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ABSTRACT
More accurately inferring human intentions/goals can help robots

complete collaborative human-robot tasks more safely and effi-

ciently. Bayesian reasoning has become a popular approach for pre-

dicting the intention or goal of a partial sequence of actions/controls

using a trajectory likelihood model. However, the mismatch be-

tween the training objective for these models (maximizing trajec-

tory likelihood) and the application objective (maximizing intention

likelihood) can be detrimental. In this paper, we seek to improve the

goal prediction of maximum entropy inverse reinforcement learn-

ing (MaxEnt IRL) models by training to maximize goal likelihood.

We demonstrate the benefits of our method on pointing task goal

prediction with multiple possible goals and predicting goal based

activities in the Cornell Activity Dataset (CAD-120).
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1 INTRODUCTION
Humans and robots work in close collaboration for many tasks

[2, 9, 26–28, 33] or simultaneously pursue separate tasks in shared

workspaces [4, 6, 21, 36]. To enable effective task completion in

either setting, robots should be able to anticipate human intentions

prior to the completion of the pursued task. Doing so enables a

robot to plan compatible actions ahead of time that are more pro-

ductive for collaborative tasks or with fewer resource conflicts in

separate tasks. For example, self-driving vehicles that can predict

pedestrians’ intentions and behaviors can navigate more safely

and efficiently at intersections. However, improved methods for

predicting human intentions are needed to support these examples

of more synergistic decision making in autonomous systems.

Bayesian reasoning has been predominantly used to address the

goal prediction task. Under this perspective, a predictive model of

the trajectory of decisions given the goal is employed—along with

a prior distribution over goals—to obtain the posterior distribution
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over goals. Numerous methods for the trajectory likelihood model

have been employed [5, 10, 18, 23, 24, 40], ranging from simple

goal-conditioned Markov models [13, 31] to inverse planning [5]

and imitation learning methods [40]. Central to all of these methods

is that the trajectory likelihood models are designed and optimized

with sole consideration to trajectory prediction rather than goal

prediction. While Bayes theorem holds for the true distributions

of goal posteriors and trajectory likelihoods, it can produce error-

prone goal posteriors when the likelihoodmodel is noisily estimated

from limited amounts of available data.

In this paper, we investigate training maximum entropy inverse

reinforcement learning models [39] to maximize goal prediction

likelihoods rather than trajectory likelihoods. In section 3, we de-

velop our method for calculating the gradient for the likelihood

of the final goal. By experimenting with an object reaching task

with trained reward function from our new approach, we realize an

average probability for the true goal given approximately 50% of

the trajectory traveled that is not realized until 70% of the trajectory

is traveled using the trajectory-based likelihood method [23]. Also,

we also evaluate our method on the Cornell CAD-120 dataset [18].

The paper is organized as follows: we start with a summary of

background information on decision processes, previous work on

predicting human intention, the inverse optimal control formula-

tion for imitation learning, and goal prediction using an inverse

linear-quadratic regulation (LQR) formulation. Next, we describe in

detail our algorithm for obtaining goal predictions from the MaxEnt

IRL model trained using goal likelihood maximization rather than

trajectory likelihoodmaximization. Next, we explain the experimen-

tal setup used to evaluate our proposed method. The result section

summarizes the results obtained by our goal likelihood method

versus the trajectory likelihood method and other baselines. Lastly,

we provide conclusions and propose future work.

2 BACKGROUND AND RELATEDWORK
2.1 Decision Processes and Goal Prediction
Awide variety of tasks can be represented using sequential decision

process formulations. AMarkov Decision Process (MDP) is defined
1

as a tuple (S,A,τ , R), where:

• state S is from a finite set of states s ∈ S;

• action A is from a finite set of actions a ∈ A;

• τ is the state transition probability from state s under action

a;

• R(st ) is the reward or cost received by visiting state st .

1
We denote random variables with uppercase letters, fixed variables in lowercase, and

matrices in boldface uppercase.



A sequence of states and actions, s1,a1, s2,a2, s3, . . . , sT , is pro-

duced by applying a decision policy π (at |st ) to the state transition

dynamics of the decision process, τ (st+1 |st ,at ).
In many domains, the decision processes for similar tasks differ

only in small ways. We consider these differences being parame-

terized by a goal state д (where д ∈ G, is set of all possible goals
in the environment) that indicates the successful accomplishment

of the goal when it is reached at final time step tf (i.e., stf = д).

