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ABSTRACT

Recurrent Neural Network (RNN) models have been widely used for sequence labeling applications in different
domains. This paper presents an RNN-based sequence labeling approach with the ability to learn long-term
labeling dependencies. The proposed model has been successfully used for a Named Entity Recognition challenge
in healthcare: anatomical phrase labeling in radiology reports. The model was trained on labeled data from
a radiology report corpus and tested on two independent datasets. The proposed model achieved promising
performance in comparison with other state-of-the-art context-driven sequence labeling approaches.
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1. DESCRIPTION OF PURPOSE

A typical radiology report contains descriptions of radiological observations and abnormalities corresponding
to different anatomical structures. Structuring of radiology reports content helps improve the quality of care
by streamlining communication of the clinical information between the patient’s care team through the clinical
workflow. With increase in usage of medical imaging services and subsequently an increase in number of radiology
reports, numerous efforts have been dedicated towards the automation of structuring the radiology reports
content. Most radiologists transcribe reports by ordering content based on the anatomy of reference. Therefore,
a common approach for automatic structuring of the report content is to build a Named Entity Recognition
(NER) model for detecting anatomical phrases within every sentence, and furthermore, normalizing detected
phrases based on predefined categories (i.e., Lung, Liver, Brain, etc.).

Lungs ..wne- and  Pleura .une- :The rightlobe .- nodule seenon
prior CT exam is no longer visualized.

Liver .- : Previously described | right lobe .- Ssubcentimeter low-
attenuation foci stable. | Segment 7 .. reference lesion best seen on image
90 of series 3 measures approximately 4 mm which is not significantly changed.

Figure 1: A snippet from a radiology report with highlighted anatomical phrases and corresponding anatomical
labels.

Supervised and semi-supervised learning approaches have been proposed for NER, problems in different do-
mains utilizing probabilistic graphical models such as Conditional Random Fields (CRF's), and Hidden Markov
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Models (HMMSs). More recently, Neural Network models such as Recurrent Neural Networks (RNN) has been
successfully proposed for NER applications.® %12 A major challenge in developing a NER model for the proposed
application compared to use cases from other domains is the short- and long-term dependency of the labeling task
on the context of the sequence. Consider the example in Figure 1. In this example, several anatomical phrases
are highlighted and labeled with the appropriate anatomical labels. Three different labeling scenarios can be
seen in this example. First scenario corresponds to phrases that contain a noun with exact match with one of the
predefined labels (e.g., “Liver”, “Lung)”. Second and third scenarios correspond to phrases without the exact
anatomical labels such as “Segment 7” and “Right Lobe”. In case of “Segment 77, as the second scenario, the
labeling task is straightforward as “Segment” is an anatomical phrase that is uniquely used to refer to a division
within “Liver”. In third scenario, no such one to one mapping exist. For example, “Right/Left Lobe” is an
anatomical phrase that is used to refer to a division of different anatomical structures such as “Liver”, “Lung”,
“Brain”, and “Thyroid”. In example shown in Figure 1, “Right lobe” appears in two different sentences referring
to two different anatomies: (Lung, and Liver). Assigning the correct anatomical label to such anatomical phrases
with ambiguities as given in this example, is not feasible without taking the surrounding context into account.
Most classical approaches including dictionary-based,” rule-based,! and bag of word-based machine learning,'°
are unable to yield correct labeling for cases with long term labeling dependency such as the one shown in Figure
1. Jagannatha and Hong used an approximate skip-chain CRF model for learning the long-term dependency
of labels.” Language models can be used to provide features that can capture the contextual meaning of the
words in a semi-supervised way. Some related works include context2vec!® and Elmo,'® which provide additional
information to word embedding for NLP tasks.

In this paper, we present a context-based RNN architecture for sequence labeling in clinical text that is
capable of learning short- and long-term labeling dependencies. The proposed approach utilizes supervised
learning of the context of each sentence in a document through a bi-directional LSTM (bi-LSTM) architecture
while taking into account labels from surrounding sentences. The hypothesis is that the combination of features
derived from the sentence context with lexical features derived for each token results in a boost in performance for
the anatomical phrase labeling task. Utilizing such short- and long-term learning dependencies, we demonstrate
that our proposed approach outperforms state-of-the-art methods for labeling cases with one-to-many labeling
possibilities.

2. METHODS

The aim of this work is to develop an automatic approach for extracting and labeling anatomical phrases in
radiology reports. Our proposed model consists of two parallel LSTM architectures to derive and combine a
token-level feature with a sentence-level feature for classifying the anatomical label of a word in a sequence. The
sentence-level feature provides contextual information of a sentence and the token-level features capture lexical
features. A diagram of the proposed architecture is shown in Figure 2.

