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Abstract

The use of random perturbations of ground truth data,
such as random translation or scaling of bounding boxes,
is a common heuristic used for data augmentation that
has been shown to prevent overfitting and improve gener-
alization. Since the design of data augmentation is largely
guided by reported best practices, it is difficult to under-
stand if those design choices are optimal. To provide a more
principled perspective, we develop a game-theoretic inter-
pretation of data augmentation in the context of object de-
tection. We aim to find an optimal adversarial perturba-
tions of the ground truth data (i.e., the worst case per-
turbations) that forces the object bounding box predictor
to learn from the hardest distribution of perturbed exam-
ples for better test-time performance. We establish that the
game-theoretic solution (Nash equilibrium) provides both
an optimal predictor and optimal data augmentation dis-
tribution. We show that our adversarial method of training
a predictor can significantly improve test-time performance
for the task of object detection. On the ImageNet, Pascal
VOC and MS-COCO object detection tasks, our adversar-
ial approach improves performance by about 16%, 5%, and
2% respectively compared to the best performing data aug-
mentation methods.

1. Introduction
There is no guarantee that human-labeled ‘ground-truth’

annotations of an image dataset are error free. Consider the

bounding box annotations of three annotators of the image

in Figure 1. Do all boxes contain the object? Are all three

bounding boxes equally correct? Is there one bounding box

which is most helpful for learning a detection model? These

questions highlight the ambiguity in the annotation task.

In response, many helpful heuristics have been utilized in

the literature to obtain more consistent annotations. To deal

with inter-annotator disagreement [1, 2, 3], previous work

has relied primarily on reasonable heuristics for augment-

ing the ground truth through consensus [4, 5, 6, 7]. Despite

these efforts, it is not clear if there is a principled approach

for identifying the optimal ground truth distribution in the

Figure 1. Tiger localization example with three different bounding

box annotations illustrates ambiguity in ‘ground truth’ labels.

context of supervised learning.

To partially address the uncertainty of the ‘ground truth’

annotations, dataset augmentation methods can be used to

synthesize new annotations of images by perturbing anno-

tations. In fact, heuristic data augmentation preprocessing

such as random translation, flipping or scaling, has been

shown to be essential for many modern visual learning tasks

using deep networks. However, manually choosing pertur-

bations to improve performance can be an error-prone pro-

cess. While increasing the modes of data perturbations may

effectively increase the amount of training data, it can also

cause the learned predictor to drift. In this way, current tech-

niques for data augmentation are more of an art than a sci-

ence.

Towards a more principled approach to data augmenta-

tion, we propose to integrate annotation perturbations di-

rectly into the learning process. We do this by introducing

an adversarial function that generates maximally perturbed

version of the ground truth, which makes it as hard as possi-

ble for the predictor to learn. The adversary, however, is not

completely free to perturb the data. It must retain certain

feature statistics (e.g., the features of the new bounding box
distribution should still be close to the features of the orig-

inal bounding box). Formally, we pose the data augmenta-

tion problem as a zero-sum game between a player (the pre-

dictor model) seeking to maximize performance and a con-

strained adversary (augmented data distribution) seeking to

minimize expected performance [8, 9, 10]. This adversarial

approach has been applied widely in different research stud-

ies and applications like Multi-label prediction [11] and ob-

ject tracking [12]. To the best of our knowledge, this is the
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first work to provide a theoretic basis for data augmentation

in terms of an adversarial two player zero-sum game. As a

consequence of our game-theoretic formulation, we develop

a novel adversarial loss function that identifies the optimal

data augmentation strategy which leads to the most robust

predictor possible (i.e., trained for the worst case perturba-
tion of data). In our experiments, we focus on the task of ob-

ject detection and show that our proposed adversarial data

augmentation technique consistently improves performance

over various competing loss functions, data augmentation

levels, and deep network architectures.

2. Related Work
It is common to assume that the ground truth is singular

and error-free. However, disagreement between annotators

is a widely-known problem for many computer vision tasks

[1], as well as a major concern when constructing an anno-

tated computer vision corpora [2]. In large part, the diffi-

culty arises because the set of possible “ground truth” an-

notations is typically extremely large for vision tasks. It

is a powerset of possible descriptions (e.g., words, noun
phrases) in annotation tasks, multi-partitions of the pixels

(exponential in the number of pixels) in segmentation tasks,

and the possible bounding boxes (quadratic in the number

of pixels) for localization tasks.

Methods to form a “consensus” annotation and to im-

prove the annotation process through crowd-sourcing have

been developed by averaging or combining together dif-

ferent independent annotations [4], verifying annotations

with other independent annotators [5], and other strategies

[6, 7]. For example, the ILSVRC2012 image dataset em-

ploys boundary box drawing, quality verification, and cov-

erage verification as three separate subtasks [13] in a crowd-

sourcing pipeline. In the construction of that dataset, pro-

posed bounding boxes are rejected 37.8% of the time [13],

illustrating the inherent disagreement between annotators

and the uncertainty of the task. Despite the added safe-

guards of the verification process, recent evaluations have

also been performed by removing a substantial fraction of

the training examples that are considered to have poor qual-

ity bounding boxes [3, 14, 15, 16, 17].