In contrast, if the goal state is not reached (i.e., stf , д), a large
cost (or negative reward) is incurred. More generally, the reward

function can be parameterized by the goal д as: Rд(s).
In this paper, we also consider continuous-valued states and ac-

tions that can be modeled using a linear-quadratic regulation (LQR)

formulation. In LQR, the dynamics of a system being investigated

are represented by a linear relationship,

st+1 = Ast + Bat + ϵt , (1)

where st denotes the state of the system at time t, at denotes the
action at time t, ϵt denotes some zero mean Gaussian noise, and A
and B define the system dynamics. The state-action cost function,

cost(st ,at ) =

[
at
st

]T
M

[
at
st

]
, t < tf , (2)

is a quadratic function that penalizes the dynamics of the sys-

tem/control at each time step. We also incorporate a final state

quadratic cost that penalizes the final state, stf , from deviating far

from the desired goal g characterized by state sд ,

cost(stf ) = (stf − sд)
TMf (stf − sд), (3)

whereM andMf are cost parameters. Similar to the MDP setting,

the time-invariant state-action cost function and the final state cost

can vary depending on the goal being pursued.

For the discrete MDP setting and the continuous LQR setting,

the goal prediction task is defined as follows.

Definition 2.1. The goal prediction task seeks a probability

distribution over potential goals given a partial sequence of states:

P(stf = д |s1, . . . , st ) for discrete decision processes and P(G =

д |s1, . . . , st ) for continuous control processes. In the discrete setting,
the exact goal state is reached whereas the final state need only be

sufficiently close to state д in the continuous setting.

2.2 Existing Goal Prediction Methods
Many goal prediction methods approach the goal prediction task

using Bayesian reasoning. Given a generative, goal-conditioned

model of the state sequence, P(s1:t |д), the goal posterior is obtained
using Bayes theorem:

Pθ (дi |s1:ti ) =
P(s1:ti |дi )P(дi )∑

д′∈G P(s1:ti |д
′)P(д′)

, (4)

where s1:ti is the partial trajectory of states from time step 1 to

time step ti , дi is the inferred goal, and д′ of a goal from the set of

pre-defined goals (G) in the environment.

A simple Bayesian approach for the discrete setting is the goal-

conditioned Markov model [13, 31]. It estimates the next state given

the current state and goal based on the empirical frequency,

P(st+1 |st ,д) =
count(st+1, st ,д) + αst+1,st ,д

count(st ,д) + αst ,д
,

where count(·) is the number of occurrences in the training dataset

and α provide a set of optional pseudo-count values. The state

trajectory likelihood of Eq. (4) is:

P(s1:t |д) = P(s1)

tf −1∏
t=1

P(st+1 |st ,д).

Predestination [20] uses Bayes theorem to infer destinations from

driving routes. It uses a history of driver destinations and driving

behaviors to predict where the driver is heading (final destination).

Similarly, comMotion [22] uses a set of previously visited destina-

tions to predict a person’s destination using a Bayes classifier. More

sophisticated trajectory likelihood modeling approaches treat the

prediction tasks as the “inverse” of a planning process [5, 10, 14, 37].

For example, Baker, Tenenbaum & Saxe [5] use inverse planning,

which assigns a probability distribution to different plans, to com-

pute goal inferences. They investigated three different settings for

goal prediction: single underlying goal, complex goals, and chang-

ing goals. In this paper, we consider the single underlying goal

setting and leave extensions to the other settings as future work.

Maximum Entropy Inverse Reinforcement Learning (MaxEnt

IRL) [39], which we describe in more detail in the next subsec-

tion, uses a trajectory likelihood model to predict driver destina-

tions given partial driving trajectories. It has also been used to

predict user intent for robotic teleoperation with application to

brain-computer interface (BCI) manipulation tasks [24]. In another

extension of MaxEnt IRL, the notion of legibility and predictability

[10] are used to interpret action analogy, and by Holladay et al

[14] to generate pointing configurations that make the goal object

legible.

All of the these works use generative models of the trajectory

distribution to enable goal prediction using Bayesian reasoning.

Though less prevalent, there is some work on discriminative ap-

proaches for goal prediction given partial trajectory [3, 35]. The

Delphian Desktop [3] predicts user intentions in a desktop environ-

ment given the cursor trajectories using simple linear regression

based on features like peak velocity and distance to the target. Lo-

gistic regression [15] has been used to predict the goal given partial

trajectory [8] based on features like cosine of the angle, distance

using peak velocity, and curve fitting for predicting intended goal.

Additionally, the anticipatory temporal conditional random field

(ATCRF) [19] and object affordances [18] is used to anticipate hu-

man activities. They have produced the Cornell Activity Dataset

(CAD-120) [18] for their experiments. We use the same CAD-120

dataset for evaluating our method and compare against this ap-

proach.

2.3 Maximum Entropy Inverse Optimal
Control

Inverse optimal control (also known as inverse reinforcement learn-

ing) [1, 17, 25] considers a Markov decision process without a re-
ward function and learns the reward function that rationalizes

demonstrated decision sequences [1]. Assumption a reward func-

tion linear in the state feature vectors parameterized by reward

parameter θ , R(st ) = θ · ϕ(st ), Abbeel & Ng [1] propose the ap-

prenticeship learning approach based on Inverse Reinforcement



Learning [25]. They devise a strategy of matching feature expecta-

tions between expert’s policy (πE ) and learner’s policy (π̃ ):�����
�����E 

tf∑
t=1

ϕ(St )
���πE  − E


tf∑
t=1

ϕ(St )
���π̃ 

�����
�����
∞

≤ ϵ, (5)

where ϵ is the largest error allowed when approximately matching

feature vectors. While useful for prescriptive behavior in imitation

learning tasks, this approach is not as useful for prediction due to the

ambiguities arising from many different mixtures of deterministic

policies producing the same feature counts.

