selecting such seven class labels is to simplify the manual ground truth generation for a relatively large
corpus to be used for training and validation as the manual labeling for the whole human anatomy would require
a significant amount of time and effort. 70% of this set was randomly selected for training (UW560-70%) and
the remaining 30% was used as the development set to determine the optimal set of parameters (UW560-30%).

• Anatomy labeling test set: In order to avoid any bias due to the training corpus, 200 radiology reports from
two different clinical sites were considered and manually labeled using the same labeling schema as mentioned
above and used as the test set: 100 reports randomly selected from the UC database (UC100); and 100 reports
randomly selected from the MIMIC-III database (MIMIC-III100).

Ground Truth

Manual labeling was performed by human annotators (not domain experts) based on the eight aforementioned labels
using BRAT annotation tool1. The annotators referred to SNMOED CT15 ontology for determining the classes of
anatomy named entities. The UW560 training set was labeled by two annotators. No Inter-Annotator Agreement (IAA)
measure was calculated for this round. The testing set was manually labeled by four human annotators. Identified
phrases with more than two disagreement between annotators in terms of selecting a class label were further reviewed
by a radiologist for determining the appropriate label. The overall IAA in terms of average Kappa16 over each annotator
pair was 90.1%, 87.4% for UC100, and MIMIC-III100, respectively.

Methods

Figure 2 demonstrates an overview of the proposed framework. The following sections detail each step as depicted in
the figure.



Figure 2: A overview of the proposed framework for anatomical phrase labeling in radiology reports.

Preprocessing

A sentence parsing is firstly performed using spaCy1 to extract sentence boundaries in a given radiology report. Each
extracted sentence is then processed for removing special characters (e.g., HTML tags), unnecessary white space, and
new lines. Next, tokenization is applied to partition each text string into individual words. Finally, a normalization
step is considered for specific types such as case (lowercase alphabetic), dates and times (make all identical), and
numerical values (replace each labeled token with ‘9’). The whole framework is implemented in Python.

Word Embedding

The input to RNN architecture is the word embedding representation of tokens. Word embedding refers to the trans-
formation of a string representation of tokens into low-dimensional real-number vectors derived through a set of unsu-
pervised language modeling and feature learning techniques. A few of the most popular word embedding generation
approaches are continuous bag of words (CBOW), skip-grams (SG)17, GloVe18, and Swivel (SW)19. Word embeddings
are desired for their ability to capture similarity between words with respect to semantic relationships and are purely
learned from unlabeled data. Word embeddings have been used as input feature vectors for many deep learning-based
sequence labeling approaches.

Through an exhaustive search, four different word embedding approaches (CBOW, SG, GloVe, and SW) and the
corresponding hyper-parameters (including embedding vector size, and context window size) were considered and
compared for word embedding model creation. A large corpus of radiology reports from UW (as described before)
was used as the training set. The best performing model was determined as: Method: SG, window size: 10, vector size:
50020. Since the word embedding model is trained on the radiology reports, we observe very few Out-Of-Vocabulary
(OOV) cases in the training and test corpora.

Sequence Labeling Model

Figure 3 depicts the architecture of the proposed context-driven sequence labeling. The aim of the sequence labeling
is to provide a label for every token within a sentence.

To overcome one of the known limitations of the RNN architecture, referred to as fading memory, this paper proposed
a framework consisting of two parallel RNN architectures: The first RNN (shown on the left side of Figure 3) is
considered to derive a feature vector capturing the anatomy of reference based on the context of the target sentence.
A second RNN (shown on the right side of Figure 3) is considered to derive token-specific features. The input to both
RNNs is the word embedding vectors for every token within a sentence. The word embedding vectors are provided
from the skip-gram model as described before.