Many state-of-the-art methods for object detection [18]

are based on CNN, and incorporate other improvements

such as the use of very large scale datasets, more efficient

GPU computation, and data augmentation [19]. Recently,

most of the literature on data augmentation studies effective

data augmentation methods for CNN features that increase

the performance of different tasks (e.g., classification, ob-
ject recognition) [20, 21, 22, 23]. Chatfield [19] applies the

data augmentation techniques commonly applied to CNN-

based methods to shallow methods and shows an analo-

gous performance boost [19]. Paulin et al. [21] claim that

given a large set of possible transformations, all transforma-

tions are not equally informative and adding uninformative

transformations increases training time with no gain in ac-

curacy. They propose Image Transformation Pursuit (ITP)

algorithm for the automatic selection of a compact set of

transformations.

Complementary to our work, data augmentation can also

be used to guard against adversarial attacks [24, 25, 26,

27, 28]. Total variance minimization and image quilting

are presented as very effective defenses against adversarial-

example attacks on image-classification systems [26]. The

strength of these data augmentations lies in their non-

differentiable nature and their inherent randomness result-

ing in difficult defenses for an adversary. Our work is dif-

ferent in that we seek to optimize the data augmentation

process as part of a supervised learning problem.

3. Problem Formulation
In order to understand the underlying theory of adversar-

ial data augmentation proposed in this work, we must first

understand the role of the annotation distribution, p(y|�x),
which describes the distribution over labels y (e.g., a bound-
ing box annotation) given a feature vector �x (e.g., an RGB
image). Note that a training dataset D = {yn, �xn}Nn=1,
induces an annotation distribution p(y|�x). In other words,
each label yn in the training set can be interpreted to be
a sample from the annotation distribution which is condi-

tioned on a feature vector �x ∈ R
D. When there is absolute

certainty in the ground truth annotation, the annotation dis-

tribution p(y|�x) is an indicator function where it is one for
the true label y∗ and zero otherwise.

3.1. Data Augmentation

The process of data augmentation is a method of alter-

ing the annotation distribution. A typical method for data

augmentation generates new examples D̃ by perturbing the

training dataD. For example, if the label is a structured out-
put like a bounding box (i.e., a vector of four values), we
can generate a new structured label ỹ for the same image by
slightly perturbing the original ‘ground truth’ bounding box

y∗. This data augmentation process creates a new underly-
ing annotation distribution p̃(y|�x). Since data augmentation
can be used to generate multiple new labels for the same

feature vector �x, the annotation probability p(y|�x) becomes
a soft distribution over labels.

Now if we are given a loss function �(ŷ, y) describing the
distance between an estimated label ŷ and annotation label
y, we can compute the expected loss of the estimated label
under the annotation distribution as:

∑
y∈Y P (y|�x)�(ŷ, y).

Notice that the expected loss is the smallest when the

estimated label matches the annotation distribution. Con-

versely, the expected loss grows larger when the estimated

label is far from the annotation distribution. It is important

to note here that this marginalization over the annotation
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Figure 2. Types of annotation distributions. Adversarial augmenta-

tion selects bounding boxes that are maximally different from the

ground truth but still contain important object features.

distribution is rarely made explicit in the loss function in

most modern supervised learning objective functions be-

cause the distribution is assumed to be an indicator function

at the ‘ground truth’ label.

Now consider the probabilistic predictor f(y|�x) which
maps a feature vector �x to a distribution over labels y. The
expected loss over the entire dataset D under the predictor

distribution and annotation distribution is defined as:

min
f∈Γ

∑
x∈D

expected loss for input �x︷ ︸︸ ︷∑
y′

f(y′|�x)
∑
y

P (y|�x)�(y′, y) . (1)

The goal of supervised learning is to find the optimal pre-

dictor f (from some set of predictors Γ), that minimizes the
above expected loss over the labeled training data. Under-

standing this verbose form of the supervised learning objec-

tive function is critical for the formulation that follows.

3.2. Adversarial Data Augmentation

If we adopt a pessimistic view of the annotated data and

assume uncertainty in the ‘ground truth’ annotations, we

can use data augmentation to perturb the ‘ground truth’ an-

notations to reflect this uncertainty. We go further and as-

sume the worst case: that the quality of the annotation dis-

tribution is maximally perturbed. In other words, we make a
strong pessimistic assumption that the annotation distribu-

tion was generated by an adversary. By making this worst

case assumption, we hypothesize that we can train a more

robust predictor that is resilient to large perturbations it

might encounter at test time. Figure 2 illustrates three pos-

sible choices of annotation distributions for a single image.

More formally, instead of the common Empirical Risk

Minimization (ERM) objective of Eq. (1), we aim to learn a

predictor f that optimizes the following adversarial objec-
tive function:

min
f∈Γ

∑
x∈D

∑
y′

f(y′|�x) max
P (y|x)

∑
y

P (y|�x)�(y′, y). (2)

Notice that the maximization sub-problem has been inserted

into the objective function which reflects our assumption

that the annotation distribution is adversarial (i.e., the worst
case distribution). One might quickly notice that this is an

unreasonable objective function without some additional

constraints because the adversarial annotation distribution

can be arbitrarily bad. In the next section we will incorpo-

rate constraints that limit the adversary from deviating very

far from the original ground truth annotations.