Ziebart et al. [39] employed the principle of maximum entropy

[16] to resolve the ambiguity of mixing policies to match feature

counts by selecting a probability distribution:

Pθ (s1:tf ) =
e
∑tf
t=1 θ

T ϕ(st )

Zθ
(6)

where Zθ =
∑
s ′
1:tf

e
∑
t θT ·ϕ(s ′t ) is the partition function and s1:tf

is the trajectory or path traveled from time step 1 through tf . The
parameters θ that maximize the trajectory log likelihood,

θ∗ = argmax

θ

∑
s1:tf ∈Ξ

log P(s1:tf |θ ), (7)

are employed by the model. Further, the gradient of Zθ (partition

function) is established in Lemma 2.2.

Lemma 2.2. The gradient of the partition function, Zθ , is:

∇θ logZ
θ
sa→b = −E

[ tf∑
t=1

ϕ(St )|S1 = a, Stf = b
]
= −E

[
ϕ(Sa→b )

]
.

Proof. Using the definition of Zθ from equation 6 we have,

∇θ logZ
θ
sa→b =

1

Zθsa→b

∑
s1:tf :s1=a,stf =b

e−costθ (sa→b )(−ϕ(sa→b ))

= −
∑

s1:tf :s1=a,stf =b

P(sa→b )ϕ(sa→b )

= −E


tf∑
t=1

ϕ(St )|S1 = a, Stf = b

 = −E
[
ϕ(Sa→b )

]
.

□

Following from Lemma 2.2, the gradient of the trajectory log

likelihood function for a set of trajectories and corresponding goals,

denoted by Ξ, is:

∇θ log
∏

(s1:tf ,д)∈Ξ

P(s1:tf |θ ,д) = E
[
ϕ(S1:tf )|д

]
− ϕ(s1:tf ). (8)

Thus, when maximized, this gradient is zero and the expected fea-

ture counts must match the training data feature counts.

In this paper, we extend MaxEnt IRL to predict human intentions

given partial trajectory by maximizing the true goal likelihood

instead of the trajectory likelihood.

2.4 Inverse Linear-Quadratic-Regulation
Maximum entropy inverse reinforcement learning methods for

MDPs have been extended to linear-quadratic regulation (LQR)

settings to learn theM andMf coefficient matrices (reward parame-

ters) from demonstrated behaviors using the principle of maximum

causal entropy [38]. Under this model, computing the features ϕдi
of the partial trajectory (s1:ti ) given the goal (дi ),

ϕдi (s1:ti ) =

ti−1∑
t=0

[
at
st

] [
at
st

]T
(9)

the expectation of the features ϕдi (sti→дi ) of the remaining trajec-

tory (sti→дi ) from the current position (ti ) to the goal (дi ),

E[ϕдi (Sti→дi )|дi ] =

tf −1∑
t=ti

(
µat st µ

T
at st + Σat st

)
, (10)

the expectation of the featuresϕдi (s1→дi ) of the complete trajectory

(S1→дi ) from the starting point to the goal (дi ),

E[ϕдi (S1→дi )|дi ] =

tf −1∑
t=1

(
µat st µ

T
at st + Σat st

)
, (11)

can be achieved efficiently based on the fact that all marginal state

probabilities are multivariate Gaussians with analytical expressions

mean (µat st ) and variance (Σat st ) for these expectations. Finally,
the probability of the true goal (дi ) given the partial trajectory (s1:ti )
is obtained using Bayes theorem as;

P(дi |s1:ti ) ∝ P(дi |st )

tf∏
i=1

π (at |st ,дi ). (12)

This predictive linear-quadratic regulator [23] for inverse optimal

control is used to predict human intentions and trajectory fore-

casting. Promising results have been demonstrated on the Cornell

Activity Dataset (CAD-120) [18]. In this paper, we have extended

the technique used in [23] by training the MaxEnt IRL model by

maximizing true goal likelihood.

3 APPROACH
Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL)

is a widely used method to infer the true goal or intentions of a

sequential decision maker given a partial trajectory by employ-

ing Bayesian reasoning. The reward parameters in the MaxEnt

IRL setting are trained via maximizing the trajectory likelihood as

shown in Equation 8. The trajectory likelihood models are designed

and optimized solely with consideration to trajectory prediction

rather than goal predictions. While Bayes theorem, the foundation

of Bayesian reasoning, holds correctly for the true distributions

of goal posteriors and trajectory likelihoods, it can produce error-

prone goal posteriors when the likelihood model noisily estimated

from limited amounts of available data. To address this problem,

in this section, we develop our approach for training the MaxEnt

IRL model for goal prediction using goal likelihood maximization

in place of the traditional trajectory likelihood maximization ap-

proach.