Context predict

Anatomy prediction

Fully-connected layer

FC layer or CRF layer
Bi-LSTM layer

(sentence feature)

Bi-LSTM layer
Word embedding . . . . . Word embedding

Token input

(a) Sentence Presentation (b) Token Presentation
Figure 2: An overview of the proposed architecture.

2.1 Token-Level Features

This work uses Long Short-Term Memory (LSTM),? a typical RNN architecture, for sequential modeling. Ad-
mittedly, there are some other types of RNN models that are frequently used in language modeling such as Gate
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Recurrent Unit (GRU).? Nevertheless, the difference in performance is not substantial and therefore, in this
work, we will focus on LSTM architecture. In detail, an LSTM model is defined as follows:

i, =o (Wi [x),h, ] + bi) :
jo = tanh (W [x, b, ] +b;).
f,=0 (Wf [xé,hi,l]/ + bf) ;
¢, =c;1 Of +i; Oy,
or = (W, [x,hi_,] +b,),
h; = 0; ® tanh(¢;),
where x is the input of the LSTM, h and c denote the state of the LSTM, W;, W, W, W, are trainable

weight matrices and b;, b;, by, b, are trainable biases. o(-) represents an element-wise sigmoid function, tanh(-)
is the hyperbolic tangent function, and ® denotes element-wise multiplication of two vectors.

Assume x! represents the word embedding vector of a token ¢ within sentence i of a given report. We use
a bidirectional LSTM (bi-LSTM) model to derive a vector representation of tokens within a sentence as follows
(Figure 2b):
= - ;
h; =LSTM(h_1,x}), (1)
Wi =18 (h g, D), 2)
R
h! =[hi, ﬁi] is the token-specific feature vector.

2.2 Sentence-Level Features

We use an additional bi-LSTM to derive the feature representation at the sentence level as follows:

?i = LSTM(?t—la Xi)» (3)
Eé = LSTM(§t+17 Xi)a (4)

S; = [?Lfgg] represents the feature vector of the sentence ¢, which is the concatenation of the output of the
forward LSTM at the last token and the output of the backward LSTM at the first token, and L; is the length
of the sentence i. The constructed feature vector tends to learn short-term labeling dependencies.

In radiology reports, it is commonly noted that the radiologist transcribes multiple observations with respect
to a specific anatomy without explicitly referring to the anatomy of reference in every sentence. Consider
the example in Figure 1. To determine the anatomical label of the sentence “Previously described right lobe
subcentimeter low-attenuation foci stable.”, the labeling information from the previous sentences needs to be
taken into account. In order to learn long-term labeling dependencies that extends beyond the context of the
sentence containing the target token, we consider applying an additional bi-LSTM to derive the contextual
representation of a sentence influenced by labeling context from the surrounding sentences. In detail,

m’ = LSTM(m' L, ), (5)
' = LSTM(in"*!,s,), (6)
m‘ = [mi’, in’] is used as a sentence-level feature.

As the last step, we add a fully-connected layer to the sentence level presentation for predicting the anatomical
context of the sentence. In detail, for kth anatomy, z¥ is defined as an indicator function such that z¥ = 1 if there
is any token related to kth anatomy appearing in sentence i, and z¥ = 0 otherwise. We use the loss function:

8

L
Lcontext - Z Z Z log J(ngi)» (7)

i=1 k=1
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where wy, is the vector in the fully-connected layer corresponding to the anatomy k and o is a sigmoid function.

2.3 Context-based LSTM Model

The feature vector for token ¢ is generated by concatenating the token-level feature h¢ and the sentence-level
feature m": p! = [h!,m’]. This feature is used for classifying the anatomical label of the token. Two types of
loss functions are considered:

1. Softmax loss: An additional fully-connected layer with a softmax activation is used to predict the anatom-
ical label of the token. The loss in sequence labeling is defined as the cross-entropy between the label and
its prediction.

2. CREF loss: Similar to,% a CRF layer is used for inferring the most likely anatomical label of the token. The
loss in this case is the CRF loss in a sequence.

3. DATASETS

Tow large radiology report corpora were used in this study. 1,567,581 reports from University of Washington
(UW); and 66,099 radiology reports from University of Chicago (UC). Reports were collected with Institutional
Review Board (IRB) approvals. All reports were de-identified by offsetting dates by randomly generated numbers.
All other HIPAA patient health information including name, date of birth and address were removed. In order
to test the robustness of the proposed approach, a third independent radiology corpus was considered from a
publicly available database, referred to as MIMICIIL.® The data distribution is as follows:

e UW: All reports from the UW corpus were used for training a word embedding model.

e UC500: 500 reports were randomly selected from the UC corpus. This set was used for the training and
development.

e UC100: Another set of 100 reports were randomly selected from the UC corpus. This set was used as a
part of the testing set.

e MIMICIII1O00: 100 radiology reports were randomly selected from the MIMICIII dataset. These were
also included as a part of the testing set.