3.3. Game Formulation

Our claim is that data augmentation should be included

in the learning problem instead of being an independent

data pre-processing step. By incorporating data augmenta-

tion into the predictor learning problem, we obtain a saddle

point optimization problem where we pit a predictor trying

to minimize the loss, against an adversarial annotation dis-

tribution that is trying to maximize the loss. In this form,

the optimization can be seen as a minimax problem over a

zero-sum two-player game.

In the language of game theory, the player (predictor) se-

lects a label from amixed strategy y′ ∼ f(y′|�x) to minimize
the loss, while the opponent (annotation distribution) selects

an annotation from the adversarial distribution y ∼ P (y|�x)
to maximize the loss. The equilibrium point of the game

yields both the optimal predictor and an optimal data anno-

tation distribution. The game is zero-sum because the neg-

ative loss of the player (predictor) is exactly the gain of the

adversary (annotation distribution).
The value or payoff of the game for a particular feature

vector �x is the expected loss of the predictor distribution
against the adversary’s annotation distribution:

E y′|�x ∼f
y|�x ∼P

[
�(y′, y)

]
=

∑

y′,y

f(y′|�x)�(y′, y)P (y|�x) = f�Gp. (3)

The expected loss of the game can also be written in matrix
form, where f is the vector of probabilities obtained from
the predictor over all labels, G is the game matrix where

each element contains the loss between two labels, and p is
the annotation distribution vector.

The adversarial objective function, Eq. (2) in its current

form is problematic because the adversarial annotation dis-

tribution is free to perturb the ground truth annotations in

arbitrary ways that have no similarity to the original anno-

tations. This can be prevented by constraining the adversar-

ial annotation distribution to choose label distributions in a

way that retains feature statistics of the original ground truth

annotation. For example, we may want the mean of a set of

augmented bounding box annotations to be the same as the

mean of the original bounding box annotation. Formally, we

can define the first-order statistic of the ground truth data as:

Ey,x∼D [φ(y, x)] = 1
N

∑N
n=1 φ(yn, �xn), where (yn, �xn) is

the nth training example in D. We are now ready to define
the constrained adversarial optimization problem.

Definition 1. The Primal Adversarial Data Augmenta-
tion (ADA-P) game is:

min
f

max
P
E�x ∼ D,

y′|�x ∼ f,
y|�x ∼ P

[�(y′, y)] such that: (4)

E�x ∼ D,
y|�x ∼ P

[φ(y, �x)] = Ey,x∼D [φ(y, �x)]
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where f(y′|�x) and P (y|�x) are distributions over all poten-
tial predicted labels for each feature vector �x.

Due to strong Lagrangian duality [29], a dual problem

with an equivalent solution can be formulated by including

the constraint in the objective function using a vector of La-

grangian multipliers, θ. This resulting Lagrangian potential
θ�φ(·, ·) links together a set of otherwise independent zero-
sum games.

Definition 2. The Dual Adversarial Data Augmentation
(ADA-D) game is:

min
θ
Ex,y∗∼D

[
min
f

max
P
Ey′ ∼ f,
y ∼ P

[
�(y′, y) (5)

+ θ�{φ(y, �x) − φ(y∗, �x)}
]
.

We make two important observations based on this dual

optimization perspective. First, since P is adversarially cho-
sen, there is no need to restrict or parameterize f to avoid
overfitting to P as is typically done in supervised learning.

Instead, the feature potential based on θ is learned to pro-
vide constraints on the adversary that make prediction eas-

ier. Further, since P is chosen after f in Eq. (5), the predic-
tor is incentivized to randomize.

4. Adversarial Object Detection
Up to this point, we have described our proposed ad-

versarial data augmentation learning approach in general

terms, as it can apply to many structured output tasks. Now,

we shift our focus to the concrete problem of object de-

tection. This explicit focus will help us to describe our ap-

proach in concrete terms.

Label Space. Each structured output label y is represented
by the four coordinates of a bounding box. The domain of

a label is denoted Y . The set of all possible bounding boxes
Y is very large for an image of modest size and therefore it

is rarely practical to evaluate all possible bounding boxes.

This means that the sums over labels used in the formula-

tion above (Section 3) are not tractable and that some form

of distribution approximation is needed. To discretize the

label space Y , we use a bounding box proposal algorithm,
Edgebox [30] or a Region Proposal Network [31] to gener-

ate a set of k bounding boxes to define the label space Y .
Feature Statistics. To represent the feature statistics

φ(y, �x) of a bounding box y over an image �x, we use
the FC7 features of the VGG16 [32] network. Concretely,

it is a 4096 dimensional vector over a sub-image defined

by the bounding box y. The feature statistic constraint
|φ(y′, �x)−φ(y∗, �x)| described in the ADA-D definition rep-
resents the difference between the FC7 features of an arbi-

trary bounding box y′ and the FC7 features of the ground
truth bounding box y∗. Also known as the perceptual loss,

Figure 3. Example Game Matrix for a duck image with three

bounding boxes. Each black bounding box is a potential label for

the same duck image.

this quantity ensures that the adversarial bounding box la-

bel remains perceptually similar to the ground truth bound-

ing box label. Loss Function. The loss function used for
object detection is based on the classical intersection over

union (IoU) score, IoU(y, y′) = area(y ∩ y′)/area(y ∪ y′).
Here, y and y′ are two bounding boxes. In this work, we
focus on losses defined in terms of the amount of non-

overlap, �(y, y′) = 1 − IoU(y, y′), which equals to one
when y and y′ are disjoint, zero when they are identical, and
smoothly transitions in between those extremes. Another

loss function we use is the overlap loss with a threshold:

�tα(y, y
′) = 1 if IoU(y, y′) < α and 0 otherwise, which as-

signs binary loss to bounding boxes depending on the over-

lap threshold.