3.1 Goal Likelihood Maximization Formulation
To derive our optimization procedure, we first establish Lemma 3.1

for computing the gradient (∇θ ) of the log likelihood of a partial

trajectory given a goal (Pθ (s1:ti |дi )) with respect to the reward

parameter (θ ).

Lemma 3.1. The gradient for computing the probability of a partial
trajectory (s1:ti ) given the goal (дi ) can be separated into the sum of
expectations and the feature vector,

∇θ log Pθ (s1:ti |дi ) = − ϕдi (s1:ti ) − E

[
ϕдi (Sti→дi )|дi

]
+ E

[
ϕдi (S1→дi )|дi

]
.

Proof. Using the definition from equation 6, we have:

log P(s1:ti |дi ) = −costθ (s1:ti ) + log(Z
θ
sti→дi

) − log(Zθs1→дi
)

[Since, log
m
n = logm − logn]. Taking the gradient with respect

to the reward parameter θ and simplifying after using Lemma 2.2

proves Lemma 3.1. □

Next, using Lemma 3.1, we establish the maximum goal likeli-

hood gradient for MaxEnt IRL given a partial sequence of states.

Theorem 3.2. The gradient for MaxEnt IRL for maximum goal
likelihood given a partial trajectory decomposes into a sum of expec-
tations, features and probabilities,

∇θ log Pθ (дi |s1:ti ) = −ϕдi (s1:ti ) − E

[
ϕдi (Sti→дi )|дi

]
+ E

[
ϕдi (S1→дi )|дi

]
+

∑
д′∈G

P(д′ |s1:ti )
(
ϕд′(s1:ti )

+ E

[
ϕд′(Sti→д′)|д

′

]
− E

[
ϕд′(S1→д′)|д

′

] )
,

where: s1:ti is the partial trajectory from time step 1 to ti , дi is the
true goal and д′ are the possible goals (G) in the environment.

Proof. Taking the gradient with respect to θ of the goal log

likelihood, after expanding using Equation 4:

∇θ

(
logPθ (s1:ti |дi ) + log P (дi ) − log

∑
д′∈G

Pθ (s1:ti |д
′)P (д′)

)
(a)
= ∇θ logPθ (s1:ti |дi ) + ∇θ log P (дi )

− log
∑
д′∈G

Pθ (д
′ |s1:ti )∇θ Pθ (s1:ti |д

′)P (д′)

(b)
= −ϕдi (s1:ti ) − E

[
ϕдi (Sti→дi ) |дi

]
+ E

[
ϕдi (S1→дi ) |дi

]
−
∑
д′∈G

P (д′ |s1:ti )
(
− ϕд′ (s1:ti ) − E

[
ϕд′ (Sti→д′ ) |д

′

]
+ E

[
ϕд′ (S1→д′ ) |д′

] )
,

where: (a) follows from properties of the gradient applied to loga-

rithms and the definition of the goal posterior and (b) is obtained

after employing Lemma 3.1. □

This gradient trivially equals zero when the goal predictions

are perfectly correct (i.e., P(tf = дi |s1:ti ) = 1). However, this is

often difficult to achieve when training from noisy data. In general,

optimizing the reward parameter to maximize goal likelihood is

non-concave. However, we can obtain a reasonable local maxima

by changing the starting conditions and other factors. For example,

initializing the reward parameter optimization at the maximum

trajectory likelihood parameters guarantees no worse parameters

than the trajectory-based approach.

Algorithm 1 Learning IOC model for goal prediction

Input: The reward parameter θ ; Set of training trajectories reach-

ing goals Ξ; Set of Goals G
Output: The optimized/learned reward parameter θ
1: for (s, дi , ti ) ∈ Ξ do
2: Extract partial trajectory s1:ti

3: ∇θ ← −ϕдi (s1:ti ) − E

[
ϕдi (Sti→дi )|дi

]
+ E

[
ϕдi (S1→дi )|дi

]
4: for g’∈ G do

5: ∇д′ ← ϕд′(s1:ti )+ E

[
ϕд′(Sti→д′)|д

′

]
− E

[
ϕд′(S1→д′)|д

′

]
6: Compute P(д′ |s1:ti )
7: ∇θ ← ∇θ + P(д

′ |s1:ti )∇д′

8: end for
9: θ ← θ + η∇θ
10: end for
11: return θ

The learning procedure (Algorithm 1) takes as input an initial

reward parameter, a set of training trajectories, and a set of possible

goals in the space. It iterates over randomly selected training trajec-

tories, extracting the partial trajectory from the selected trajectory,

i.e., s1:ti , and then constructs the full gradient from its components

in step 3, step 5, and step 7. Step 3 computes the difference in

expected features for the true goal. Step 5 computes the same differ-

ences for each possible goal and then Step 7 weights these by the

goal probabilities. Lastly, Step 9 applies a gradient step weighted

by η to improve towards locally optimal reward parameters θ∗ us-
ing expectations computed for the true goal and all other goals. In

practice, more sophisticated gradient-based updates [11, 34] can

be employed. The algorithm repeats steps 2 through 8 (with de-

creasing learning weights) for all of the training trajectories until

approximately converging to a locally optimal point.