Table 1: Numbers of occurrence per anatomical class within the training and testing corpora.
UC500 UC100 MIMICIII1I00

brain 661 235 356
breast 515 198 2
kidney 810 120 131

liver 669 129 185

lung 1519 291 425

prostate 45 6 7
thyroid 131 32 0
other 10717 2385 1784

All selected reports were manually labeled for anatomical phrases by human annotators (UC500: one anno-
tator; UC100, and MIMICIIT100: four annotators). The Inter Annotator Agreement (IAA) measure in terms
of Kappa? for UC100 and MIMICIII100 were 90.1% and 87.4%, respectively. Eight anatomical labels were con-
sidered in this study: Brain, Breast, Kidney, Liver, Lung, Prostate, Thyroid, and Other referring to all other
anatomies. The number of occurrence for each anatomical label within the three corpora are given in Table 1.
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4. RESULTS

Sentence parsing was performed using Spacy.” Next, special characters (e.g., HTML tags), unnecessary white
space, and new lines were removed. This step was followed by tokenization into individual words. Finally,
normalization was performed for lowercasing, unifying the dates, times, and numericals.

Table 2: Precision (P), Recall (R), and Fl-score on two test corpora.

UC100 MIMICIII100

Methods P R F1 P R F1
bi-LSTM-sentence 89.9% 92.8% 91.3% 91.9% 83.8% 87.7%
bi-LSTM-report 89.0% 92.3% 90.6% 90.7% 84.2% 87.3%
bi-LSTM-CRF-sentence® 89.1% 92.3% 90.7% 90.8% 84.2% 87.4%
bi-LSTM-CRF-report® 90.5% 93.0% 91.7% 91.9% 83.7"% 87.6%
ASC CRF-sentence” 90.3% 92.6% 91.4% 91.3% 84.6% 87.8%
ASC CRF—report7 90.4% 92.3% 91.3% 91.8% 83.9% 87.7%

Our approach with softmax-loss  90.6% 94.0% 92.3% 91.4% 85.0% 88.1%
Our approach with CRF-loss 89.4% 94.5% 91.9% 90.1% 86.5% 88.3%

The UW corpus was used for training the word embedding model using Skip-gram approach'* with windows
size 10 and vector size 500. We observed only a few Out-Of-Vocabulary (OOV) tokens in the training and testing
datasets. The OOV tokens were mapped to the ‘unk’ token.

The output layer consists of nine classes: eight anatomical labels as defined before and the ‘null’ label for
non-anatomical tokens. Performance was measured and compared across different models based on Precision,
Recall, and Fl-score and was calculated using data from all class labels except for ‘null’.

A few state-of-the-art methods were considered for the comparison as follows: 1) standard bi-LSTM; 2) bi-
LSTM with CRF proposed by;® and 3) approximate skip-chain (ASC) CRF proposed by.” Two types of inputs
were considered: 1) sentence-level: the input is only a sentence at a time; and 2) report-level: the whole report
is used as the input.

The training set, UC500, was randomly split to 80% and 20% for training and development, respectively. The
following hyperparameters and the corresponding range of values were tested to determine the best performing
LSTM model for the given task using the development set for all the models: LSTM hidden units: 32, 64, 128,
and 256; LSTM depth: 1 and 2; dropout ratio: 0.3, 0.5, and 0.7. We used the Adam optimizer!! with learning
rate of le-3 and mini-batches of size 16 for sentence-level input and eight for report-level input for the training.
All models were trained for 300 epochs with early stopping based on the development set results.

Precision, Recall, and F1-score for different models are shown in Table 2. Our proposed context-based LSTM
outperformed all other models on both testing corpora based on Fl-scores. Specifically, our proposed model
yielded significantly higher recall compared to other models. This suggests that it is beneficial to include the
sentence-level features for building an anatomy sequence label model.

5. NEW OR BREAKTHROUGH WORK TO BE PRESENTED

To the best of our knowledge, for the first time, we propose an RNN-based approach for token annotation in
radiology reports utilizing the surrounding sentence-level context to influence the decision making for labeling.

6. CONCLUSION

In this work, we presented a context-based LSTM model for addressing a sequence labeling problem in healthcare:
anatomical phrase labeling in radiology reports. Our proposed model is specifically well suited for NER, problems
that require short- and long-term dependency consideration in labeling decisions. This is achieved by deriving and

*https://spacy.io/
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combining token- and sentence-level features. Our validation results on reports from multiple sites demonstrated
that our proposed model outperforms other similar context-driven state-of-the-art sequence labeling approaches
suggesting that it is beneficial to include the sentence-level features for building an anatomy sequence label
model.
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