4.1. Game Matrix

As noted in Eq. (3), the expected loss of the adversarial

game can be written in matrix form, f�Gp. The game (or
payoff) matrixG for ADA-D is constructed from Eq. (5) as

an |Y| × |Y| matrix, where each element is defined as:
G(y′, y) = �(y′, y) + θ�|φ(y, �x) − φ(y∗, �x)|, (6)

where the first term �(·, ·) is the IoU based loss and the sec-
ond term is the weighted difference between FC7 features

of the annotation distribution label y and the ground truth
y∗ label. To better understand the structure of the game ma-
trix, we can decompose it asGGG = GGG�+GGGΦ. The elements of
each matrix are illustrated for a toy example in Figure 3. The

first matrixGGG� contains the pairwise loss between the label

of the predictor and the label of the adversary, �(y′, y). The
second matrix GGGΦ contains the difference in feature statis-
tics between the adversary and the ground truth. Since the

constraint matrixGGGΦ does not depend on the predictor label
y′, each row is identical. The elements of the last column are
all −1 in this example because the feature statistic of the
bounding box y3 are very different from the ground truth

bounding box y∗, whereas the first two columns are zero
because the content of their bounding boxes are similar.

4.2. Nash Equilibria

The solution of the game, the Nash equilibrium pair (f ,p),
is defined as the optimal strategy for each player such that:

max
p′

f�GGGp′ ≤ f�GGGp ≤ min
f ′

f ′�GGGp. (7)
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For the example in Figure 3, the lower potential for the

third bounding box inGGGΦ offsets the larger loss that might
be produced in GGG� by having p(y3) > 0. Due to the
symmetries in GGG, the equilibrium solution is then simply:

P (y1|x) = P (y2|x) = f(y′1|x) = f(y′2|x) = 0.5 and
P (y3|x) = f(y3|x) = 0.
In general, this equilibrium solution pair can be obtained

efficiently using a pair of linear programs:

min
v,f≥0

v such that: f�GGG ≤ v1 and f�1 = 1; and (8)

max
v,p≥0

v such that:GGGp ≥ v1� and p�1 = 1,

where v is the value of the game (i.e., the expected loss).
This first linear program finds f that produces the maximum
value against the worst choice of p′ using the left-hand side
of Eq. (7) via constraints for each deterministic choice of p′

(i.e., the 1 vector). The second linear program is constructed
in a likewise manner to obtain p.

4.3. Constraint Generation for Large Games

In practice, forming and solving a zero-sum adversarial

game over a very large set of labels (e.g., the set of all pos-
sible bounding boxes in an image) for each image is com-

putationally expensive. To obtain the same result more effi-

ciently, we employ a constraint-generation method [33, 10]

to solve ADA-D without explicitly constructing the entire

payoff matrixGGG. It is based on the key insight that the equi-
librium distributions, f and p, both assign zero probabili-
ties to many bounding boxes and those bounding boxes can

then be effectively removed from the game matrix without

changing the solution. Constraint-generation uses a set of

the most violated constraints to grow a game matrix that

supports the equilibrium distribution that is much smaller

than the full game matrix.

The approach works by iteratively obtaining a Nash

equilibrium for a game defined over a subset of the possi-

ble labels (not all of them), finding a player’s best response

strategy (either the predictor or the annotation distribution)

to that equilibrium distribution. Then the best response to

the set of opponent strategies defining the game is added as

a new strategy. When additional best responses no longer

improve either player’s game value, the subgame equilib-

rium is guaranteed to be an equilibrium to the larger game

[33].

4.4. Algorithm Details

Algorithm 1 details the ADA equilibrium computation

structure. The preprocessing step extracts image box pro-

posals (e.g., EdgeBox or RPN) and their CNN FC features
in Lines 1-4. Sp and Sf are set of annotations (box pro-
posals) for p and f game players. In the main portion of
the algorithm in lines 5-12, solveGame obtains a Nash
equilibrium using linear programming (Gurobi LP solver

Algorithm 1 ADA Equilibrium Computation
Input: Image �x; Parameters θ; Ground Truth y∗

Output: Nash equilibrium, (f ,p)
1: Y ← EdgeBox(�x)
2: Φ = CNN(Y, �x)
3: ψ ← θ�(Φ− Φ(y∗))
4: Sp ← Sf ← argmaxy ψ(y)
5: repeat
6: (f ,p, vp) ← solveGame(ψ(Sp), loss(Sf ,Sp))
7: (ynew, vmax) ←maxy Ey′∼f [loss(y, y