We note the contrast from previous goal prediction methods

using MaxEnt IRL trained by maximizing the likelihood over the

trajectory to train the reward parameter as explained in Equation (8).

Critically, the likelihood of the correct goal given a partial sequence

of actions is inferred using Bayesian reasoning. This produces a

mismatch between the training and application objective and can

produce error-prone goal likelihoods. Thus, the most significant

advantage of training using the proposed method (maximum goal

likelihood) is that we maximize the likelihood over the true goal,

which correctly matches the application objective.

3.2 Extension to Linear-Quadratic Regulation
Algorithm 1 provides a general algorithm for MaxEnt IRL trained

to maximize goal prediction for the case of discrete state/action

decision processes. We can extend this general method to other

settings/controllers to match other real-life scenarios. In this paper,

we use inverse LQR to conduct our experiments and we have the



Figure 1: A partial trajectory (S1:ti ) and distribution for two
goals in the space at a trajectory point St . Inverse LQR with
the trained reward parameters using the algorithm 1 are
used to calculate the distributions for both goals.

cost function M and Mf to train as mentioned in section 2. In

algorithm 1, for our inverse LQR setting we replace the reward

parameterθ withM andMf . The computation of terms of Algorithm

1 in inverse LQR formulations can be referred from Equations (9),

(10), (11), and (12) from section 2.4.

Figure 1 depicts the scenario of goal prediction based on the

partial trajectory traveled in a real-time situation. There is an agent

who starts from the starting point s1 and travels to point st . The
goal set G consists of two goals: дi and дj . At trajectory point st ,
we can compute goal distributions for both goals in the space based

on the partial trajectory s1:t covered. The color contours represent
the corresponding probability distribution (likelihood) of the goal.

The corresponding mathematical expressions for each action con-

ditioned on goal in the figure provide the goal probability in the

inverse LQR setting, as part of Equation 12. These distributions are

calculated using the trained reward parameter from Algorithm 1.

The most probable goal can be obtained from the posterior goal

distribution. In Figure 1, for example, goal дi is the most probable.

Thus, in this way we predict the goal given the partial trajectory in

real-time.

3.3 Complexity Analysis
The time complexity of the discrete case proposed in Theorem I is

O(|G||S||A|T ), where G is the set of potential goals, S is the set of

states, A is the set of action and T is the total time steps in the tra-

jectory (i.e., trajectory length). In this paper, we have implemented

the above general algorithm for the inverse LQR setting which is

an example of the continuous case. So, the time complexity of the

proposed algorithm for inverse LQR setting requires O(T ) matrix

updates.

The most significant advantage of using this approach is that the

matrix updates only need to be computed once when performing

inference over sequences sharing the same time horizon and goal

positions. Further, to improve the efficiency of our computation

we used the Armadillo C++ linear algebra library for fast linear

computations [29].

4 EXPERIMENTAL SETUP
In this section, we explain our experimental setup used for eval-

uating our proposed Algorithm 1 from Section 3 for the inverse

LQR setting. We have used two real-life datasets to evaluate our

proposed method.

4.1 Goal Pointing Task Data
For our first set of experiments, we have used an existing dataset of

pointing tasks [30]. The datawas collected using a Baxter robot from

Rethink Robotics and a Microsoft Kinect camera. For the training

data, 10 balls were hung from the ceiling (5 on both sides of the

Baxter robot), and a teleoperator was asked to stand in front of the

Kinect Camera (input sensor). The teleoperator was asked to reach

the displayed ball number on Baxter’s head-mounted display from

a neutral position. Another operator moved Baxter’s corresponding

arm in zero gravity mode from a neutral position to the displayed

goal in synchronization with the human arm motion. This Kinect-

Baxter correspondence data was used to train a linear regression

correspondence model for robotic teleoperation. Further, we used

the training sequence to extract states and actions for inverse LQR

system and trained cost functionsM andMf .
The 10 hanging balls from the ceiling were then shuffled to

new positions (different from the training set-up) for the testing

phase. The 18 teleoperators were asked to teleoperate the Baxter

robot’s arm by standing in front of the Kinect camera from a neutral

position to reach the goal that was displayed on the Baxter head-

mounted screen. This process was repeated for each goal and three

different control assistancemethod ((i) Sigmoid assist, (ii) Step assist,

and (iii) No assist), for details please refer to [30]. The three control

assistance methods were also repeated twice in random order to

maintain consistency. Thus, each person performed 60 trajectory

sequences of reaching the displayed goal.

