Experiments on Data Center Participation in
Demand Response Programs

Yijia Zhang, Ozan Tuncer, Athanasios Tsiligkaridis, Michael Caramanis, loannis Ch. Paschalidis, Ayse K. Coskun
Boston University, Boston, MA 02215, USA; E-mail: {zhangyj, otuncer, atsili, mcaraman, yannisp, acoskun}@bu.edu

Abstract—Regulation service reserves (RSR) are among the
demand response programs in emerging power markets. These
programs are beneficial to the stability of the power grid. RSR
requires participants to regulate their power consumption in a
near-real-time manner following a signal broadcast every several
seconds, and in return, the participants’ electricity cost is reduced
as a reward. Data centers' are good candidates to participate in
RSR owing to their flexibility in managing power consumption
and computational demand. In this paper, we demonstrate and
evaluate data center participation in RSR through experiments
on a 13-server cluster. We implement two regulation policies:
a policy that primarily tracks the given power signal closely,
and another one that prioritizes quality-of-service (QoS) of the
workloads running on the data center. This paper, with policies
achieving acceptable accuracy and good performance even on a
small cluster, indicates a promising future where full-scale data
centers participate in demand response programs.

[. INTRODUCTION

As data centers consume large amounts of power, data
center operators have a strong motivation to reduce this
power consumption and, thus, reduce their electricity bill.
Regulation service reserves (RSR) have recently emerged as
an opportunity for data centers to participate in and reduce
their electricity cost by up to 50% [1]. The main purpose of
programs like RSR is to stabilize the load of electricity grid.
Independent system operators (ISOs), such as PIM [2], are
already offering this service to power consumers.

To participate in RSR, data centers are required to regulate
their power consumption to follow a signal broadcast by the
ISO. This signal, y(t) € [—1,1], is a zero-mean random
variable updated every 4 seconds. The increments of y(¢) in
each 4-second cycle are bounded. At the beginning of every
hour, data center operators bid for an average power P and
a maximum power reserve R. Then, the power target for the
data center to follow is calculated as Pigrget(t) = P+y(t)R.

Previous work has demonstrated the benefits of data center
participation in RSR, but mostly in simulation (e.g., [3]). In
this paper, we implement and evaluate policies for data center
demand response on a real system located in the Massachusetts
Green High Performance Computing Center (MGHPCC). We
compare two policies: the Tracking-only policy, which focuses
entirely on signal tracking; and the Quality-of-Service-aware
policy, which balances the tracking performance and the
quality-of-service (QoS) of the workload. We implement the

'“Data center” in this work refers broadly to a large-scale computer,
including those in the cloud or in HPC systems. Our current workloads and
experimental setup are more aligned with HPC or grid systems.

State update

hether there is
QoS degradation

Schedule waiting jobs to
No meet the QoS constraint

P_actual > P_target No

Increase power limits on
each server

If more power available,
schedule waiting jobs
onto idle servers.

Decrease power limits on
each server

Fig. 1: Flow chart for the two policies. In the Tracking-only
policy, the pink regions are excluded.

two policies on a cluster of 13 servers, and we use NAS
Parallel Benchmarks (NPB) [4] as our workloads.

II. DATA CENTER POWER REGULATION POLICIES

Our policies regulate the power of the cluster through job
scheduling as well as processor power capping. These policies
assume a priori knowledge of minimum execution times and
minimum/maximum power consumption of the workloads.

A. The Tracking-Only Policy

The goal of this policy is to let the data center follow the
power target closely, and it is similar to the policy proposed
in our previous work [3]. Figure 1, when its pink highlighted
regions are excluded, represents the Tracking-only policy. In
every cycle, this policy adjusts the power consumption of the
servers proportionally. That is, if P; ,,,4,, and P; ;4. represent
the min/max power consumption for a server running a job of
type i’ we aSSign a power cap as P)i,min +6- (PL',TrLa:L' - Pi,'min)
to that server, where, the same 0 (€ [0,1]) is applied to all
active servers (i.e., the servers running jobs).

If the actual power is not large enough to meet the target
even when all active servers are running at their maximal
power, a number of N = (Ptarget - Pactual)/(Pma:r - Pidle)
idle servers are activated to run the waiting jobs. Here, P;q.
is the idle server power, and P,,,, is the maximal power
consumption of a server when running a job.

B. The QoS-aware Policy

As shown in Fig. 1, this policy prioritizes the QoS of the
workloads by including an additional branch to handle QoS
degradation. We define the QoS degradation of a job as Q; =

4000

Avg QGS Deg for 5, workloads:
0.48, 1.04, 0.58, 0.31, 0.38

|
] i g L il Lo I I
| |

. 1 T
Avg trackmg error: I
| o |

3500 | £

Total Power (W)
N N w
(=] wu (=]
o o o
(=] (=] o

1500 - - - s i " *E ******* N ||l Actual
! ! | ! QoS degraded
1000 L L L | L T T
0 500 1000 1500 2000 2500 3000 3500

Time (seconds)

(b) Experiments with the QoS-aware policy.

Fig. 2: One-hour experiments on a 13-server cluster using two different regulation policies.