The output from the last hidden state in the left RNN (Figure 3), referred to as the sentence encoder, provides a
feature vector that captures the context information (in terms of the anatomy of reference) at the sentence-level. Since
a sentence may contain multiple anatomical phrases referring to different anatomical sites (e.g., ‘No abnormality is
observed within the urinary system including prostate and kidney.’), a multi-label classification schema is considered
for the sentence encoder. The sentence encoder feature vector is passed to a fully-connected layer with nine hidden
neurons corresponding to nine class labels and a sigmoid activation function. The output of the fully-connected layer

1https://spacy.io/
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Figure 3: The proposed context-driven sequence labeling architecture. The sentence encoder, shown in the left,
provides the prediction of the context at the sentence-level. The feature vector from the sentence encoder (shown with
green-color circle) is used as an additional feature for the sequence labeling model as shown in right. For the given
example, the sentence-level label is determined as Lung as shown with gray-color box.

provides the probability of the sentence referring to each of the nine class labels. A cross-entropy loss function is
considered for the training by enforcing the sentence encoder to contain anatomical context information.

The second RNN, shown on the right side of Figure 3, has a similar architecture as the first one except that the output
of the RNN at every time step (corresponding to every token in the sentence) is used to derive the feature vector for
every token in the sentence. Token feature vectors from the second RNN are then concatenated with the sentence
encoder feature vector to derive a new higher dimension vector per token. The output of the RNN is then passed to a
fully-connected layer with a softmax activation or a linear-chain CRF-layer12 for predicting the label. For a softmax
layer, a cross-entropy loss function was considered for the classification of each token.

Results

The number of token occurrence for each class label within the training and test sets are given in Table 1. As expected,
Null class has the highest frequency of occurrence followed by the Other class. Also, it can be observed that among
the seven anatomical classes, Lung has the highest and Prostate has the lowest frequency. It is expected that such
imbalanced representation of classes pose an impact on the word embedding vector representation as well as sequence
labeling using RNN architecture as both approaches are shown to be heavily biased based on the training data.

Table 1: Number of token occurrence per anatomical class.

Anatomy Class UW560 UC100 MIMIC-III100

Brain 1,317 235 356
Breast 557 198 2
Kidney 1,678 120 131
Liver 2,427 129 185
Lung 3,836 291 425

Prostate 220 6 7
Thyroid 269 32 0
Other 23,636 2,385 1,784
Null 152,195 21,622 19,108

A number of the most well-known conventional and the state-of-the-art sequence labeling techniques were considered
and implemented for the evaluation and comparison as described below. cTAKES3, as the most common NLP tool



forclinicalapplications,isusedasthebaselinesystemfortheanatomylabelingtask.Incurrentimplementationof
cTAKES,thelabelingisachievedbyfirstrunningtheclinicalpipelinetolabelallappropriateentitiesatphraselevel,
followedbymatchingAnatomicalSiteMentionentitieswithapre-definedsetofSNOMEDCTcodes(seeTable2)
correspondingtothesevenanatomicalclassesinthefollowingfashion:Arelationtreeisfirstlybuiltbasedonthe
SNOMEDCTrelationshipisawithrootsdefinedasinTable2.Thedepthofthetreeislimitedtobe7.Thephrases
matchinganyoftheSNOMEDCTcodeswithinthetreesarelabeledwiththecorrespondingrootnodeanatomy,while
thenon-matchingphrasesarelabeledasOther.Thefinaloutputislabelsattoken-level.

Table2:SNOMEDCTrootnodeperanatomicalclass.

Anatomy SNOMEDCTrootnode

Brain 1101003
Breast 76752008
Kidney 304582006
Liver 10200004
Lung 699594007,400141005
Prostate 41216001
Thyroid 297261005

Inaddition,vanillabi-directionalRNNmodelsaswellasbi-directionalRNN-CRFmodels12areimplementedand
comparedwithourmodel. TheRNNarchitecturesaresimilartothemodelinFigure3,exceptforthesentence
encoderpart.Twooptionswereconsideredfortheinputtothemodel:1)passingentirereportcontentatonce;2)
passonesentenceatatime.Thereasonforsuchchoicesistoinvestigatewhetherprovidingmorecontent(fullreport
content)helpsinachievingmoreaccuratetokenlabeling.