In total, the dataset consisted of 1080 goal reaching trajectories.

Figure 2 explains the steps of test data collection. The dataset con-

tains the Kinect skeleton values, the Baxter end-effector position

while the volunteer was teleoperating the Baxter robot and the

probability distribution across all five goals along the trajectory. In

this paper, we use the Baxter end-effector positions as the trajectory

points (states) for training and testing of the inverse LQR model.

4.2 Cornell Activity Dataset (CAD-120)
For our second set of experiments, we employed our Algorithm 1 to

train reward parameters on the publicly available Cornell Activity

Dataset (CAD-120) to strengthen our claim. This dataset consists of

120 depth camera video of daily activities. There are ten high-level

activities: making cereal, taking medicine, stacking objects, unstack-

ing objects, microwaving food, picking objects, cleaning objects,

carrying food, organizing objects and eating a meal. These activi-

ties are further divided into ten sub-activities: reaching, moving,

pouring, eating, drinking, opening, placing, closing, cleaning and

null. For example, the task of making cereal can be broken down:

reaching (cereal box), moving (cereal box on top of bowl), pouring

(from cereal box to a bowl), moving (cereal box to the previous

position) and null (moving the hand back).

In this study, we have divided the trajectories based on the above

10 sub-activities. We disregarded null sub-activity as it has an un-

defined goal or intention. First, we extracted goals for each of the

trajectory in the sub-activity. Second, we trained the cost functions

M andMf for each of these sub-activities separately. We withheld



Figure 2: The steps of a task in our testing sequence from a pointing dataset [30] include starting from the robot’s neutral
position (a) and then teleoperating the arm of the robot (b) to the goal location (c) at which point confirmation is displayed on
the robot’s screen (d).

10% of each sub-activity dataset for testing and used the rest 90%

to train the reward parameters (i.e., M and Mf ). Similar to the pre-

vious experiment, trajectory points were used as states and final

trajectory point as goal state.

4.3 Estimating the Reward Parameters
The inverse LQR model used in this paper has two separate re-

ward/cost parameter matrices M and Mf to train. To provide the

strongest guarantees, we first train the reward parameters using

the maximum trajectory likelihood method as explained in Equa-

tion (8) on the training data for both datasets. Then we use these

trained reward parameters to initialize Algorithm 1 to learn us-

ing our proposed method for maximizing goal likelihood on the

training data.

We have used accelerated stochastic gradient descent with an

adaptive learning rate [11, 34] and L1 regularization on both pa-

rameters simultaneously. This regularized approach prevents over-

fitting over the demonstrated trajectories of the datasets used in

this paper. In the next section, we would describe goal predictions

using inverse LQR controller on the test data for both datasets.

4.4 Goal Prediction via Inverse LQR
Following the existing formulations employed for maximum tra-

jectory likelihood methods [30], a goal is defined as a location

in xд ,yд , zд translational space that we want the robot arm end-

effector to approximately reach. The end-effector is the endpoint of

the robot arm, which is calculated using forward kinematics [32].

The end-effector consists of xt ,yt , zt translational and xr ,yr , zr ,wr
quaternion angles as rotational dimensions referenced from the

associated robot’s coordinate frame. We have considered only trans-

lational dimensions for goal positions.

Following the approach outlined for the inverse LQR setting [23],

the authors of [30] assume the linear dynamics of Equation (1), in

which the state of the end-effector is defined as,

st = [xt ,yt , zt , Ûxt , Ûyt , Ûzt , Üxt , Üyt , Üzt , 1]
T , (13)

and end-effector actions as

at = [ Ûxt , Ûyt , Ûzt ]
T , (14)

where ( Ûxt , Ûyt , Ûzt ) are velocities, ( Üxt , Üyt , Üzt ) are accelerations, and
a constant of 1 is added to the state representation to incorporate

linear features into the quadratic cost function in Equation (2).

Additionally, goal state i of the end-effector is represented using

only the goal’s translational position,

дi = [xдi ,yдi , zдi , 0, 0, 0, 0, 0, 0, 0]
T . (15)

To compute goal predictions along the test trajectories, we train

the reward parametersM andMf using our proposed method (max-

imum goal likelihood) as described in Algorithm 1 on the training

data. From these trained cost matrices, the probabilities of different

possible goal states are inferred given the observed partial trajec-

tory of the end-effector in real time. The process is clearly depicted

in Figure 1 and Equation (12). These goal state probabilities are

P(дi |s1:ti ) and the probability of the most likely intended goal of

the partial trajectory, I , is,

I = max

i
P(дi |s1:ti ). (16)