′)+ ψ(y)]
8: if (vp �= vmax) then Sp ← Sp ∪ ynew
9: (f ,p, vf ) ← solveGame(ψ(Sp), loss(Sf ,Sp))
10: (y′

new, vmin) ← minŷ Ey∼p[loss(y, y
′)]

11: if (vf �= vmax) then Sf ← Sf ∪ y′
new

12: until vp = vmax = vf = vmin
13: return (f ,p)

[34]) and constraint generation using max and min oper-
ations is performed in lines 7 and 10. After reaching the

loop termination condition (line 12), the f and p distri-

butions are returned. In order to obtain the optimal model

parameters θ, we perform stochastic gradient descent over

data mini-batches B, and use ADA (Algorithm 1) for the

inner optimization problem using θ and y∗ to compute the
(sub)gradient of the minimax objective function in Eq. (5).

It can be shown that feature residual is the (sub)gradient

of the objective function, as it is the only part of the ob-

jective function that depends on θ, yielding updates: θ ←
θ − λ(E�x ∼ B,

y|�x ∼ P

[φ(y, �x)] − Ey,x∼B [φ(y, �x)]). We use Ada-

Grad [35] for the parameter updates to effectively converge

near the point where the data augmentation features match

the training data features.

Test-time Inference. At testing time, we can compute f by
solving the minimax problem in Eq. (5) using ADA in Al-

gorithm 1. However, there is one important change. Since

the parameters θ are fixed at test time, the final term of Eq.
(5) is a constant θ�φ(y∗, �x) and is excluded from the opti-
mization (we do not use the ground truth at test time!). ADA

yields two distributions p and f . Our final prediction is the
K (for example, top 5 box proposals for Pascal VOC) most

probable predictor bounding box(es) under the equilibrium

distribution, ŷ = argmaxy f(y|�x).

Extension to Multi-Class Multi-Instance Detection. For
ease of exposition, we have limited our above description of

ADA to single class detection. We can extend our method

for multi-class detection by allowing an additional label op-

tion of no instance detected and learning parameter vectors
for each class θ1, . . . , θN . As before, we perform stochas-

tic gradient descent over data mini-batches, and use ADA

(Algorithm 1) in the inner optimization problem. However,

since we are dealing with multi-class detection, we must

perform ADA N times (compute a prediction for every

class) for each image against the ground truth y∗n, where
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n is the index of the true class. This produces a big list of
(class probability, bounding box) pairs, where the box with

the highest probability is treated as the prediction result. If

the highest class probability matches the ground truth class,

we only update θn. If there is a mismatch (wrong class was
predicted), then both θn and θm are updated, wherem is the

index of the false prediction.

5. Experiments
In the following experiments, we show that our pro-

posed adversarial optimization for data augmentation pro-

vides meaningful improvements in test time prediction per-

formance. We first compare our adversarial data augmen-

tation (ADA) objective function against baselines models

with no data augmentation on the task of localization in

Section 5.1. Second, we compare our approach to baseline

models with varying levels of data augmentation in Section

5.2. Third, we evaluate our approach on the task of detection

(joint recognition and localization) in Section 5.3. Finally,

we use our adversarial optimization over various deep fea-

tures to show consistent improvements across networks in

Section 5.4.

Baselines. We benchmark the performance of our adversar-
ial approach (ADA) for object detection against two classi-

cal objective functions.

(1) SSVM: The structured output support vector machine
(SSVM) [36] is a large margin classifier with a variable mar-

gin depending on a structured loss function �. The objective
function is defined as:

θ̂ = argmin
θ

λ||θ||2 +
∑
n

ξn (9)

s.t. θ�(φ(y∗n, �xn) − φ(y, �xn)) ≥ �(y∗n, y) − ξn ∀ y,

where θ is the weight vector, φ is the feature function (im-
age feature statistic), � is the loss function and ξ is the slack
variable. To solve the SSVM objective function, we em-

ploy an iterative constraint generation strategy to accelerate

the learning process by adding a few constraints per iter-

ation (instead of the entire constraint set defined by each

label y ∈ Y). At test time, we generate a set of bound-
ing box proposals (EdgeBox) and take the bounding box

with the highest potential using the learned weight vector,

ŷ = argmaxy θ
�φ(y, �x) to identify the predicted structured

output.

(2) Softmax: The soft maximum (logistic regression) ob-

jective function is a probabilistic predictor. For the soft-

max objective function, we estimate a distribution over all

proposed bounding boxes y that maximizes the conditional
likelihood of proposed bounding boxes with an IoU above

a given threshold.