4000
Avg i:racking error: Avg QOE Deg fi 5 workloadst |
N ! % ! 2.03,2.5,1.97,093,1.54 '
3500 F ppr--m -t e R s e -
— ‘1" 1 i o | | | | | ; i
2 3000 i Wik R b A -
5 I | | il | / H l“ J-‘ \ ' |
2 55000 - - - B i B Y| WY
o I LN i | | i
o | M 1 d L | b
el [t | 1
B 2000} - - |y - | [oMy R [E | 1 P 1| _
E . M | Y
1500} - - - I ‘: ****** J:””*: ******* :L ****** J: ****** h Targetlz
| | | I i I Actual
1000 L I | | I T T
0 500 1000 1500 2000 2500 3000 3500
Time (seconds)
(a) Experiments with the Tracking-only policy.
(Tsystem,i — Tmin,i)/Tmin,i» where, Ty, ; is the minimum

execution time of that job when executed without a power
cap, and Tysiem,; i1s defined as the job’s waiting time plus
actual execution time.

In each cycle, the QoS-aware policy determines whether
QoS is degraded, i.e., checks if Q); > 7, for some job-specific
threshold 7;. When QoS is degraded, we start a number of
waiting jobs on idle servers. The number of jobs to start is
determined by QoS constraints and the number of jobs waiting
in the queue. Apart from this QoS adjustment, the same steps
as the Tracking-only policy are performed.

III. EXPERIMENTAL METHODOLOGY

We experiment on 13 servers at the MGHPCC. These 13
“workers” run the computational workloads. Another “master”
server executes the policies. The “master” communicates with
the “workers” through rabbitmq [5]. In our experiments, we
only take the power of the “workers” into account.

We use Dell PowerEdge M620 blade servers, each equipped
with two Intel Xeon E5-2650 v2 processors. We read processor
and memory power using the perf utility [6], and we read
server power using IPMI. As IPMI on these servers only
provides a running average with a 4 Watt granularity, we build
a linear power model, Pseryer = 1 Pproc + a2 Prem + s,
to provide a more accurate server power reading. We fit our
model by linear regression using measurements from running
NPB applications.

We regulate processor power using the Intel Running Aver-
age Power Limit (RAPL) [7]. We build a PID controller that
enables a server to meet a power target by adjusting the RAPL.

We use five applications from NPB [4] as our jobs. To
simulate realistic cases, we generate a job queue using a
Poisson process. The parameters of the Poisson process are
determined by P and the average utilization of the cluster.
Here, P is selected as 13 x (50% X Ppaz +50% X Pq1c) based
on the designated 50% utilization level. R is min{13x Py, 4, —
P,P—13x Piji.}. These are reasonable choices suggested
by our previous work [3]. We set the QoS constraints of all
jobs as ; = 1. Our experiments use a real 1-hour ISO signal.

IV. RESULTS

Figure 2a shows a 1-hour experiment using the Tracking-
only policy. The red line is the power target. The blue line

is the actual total power consumption of the 13 “worker”
servers. The actual power consumption follows the target
well. Our tracking error meets a typical requirement from
PJM: for more than 90% of the time, the tracking error ¢ =
| Pactual — Prarget|/ R should be less than 30%. The electricity
bill reduction can be estimated as (1 — €ayvg) - R/P = 47%.
However, the workloads suffer from QoS degradation as large
as 2.5x. In systems with loose QoS constraints, this Tracking-
only policy can significantly reduce electricity costs.

Figure 2b shows results using the QoS-aware policy. Pink
regions mark the cycles where QoS degradation exceeds the
constraints, and the QoS-related branch is evoked. As we see,
when QoS is degraded, there is a sudden rise in the actual
power because multiple jobs start at this time to enhance
QoS, which affects tracking performance. With this QoS-
aware policy, we reduce the QoS degradation significantly,
and the largest QoS degradation is 1.04x. The electricity bill
reduction in this case is 36%, smaller than that of the Tracking-
only policy due to larger tracking error.

Our next steps include reducing the tracking error in the
QoS-aware policy, employing a broader set of applications,
and providing solutions that do not require accurate profiling
of applications.

ACKNOWLEDGMENT

This work has been partially funded by the Boston University
College of Engineering, Dean’s Catalyst Award.

REFERENCES

[1] J. Hansen, J. Knudsen, and A. M. Annaswamy, “Demand response in
smart grids: Participants, challenges, and a taxonomy,” in CDC, Dec 2014,
pp. 4045-4052.

[2] PIM, “Integrating demand and response into the pjm ancillary service
markets,” PJM, White Paper, 2005.

[3] H. Chen, M. C. Caramanis, and A. K. Coskun, “The data center as a
grid load stabilizer,” Proceedings of the Asia and South Pacific Design
Automation Conference, ASP-DAC, no. i, pp. 105-112, 2014.

[4] D. H. Bailey, E. Barszcz, J. T. Barton et al., “The NAS Parallel
Benchmarks,” Proceedings of the 1991 ACM/IEEE Conference on Su-
percomputing, pp. 158-165, 1991.

[5] “Rabbitmq,” https://github.com/rabbitmq.

[6] A.C.De Melo, “The new linux perf tools,” in Slides from Linux Kongress,

vol. 18, 2010.

H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL.:

Memory power estimation and capping,” Low-Power Electronics and

Design (ISLPED), 2010 ACM/IEEE International Symposium on, pp.

189-194, 2010.

[7

[