4.5 Prior Distribution
The inverse LQR goal prediction method is a Bayesian inference

method that benefits significantly from a prior distribution over

the possible goals [23]. In the previous trajectory likelihood maxi-

mization experiment [30], they used a distance prior similar to the

one used in previous work [23],

P(дi |st ) ∝ e
−βdist (st ,дi ), (17)

where dist(st ,дi ) is a function that computes the Euclidean dis-

tance between the spatial coordinates of st and дi , and β is an

adjustable coefficient that increases the importance of distance on



Figure 3: (a) Plot showing comparison of logloss by our goal likelihood maximization method to the trajectory likelihood
maximizationmodel on goal pointing task data; (b) Change of probability distribution over goals across a trajectory of reaching
goal #3 using trajectory likelihood maximization model; (c) Change of probability distribution over goals across a trajectory
of reaching goal #3 using goal likelihood maximization method; (d) Plot showing comparison of logloss by goal likelihood to
trajectory likelihood on CAD-120.

the distribution. As dist(st ,дi ) decreases, P(дi |st ) increases effec-
tively making closer targets more probable. We have used the same

formulation for most intended goal prediction for both experiments

in this paper.

4.6 Baselines
To compare our goal likelihood method on goal pointing task data

from the two datasets, we use the nearest target (predicting the

nearest goal as the true goal along the trajectory points) prediction.

It is the simplest baseline for goal prediction, and all methods should

be expected to perform better than it. We additionally use logistic

regression [8] as the discriminative method comparison baseline.

We also compare with the previous approach of constructing a

model using trajectory likelihood maximization [23]. For CAD-

120 dataset, in addition to comparing to the trajectory likelihood

method, we also compared our method with ATCRF [19].

4.7 Evaluation Metrics
To evaluate our proposed method against the existing trajectory

maximum likelihood method, we use two evaluation metrics. First,

we compute the logarithmic loss for true goal probability across

the whole trajectory. The logarithm loss has been plotted for both

methods at various fractions of the trajectory covered in Figure 3-a

on pointing task dataset and Figure 3-d on CAD-120. Second, we

compute the accuracy of our proposed method and other baselines

across different fractions of the trajectory in predicting the true

goal. We have also reported precision and recall for both methods.

Tables 1 and 2 report the results for both datasets.

5 RESULTS AND DISCUSSION
The proposed optimization of the reward parameter to maximize

goal likelihood involves maximizing a non-concave function. This

prevents any guarantees of convergence to a global optimum. How-

ever, still, we can reach some local maximum that provides a better

result than previous trajectory-based optimization methods. We

have experimented with three different starting points to train the

cost function M and Mf : (1) initial values of all 0; (2) pre-trained
initial values using the optimization objective of past work (i.e.,

trajectory likelihood maximization); and (3) randomized starting

Table 1: A comparison of the trajectory likelihood model,
the goal likelihood model, and the nearest goal baseline for
the goal pointing task dataset evaluated using the accuracy,
macro precision, andmacro recall given various fractions of
the trajectory.

Fraction of the trajectory

Method Measure 20% 40% 60% 80% 100%

Nearest

Goal

Accuracy 21.4 28.6 58.6 100 100

Macro Prec. 50.0 50.0 50.0 100 100

Macro Recall 10.7 14.2 39.3 100 100

Trajectory

Likelihood

Accuracy 28.6 28.6 64.3 100 100

Macro Prec. 50.0 50.0 50.0 100 100

Macro Recall 14.3 14.3 32.2 100 100

Goal

Likelihood

Accuracy 28.6 35.7 92.8 100 100

Macro Prec. 50.0 50.0 50.0 100 100

Macro Recall 14.3 17.9 46.5 100 100

Table 2: A comparison of the trajectory likelihood model,
the goal likelihood model, and the ATCRF model for the
CAD-120 dataset evaluated using accuracy, macro precision,
and micro precision given various fractions of the trajec-
tory.

Fraction of the trajectory

Method Measure 20% 40% 60% 80% 100%

ATCRF

[19]

Accuracy - - - - 86.0

Macro Prec. - - - - 84.2

Macro Recall - - - - 76.9

Trajectory

Likelihood

Accuracy 80.9 82.5 84.1 90.4 100

Macro Prec. 65.0 73.4 79.1 87.5 100

Macro Recall 77.3 91.4 94.2 96.2 100

Goal

Likelihood

Accuracy 81.8 86.4 90.1 100 100

Macro Prec. 71.8 78.1 83.3 100 100

Macro Recall 75.0 81.0 87.5 100 100

points. We find convergence to very similar parameters with all

three of the different starting points, indicating that we can reach a

stable local maxima without strong sensitivity to the initial values.



We have tested our method on two different real-life datasets

involving human and robot goal-directed movements. Figure 3-a

illustrates the logarithmic loss of the correct goal prediction given a

partial trajectory computed across the fraction of the trajectory for

the pointing task dataset. The black color represents the trajectory

likelihood method and the green color represents the proposed goal

likelihood approach. It is evident from Figure 3-a that the goal like-

lihood maximization method’s logarithmic loss decreases faster and

reaches the true goal probability in approximately 50% of the tra-

jectory. On the other hand, the trajectory likelihood maximization

method achieves the same performance at 70% of the trajectory. In

both settings, we have used a distance prior, so the probability dis-

tribution rapidly increases from a uniform distribution as the true

goal may be farther from the neutral position than other targets.