θ̂ = argmax
θ

∏
n

P (yn|�xn; θ) = argmax
θ

∏
n

eθ
�φ(yn,�xn)∑
y e

θ�φ(y,�xn)
,

Table 1. No augmentation baseline comparison (IoU>0.5)

Model ImageNet Object Categories
Plane Bird Bus Car Cat Cow Dog Hors Moni Sofa mAP

ADA+VGG (Ours) 92.0 93.5 92.0 100.0 89.1 100.0 93.0 96.4 96.0 90.0 94.2
Softmax+VGG 84.0 86.5 84.0 87.0 70.9 77.5 62.0 72.7 72.0 80.0 77.7

SSVM+VGG 90.0 82.5 82.0 82.0 40.0 87.5 72.0 72.7 90.0 78.0 77.7

Table 2. No augmentation baseline comparison (IoU>0.7)

Model ImageNet Object Categories
Plane Bird Bus Car Cat Cow Dog Hors Moni Sofa mAP

ADA+VGG (Ours) 58.0 61.5 64.0 91.0 30.9 77.4 58.0 58.2 61.8 61.9 62.3
Softmax+VGG 47.6 45.7 40.0 62.8 20.0 42.5 25.1 25.4 31.4 44.2 38.5

SSVM+VGG 51.8 55.5 44.0 61.7 21.8 54.7 31.6 43.6 56.0 57.3 47.8

where θ is the weight vector, φ is the potential function (FC7
feature) and � is the loss function. At test time, we compute
the Bayesian optimal decision to identify the most likely

bounding box from a set of proposed bounding boxes ac-

cording to: ŷ = argminy
∑

y′∈Y P (y′|x; θ)�(y, y′), where
P (y|x; θ) is the learned conditional distribution parameter-
ized by θ and � is the loss function.

5.1. Baseline Comparisons with No Augmentation

We begin with the simplest evaluation, where we com-

pare our proposed adversarial data augmentation approach

with two baseline method that use only the ground truth

annotation, without augmenting the training data, to learn

a predictor. We compare our method ADA+VGG against

SSVM+VGG and Softmax+VGG. The suffix +VGG for

each objective function specifies the deep network from

which the features are used, in this case VGG16 [32]. We

compute the mean Average Precision (mAP) score for sev-

eral classes in ImageNet dataset for each of the competing

methods. We train a bounding box predictor for each object

category, and consider an object to be correctly detected

when the IoU is greater than a threshold. We emphasize

here that we are decoupling the recognition task from the

localization task by learning class specific bounding box re-

gressor and testing only on images that contain the target

class. Later experiments will evaluate on both recognition

and localization. For this experiment, we give results for

two thresholds, 50% IoU and 70% IoU for each object cat-

egory. Since our method explicitly augments the dataset as

part of the optimization process whereas the two baselines

have no data augmentation, we expect our approach will

outperform the two baselines.

The test time localization accuracy at 50% IoU on 10

object classes from ImageNet are given in Table 1. As ex-

pected, we observed significant test time improvement in

bounding box regression accuracy for every object category.

On average, our proposed adversarial data augmentation ap-

proach improved mean average precision by 17% percent-

age points.

We repeated the same experiment for a more strict loss,

a 0.7 thresholded IOU loss function. The mean average pre-

cision of the predicted bounding boxes are given in Table 2.

Since we are evaluating performance with a more strict loss
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Table 3. Effect of Data Augmentation (IoU > 70%)

Augmentation AlexNet Object Category
Plane Bird Bus Car Cat Cow Dog Hors Moni Sofa Avg

SSVMt50+VGG 53.8 57.9 49.7 64.0 22.6 59.9 37.5 45.5 56.7 57.8 50.5

SSVMt60+VGG 54.7 58.9 52.7 67.7 23.7 64.9 42.0 48.6 57.3 58.4 52.9

SSVMt70+VGG 56.4 61.6 56.8 70.8 25.4 67.3 49.1 51.9 58.6 58.8 55.7
SSVMt75+VGG 52.6 61.0 51.7 64.4 20.2 61.2 42.6 44.0 57.3 56.0 51.1

SSVMt80+VGG 49.8 52.0 44.9 60.3 20.2 55.8 33.1 41.4 55.8 52.7 46.6

ADA+VGG (Ours) 58.0 61.5 64.0 91.0 30.9 77.4 58.0 58.2 61.8 61.9 62.3

function, the absolute mAP values decrease as expected.

However, notice that our proposed approach still obtains a

significant improvement over the baseline algorithms im-

proving mAP by 15% percentage points over the strongest

baseline SSVM+VGG.

5.2. Baseline Comparisons with Augmentation

We now compare the performance of our approach to

the strongest baseline model, SSVM+VGG, trained with
different levels of data augmentation. As mention earlier,

data augmentation such as random translations of bound-

ing boxes, is a common heuristic used to help supervised

learning methods avoid overfitting. We prepare five lev-

els of data augmentation to train the SSVM+VGG base-

line. Instead of using random translations within a range

of the ground truth bounding box annotation, which gen-

erate many similar bounding boxes, we use the EdgeBox

proposal network to generate a diverse set of bounding

boxes. We keep the top 250 EdgeBox proposals with the

highest scores and filter them according to five thresholds

with respect to the original ground truth bounding box: (1)

IoU>50%; (2) IoU>60%; (3) IoU>70%; (4) IoU>75%;
and (5) IoU>80%. We denote the experiment using the sub-
script t50 to represent a model trained on a collection of
bounding boxes with IoU>50%. We consider the bounding
boxes that pass the threshold test, as new ‘ground truth’ and

use them as the training set. We note here again that our

proposed method automatically selects (gives weights to)

the bounding box proposals during the learning process and

does not require a separate augmentation step.