TheAdamoptimizer21wasusedwithstepsizeof103for300epochs.Thedropoutapproach22wasconsideredto
preventoverfitting.Thefollowingparametersandthecorrespondingrangeofvalueswereconsideredandcompared
todeterminethebestperformingmodel.Thisprocesswasperformedforallbaselinemodelsaswellastheproposed
model.

•RNNcelltype:LSTM23,andGRU11;

•RNNdepth:1,and2;

•Numberofhiddenstates:32,64,128,and256;

•Keepprobabilityinthedropoutlayer:0.1,0.3,0.5,0.7,and0.9.

TheF1-scorewasusedasthemetricforevaluatingandcomparingtheperformanceofdifferentclassificationmodels.
TheF1-scoreiscalculatedasthemicro-averageoftheF1-scoresfromalleightanatomicalclasses(excludingthe
Nullclass)atthetoken-level.Intotal,80differentmodels(twopossibilitiesofRNNmodel,twochoicesforRNN
depth,fourchoicesforthenumberofhiddenstatesandfivechoicesforkeepprobabilityinthedropoutlayers)were
trainedusingtheUW560-70%dataset.UW560-30%wasusedtodeterminethebestperformingarchitectureandthe
correspondingsetofhyperparameters.Thebestperformingmodelwasdeterminedas:one-layerLSTMmodelwith
256hiddenneuronsandkeepprobabilityof0.3forthedropoutlayer.

Table3summarizestheperformanceofdifferentapproachesintermsofF1-scoretestedontwotestcorpora,UC100
andMIMIC-III100.Ascanbeobservedfromthetable,theproposedcontext-drivenapproachoutperformedvanilla
RNNmodelsbyanaverageof1.2%inF1-score. Asexpected,addingthecontextinformationimprovedtheper-
formanceofthesequencelabeling.Precision,Recall,andF1-scoreofthebestperformingmodel(context-based
bidirectionalRNN)foreachanatomicallabelaregiveninTable4.Ascanbeobservedfromthetable,theproposed
modelconsistentlyyieldshighperformanceforallsevenanatomicalclassesandacrosstwodifferentcorporaexcept
forProstate.ThelowerperformanceontheProstateclasscouldbeduetoalowoccurrenceinthetrainingcorpus.
Finally,comparingperformancebetweentwotestingcorpora,itcanbeobservedthatUC100yieldedhigherF1-score



Table 3: Comparison of Precision (P), Recall (R), and F1-score (%) among different models. Metrics are defined at
token-level.

UC100 MIMIC-III100 Combined
Model P R F1 P R F1 F1

cTAKES3 86.2% 63.2% 73.0% 82.8% 48.3% 61.0% 67.7%

Bi-directional RNN (sentence-level) 84.9% 88.9% 86.9% 86.6% 83.5% 85.0% 86.0%
Bi-directional RNN (report-level) 86.0% 89.8% 87.8% 89.2% 82.7% 85.8% 86.9%

Bi-directional RNN-CRF12 (sentence-level) 85.4% 89.0% 87.2% 85.2% 83.6v 84.5% 85.9%
Bi-directional RNN-CRF12 (report-level) 86.7% 90.5% 88.6% 88.9% 84.0% 86.3% 87.6%

Our proposed bi-directional RNN 88.3% 92.7% 90.5% 88.9% 84.8% 86.9% 88.8%
Our proposed bi-directional RNN-CRF 88.6% 92.3% 90.4% 88.4% 83.3% 85.8% 88.3%

Table 4: Per-class Precision (P), Recall (R), and F1-score (F1) of the best model (our proposed context-based bi-
directional RNN) on two test datasets: UC100 and MIMIC-III100.