To illustrate the behavior of the goal prediction methods, we

select a trajectory from pointing task test data and plot the proba-

bility distribution across five goals along the trajectory length in

Figure 3-b and c. The plot of the resulting distribution in Figure

3-b corresponds to the trajectory likelihood method and Figure 3-c

corresponds to our proposed goal likelihood maximization method.

We can see that our goal likelihood maximization method performs

better than the trajectory likelihood maximization method. Our

proposed method realizes a high probability prediction for the true

much earlier than the previous trajectory likelihood maximization

method with a smoother transition across different goal probabili-

ties.

Figure 3-d shows the logarithmic loss of goal prediction along

the trajectory for reaching a goal from the CAD-120 dataset. The

trajectory likelihood maximization method is represented by the

black color and our proposed goal likelihood maximization method

is shown in green. The plot clearly shows that our goal likelihood

maximization method predicts the true goal (approximately 60%)

much earlier in the trajectory than the trajectory likelihood method

(approximately 80%).

In Table 1, we report the accuracy, precision, and recall for goal

prediction for three methods, i.e., the nearest goal predictor, tra-

jectory likelihood maximization model, and the goal likelihood

maximization model. Both the previous (trajectory likelihood) and

proposed (goal likelihood) models perform significantly better than

the simplest baseline method, i.e., the nearest goal baseline. At

40% and 60% of the trajectory, our proposed goal likelihood-based

method outperforms the trajectory likelihood-based method by a

noticeable margin. The result also matches with our log loss met-

rics as shown in Figure 3-a. We also compare our results with a

logistic regression model [8] as the generative method baseline.

The reported goal prediction accuracy of 57.9% is obtained from a

partial trajectory of length 60 time-steps. The average range of the

trajectories of pointing task dataset is 110 time-step. So, at 60% of

the trajectory length, we found that our proposed method predicts

the true goal with an accuracy of 92.8%, which is significantly better

than logistic regression.

Table 2 shows the performance results of the experiment con-

ducted on the CAD-120 dataset. We compared the performance

of our proposed goal-based method with other baselines based on

trajectory likelihood maximization and the ATCRF model (only

result for 100% is available). We can see that the trajectory likeli-

hood method achieves comparable accuracy at 40% of the trajectory

what is not realized until 100% of the sequence is observed using the

ATCRF model. The result of the ATCRF method is on the unmodi-

fied CAD-120 dataset, which consists of null sub-activities, which

prevents it from achieving 100% accuracy even when observing the

complete trajectory. From the beginning of the trajectory, our pro-

posed goal-based method outperforms the trajectory-based method

by a considerable margin, which matches the log loss results shown

in Figure 3-d and achieves 100% accuracy in prediction at 80% of

the trajectory.

Thus, these experiments strongly support our claim that by

re-training the MaxEnt IRL approach using goal likelihood max-

imization for goal predictions, we can achieve better and faster

goal prediction than existing methods—specifically those based on

trajectory likelihood maximization. As this is an important sub-

problem for planning symbiotic robot behavior, we believe these

improvements will help increase the productivity of human-robot

collaborative tasks when used appropriately.

6 CONCLUSION AND FUTUREWORK
In this paper, we have proposed training inverse reinforcement

learning models that were initially designed for policy estimation,

to instead be optimized for goal prediction. We derived the gra-

dient for optimizing goal likelihoods under the general discrete

maximum entropy inverse reinforcement learning (MaxEnt IRL)

setting and under the continuous inverse linear-quadratic regu-

lation (LQR) setting. We demonstrated that our goal likelihood

maximization method provides significant improvements for goal

prediction compared to previous methods based on trajectory like-

lihood maximization in practice. Thus, with our new approach, we

can more accurately infer intended goals farther in advance than

previous approaches, enabling robots to know human intentions to

make more compatible decisions.

As future work, we will test our method on real-world human-

robot tasks like assisting robotic teleoperation [30]. These tasks

often involve additional complications that should also be modeled

to improve goal prediction. For example, though we have assumed

that the robot’s workspace is free of obstacles in this paper, many

real-world robotic workspaces contain numerous obstacles. We

plan to extend our goal prediction optimization approach to the

hybrid, two-level imitation learning method [7] that incorporates

discrete waypoints at the top level and employed LQR predictions

conditioned on the waypoints at the bottom level. We believe that

through arm motion demonstrations of obstacle avoidance during

training, the cost function can be learned to reason about armmove-

ments around obstacles in testing environments. Further, in this

paper, we have assumed that the goals are static in the environment.

We will relax this assumption by allowing goals to change over

time without being reached [5, 12].
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