The results of this experiment are shown in Table 3. We

note that augmenting SSVM in this manner improves test

performance compared to the model without data augmen-

tation (Table 2). We also observe that the performance gain

is maximized around the 70% overlap threshold. However,

we find that with the exception of the Bird class, the perfor-
mance gains of data augmentation do not reach the perfor-

mance of our ADA approach. Our proposed approach still

outperforms the model with the best level data augmenta-

tion by 6.4% percentage points.

We also performed a second data augmentation experi-

ments by only varying the number of bounding boxes with

the top EdgeBox scores (instead of using IoU) for every im-

age label to understand how the amount of augmented data

affects test time performance. At test time, we use the 50%

overlap criteria for successful localization. Table 4 shows

Table 4. Effect of Number of Augmented Data Annotations. ADA

outperforms best configuration SSVM+VGG baseline by 12%.

SSVM+VGG k=1 k=2 k=4 k=6 k=8 k=10 k=12 ADA+VGG

mAP 77.6 79.7 81.4 83.8 83.7 79.8 75.3 94.2

Table 5. Detection Performance Comparison (IoU > 70%).

Model Image Net Object Category
Plane Bird Bus Car Cat Cow Dog Hors Moni Sofa Avg

ADA+VGG (Ours) 46.0 55.5 60.0 86.0 25.4 70.0 47.0 52.7 60.0 48.0 55.1
SSVM+VGG 42.0 46.0 38.0 53.0 16.4 52.5 25.0 36.4 42.0 42.0 39.3

Softmax+VGG 40.0 42.5 42.0 55.0 16.4 32.5 16.0 29.1 22.0 34.0 33.0

the mAP performance over same 10 object categories in

ImageNet as a function of the number of augmented data

annotations per image. The augmented data annotations are

selected from a rank list of EdgeBox proposals from each

image. The performance of the SSVM+VGG tops out at 8

augmented data annotations and is still 12% points below

our proposed approach (94.2% mAP).

5.3. Detection Performance Comparison

We now address the object detection task of jointly locat-

ing and recognizing the category of an unknown object, to

evaluate the performance of our approach on a harder task.

In order for a model to obtain a correct result, the predictor

must output the correct category label and also generate a

bounding box that overlaps with the ground truth by at least

70% IoU. For our baseline models, SSVM+VGG and Soft-
max+VGG, we use the best performing data augmentation
scheme from Table 3 that includes EdgeBox proposals that

have 70% IoU threshold with the original ground truth an-

notation.

Table 5 shows the object detection performance when

evaluated at the 70% IoU threshold for correctness. We

again find strong support for our adversarial approach to

deal with uncertainty. Specifically, we find that ADA70 pro-

vides the best performance for all object classes. Though

the relative performance advantage differs by object type,

for classes like Dog, the improvement over the other ap-
proaches is nearly double. On average, ADA provides a

significant performance improvement of 15.8% percent-

age points on this task over the strongest performing

SSVM+VGG baseline.

5.4. Generalization Across Deep Architectures

To understand how our proposed adversarial loss func-

tion, ADA, generalizes across various deep architectures,

we conduct two sets of experiments.

(1) Generalizing ADA across various deep features.
We run this experiment over 20 classes of VOC 2007

dataset, 5000 training images and 4952 testing images.

In this experiment setting, the same box proposals are

used for different networks but the features are differ-

ent because the architectures are different. We first ex-

tract the top 250 box proposals of every image using
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Table 6. ADA Generalization Across Deep Features. VOC2007 mAP for IoU>0.5.

Model VOC 2007 Object Category
Aero Bike Bird Boat Bott Bus Car Cat Chair Cow DinT Dog Hors Mbik Pers Plnt Shee Sofa Train TV mAP

ADA+VGG16 67.6 71.1 67.4 63.0 46.4 75.4 78.5 80.2 50.7 77.9 64.2 79.8 71.5 72.8 66.6 30.0 69.7 72.3 80.2 61.8 67.4
SSVM+VGG16 70.1 74.5 63.2 46.0 43.2 74.8 78.0 78.3 43.2 73.3 61.5 79.2 73.4 72.0 63.7 34.3 67.0 66.8 70.2 71.1 65.1

SVM+VGG16 [37] 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

ADA+AlexNet 61.9 68.8 62.5 62.4 44.9 72.5 74.4 79.5 43.7 81.6 64.2 81.1 70.4 68.1 71.2 38.6 64.7 69.8 79.0 58.2 65.9
SSVM+AlexNet 66.8 72.0 57.3 44.3 41.5 66.6 73.1 69.2 34.9 53.9 54.2 61.6 69.5 68.0 58.8 35.5 63.2 51.6 63.1 62.9 58.4

SVM+AlexNet [37] 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

ADA+ResNet101 74.1 74.2 69.5 63.1 47.9 77.1 79.8 84.2 47.8 82.2 64.5 78.1 71.2 73.0 71.4 36.4 70.3 72.6 78.1 64.2 69.0
SSVM+ResNet101 67.3 68.6 69.3 56.2 47.1 75.9 79.1 83.9 46.0 81.5 63.0 77.9 69.2 72.6 64.6 35.9 68.0 68.6 75.2 64.3 63.8