UC100 MIMIC-III100
Class label P R F1 P R F1

Brain 83.3% 80.4% 81.8% 93.5% 68.5% 79.1%
Breast 97.2% 86.4% 91.4% 100.0% 100.0% 100.0%
Kidney 97.0% 80.8% 88.2% 95.5% 80.2% 87.1%
Liver 86.5% 94.6% 90.4% 88.5% 87.0% 87.7%
Lung 86.6% 97.9% 91.9% 92.5% 89.4% 90.9%

Prostate 42.9% 100.0% 60.0% 75.0% 85.7% 80.0%
Thyroid 90.3% 87.5% 88.9% N/A N/A N/A
Other 88.1% 92.5% 90.2% 86.8% 85.0% 85.9%

micro-average 88.3% 92.7% 90.5% 88.9% 84.9% 86.8%

compared to MIMIC-III100. This could be due to the fact that MIMIC-III reports are only from the intensive care
unit; however, reports of the UC100 are from a random mixture of different departments, which is more similar to the
training corpus.

Discussion and Conclusions

Recently, RNN-based architectures have demonstrated promising performance for sequence labeling tasks mainly due
to the capability to use its internal memory structure to take into account past and future data in the decision-making.
For the token labeling task, this means taking into account the information from words occurring before and after of
the target word. Nevertheless, if the desired context cannot be inferred from the immediately surrounding context, an
RNN model may not yield the correct labeling.

(a) Best vanilla RNN-CRF model. (b) Our best context-based bi-directional RNN model.
Figure 4: Comparing the output of the best vanilla RNN model and our proposed context-driven RNN model shown
for a specific anatomical phrase, ‘left lobe’, but with different anatomy of reference. Snapshots are generated using
the BRAT annotation tool.



In this work, we propose an RNN-based approach for token annotation in radiology reports utilizing sentence-level
context to influence the labeling based on a wider context than the immediately surrounding words. This is achieved by
adding a second RNN architecture to exclusively learn the context of a given sentence and incorporate that information
into the labeling task. To better demonstrate the capability of the proposed framework in utilizing context for labeling,
consider examples shown in Figure 4. As can be observed from the figure, given a fixed phrase ‘left lobe’ but different
reference anatomies, the proposed approach is able to yield correct labeling by taking the surrounding context into
account. On the other hand, the vanilla RNN-based approach yields incorrect labels. The incorrect labeling by
vanilla RNN approach (i.e., Liver) could be due to the fact that ‘left lobe’ occurs most frequently with Liver anatomy
within the training corpus. As a result, in lack of explicit presentation of an anatomical reference within the vicinity
of the target word, the algorithm tends to choose the most frequent label based on the co-occurrence within the
training data. Here is another example: “IMPRESSION: Mildly heterogeneous and increased hepatic echotexture,
suggestive of parenchymal dysfunction.” The only model that yielded the correct label, Liver, for parenchymal was
our proposed context-based RNN. All other models label this term as Kidney, which again could be due to the co-
occurrence frequency of parenchymal and Kidney within the training corpus.

One of the major shortcomings of the proposed framework is the lack of a strategy to deal with imbalanced training
data. As can be seen from Table 1, there is a large difference between Other and Null and the rest of the anatomical
classes. This may have a direct impact on the performance of the proposed classifier. One approach to deal with such
imbalanced data is to use a regularization term in the optimizer to take into account the frequency of occurrence as
a weight. Another limitation of the proposed framework becomes obvious when the target sentence context does not
contain relevant and sufficient information to help with narrowing down the decision-making. For example, consider
the following sentence: ‘There is a small lesion in the left lobe.’ The target anatomical phrase is ‘left lobe’. Even a
human expert cannot determine the correct anatomical label without taking more context into account. If the preceding
sentences are also provided as: ‘Brain: The right lobe is clear.’, it becomes clear that the target sentence is also referring
to the Brain anatomy. As hinted by the example, one approach to overcome such limitation is to use a few sentences
before and after the target sentence as the input to the context-based RNN architecture to help with creating the most
appropriate context related features.

Overall, the proposed framework demonstrated promising performance for anatomical phrase labeling in radiology re-
ports for a specific list of anatomical class labels. In the future, we are planning to extend the scope of the classification
to the whole human anatomy rather than seven classes by utilizing one-shot or few-shot learning algorithms24, 25.
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