Table 7. ADA Generalization Across Deep Architectures over VOC dataset (mAP for IoU>0.5)

Model VOC 2007 Object Category
Model train aero bike bird boat bott bus car cat chair cow table dog horse mbik prsn plant sheep sofa train tv mAP

ADA+Faster vgg16 07 77.7 80.1 71.3 60.0 48.1 82.0 80.3 84.5 50.5 77.6 68.2 84.3 75.6 78.3 73.9 41.2 69.9 65.6 75.4 77.4 71.1
OHEM[38] vgg16 07 71.2 78.3 69.2 57.9 46.5 81.8 79.1 83.2 47.9 76.2 68.9 83.2 80.8 75.8 72.7 39.9 67.5 66.2 75.6 75.9 69.9

Faster-RCNN vgg16 07 73.8 78.5 70.0 57.3 50.2 79.8 78.2 85.1 48.5 74.3 65.7 83.5 76.9 75.7 72.4 40.2 67.6 65.2 70.7 74.1 69.4

ADA+Faster resnet 07,12 80.1 82.1 75.2 71.4 56.5 86.2 85.5 90.5 88.0 89.0 71.5 88.5 91.5 78.7 79.8 44.2 76.4 80.5 83.4 74.3 78.7
Faster-RCNN resnet 07,12 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0 76.4

EdgeBox. These box proposals are then passed through

VGG16 (Matconvnet pre-trained model [39]) to extract the

box feature, which are activations of the last fully con-

nected layer (FC7). The box proposals and their features

are used to train ADA (called ADA+VGG16 in table 6)

and SSVM (called SSVM+VGG16 in table 6). We repeat

the same procedure with pre-trained models of Alexnet

[16] and ResNet101 [14]. As reference, we also report

the result of SVM+VGG16 and SVM+AlexNet FC7 pre-

sented in [40]. Table 6 shows that ADA consistently outper-

forms the baseline models across all deep network archi-

tectures. In particular, notice that ADA+ResNet101 outper-

forms SSVM+ResNet101 by 5% in mAP. This experiment

shows that ADA can provide improved performance across

different deep features.

(2) Generalizing ADA across state of the art architec-
tures. In this experiment, we benchmark ADA against

state of the art deep architectures (Faster-RCNN[31], Fast-

RCNN[41], and OHEM[38]) for object detection on Pas-

cal VOC and MS-COCO datasets. We use the pre-trained

Faster-RCNN (VGG 16) [31, 42], extract 300 box propos-

als and their features (512-d for VGG). The width and the

height of every box proposal are also appended to the fea-

tures. We use these box proposals and their features as input

for ADA(is called ADA+Faster in Tables 7, 8), train it on
VOC 2007-training set and evaluate it on VOC2007-testing

set. We calculate mAP for this dataset using the evaluation

function provided in VOC2007 development kit [43]. The

results for Faster-RCNN andADA+Faster-RCNN are pre-
sented in Table 7. Table 7 shows that ADA+Faster-RCNN

outperforms Faster-RCNN for a majority of the classes ex-

cept Bottle, Cat and Horse. We repeat the same experiment
using a pretrained Faster-RCNN with ResNet. We train the

network on VOC2007 + VOC2012 training set and test it

on VOC2007 testing set, following [31, 42]. ADA+Faster-
RCNN improves the mAP performance by nearly 2% when

compared to Faster-RCNN.
Table 8. ADAGeneralization Across Deep Architectures over MS-

COCO dataset.(mAP over varying IoU)
Method proposals mAP@0.5 mAP@0.75 mAP@[.5,.95]

Fast-RCNN[41] SS,2000 35.9 19.9 19.7

OHEM[38] RPN,300 42.5 22.2 22.6

Faster-RCNN RPN,300 42.7 21.9 21.5

ADA+Faster RPN,300 44.3 23.8 23.6

We also repeat this experiment on more challenging Mi-

crosoft COCO object detection dataset [44]. MS-COCO in-

volves 80 object categories and we run experiment using

80k images for the training set and 20k images for the test-

ing set, following [31, 42]. We evaluate the mAP averaged

(using COCO’s standard metric) for IOU ∈ [0.5 : 0.05 :
0.95] denoted as mAP@[.5,.95] in Table 8) and mAP@0.5
(PASCAL VOC’s metric [43]). Results in Table 8 show that

ADA+Faster-RCNN provides 2% improvement in mAP in

comparison with Faster-RCNN. The reported mAP at dif-

ferent thresholds confirm that ADA+Faster-RCNN consis-

tently outperforms state of the art methods.

6. Conclusions
In this paper, we have developed a game-theoretic for-

mulation for data augmentation that perturbs image annota-

tions adversarially. This provides robustness in the learned

predictor that is achieved by training from a number of aug-

mentations that are adaptively selected to be difficult, while

still approximating the ground truth annotation. We demon-

strated the benefits for object localization and detection us-

ing experiments over ten different object classes for the

ILSVRC2012 dataset, twenty different object classes for the

VOC2007 dataset and MS-COCO dataset, showing signif-

icant improvements for our approach under 50% and 70%

thresholded IoU evaluation measures.
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