Discriminatively Learning Inverse Optimal Control Models for
Predicting Human Intentions
Robotics Track

Sanket Gaurav
University of Illinois at Chicago
Chicago, Illinois
sgaura2@uic.edu

ABSTRACT

More accurately inferring human intentions/goals can help robots
complete collaborative human-robot tasks more safely and effi-
ciently. Bayesian reasoning has become a popular approach for pre-
dicting the intention or goal of a partial sequence of actions/controls
using a trajectory likelihood model. However, the mismatch be-
tween the training objective for these models (maximizing trajec-
tory likelihood) and the application objective (maximizing intention
likelihood) can be detrimental. In this paper, we seek to improve the
goal prediction of maximum entropy inverse reinforcement learn-
ing (MaxEnt IRL) models by training to maximize goal likelihood.
We demonstrate the benefits of our method on pointing task goal
prediction with multiple possible goals and predicting goal based
activities in the Cornell Activity Dataset (CAD-120).
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1 INTRODUCTION

Humans and robots work in close collaboration for many tasks
[2, 9, 26-28, 33] or simultaneously pursue separate tasks in shared
workspaces [4, 6, 21, 36]. To enable effective task completion in
either setting, robots should be able to anticipate human intentions
prior to the completion of the pursued task. Doing so enables a
robot to plan compatible actions ahead of time that are more pro-
ductive for collaborative tasks or with fewer resource conflicts in
separate tasks. For example, self-driving vehicles that can predict
pedestrians’ intentions and behaviors can navigate more safely
and efficiently at intersections. However, improved methods for
predicting human intentions are needed to support these examples
of more synergistic decision making in autonomous systems.
Bayesian reasoning has been predominantly used to address the
goal prediction task. Under this perspective, a predictive model of
the trajectory of decisions given the goal is employed—along with
a prior distribution over goals—to obtain the posterior distribution
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over goals. Numerous methods for the trajectory likelihood model
have been employed [5, 10, 18, 23, 24, 40], ranging from simple
goal-conditioned Markov models [13, 31] to inverse planning [5]
and imitation learning methods [40]. Central to all of these methods
is that the trajectory likelihood models are designed and optimized
with sole consideration to trajectory prediction rather than goal
prediction. While Bayes theorem holds for the true distributions
of goal posteriors and trajectory likelihoods, it can produce error-
prone goal posteriors when the likelihood model is noisily estimated
from limited amounts of available data.

In this paper, we investigate training maximum entropy inverse
reinforcement learning models [39] to maximize goal prediction
likelihoods rather than trajectory likelihoods. In section 3, we de-
velop our method for calculating the gradient for the likelihood
of the final goal. By experimenting with an object reaching task
with trained reward function from our new approach, we realize an
average probability for the true goal given approximately 50% of
the trajectory traveled that is not realized until 70% of the trajectory
is traveled using the trajectory-based likelihood method [23]. Also,
we also evaluate our method on the Cornell CAD-120 dataset [18].

The paper is organized as follows: we start with a summary of
background information on decision processes, previous work on
predicting human intention, the inverse optimal control formula-
tion for imitation learning, and goal prediction using an inverse
linear-quadratic regulation (LQR) formulation. Next, we describe in
detail our algorithm for obtaining goal predictions from the MaxEnt
IRL model trained using goal likelihood maximization rather than
trajectory likelihood maximization. Next, we explain the experimen-
tal setup used to evaluate our proposed method. The result section
summarizes the results obtained by our goal likelihood method
versus the trajectory likelihood method and other baselines. Lastly,
we provide conclusions and propose future work.

2 BACKGROUND AND RELATED WORK

2.1 Decision Processes and Goal Prediction

A wide variety of tasks can be represented using sequential decision
process formulations. A Markov Decision Process (MDP) is defined!
as a tuple (S, A, 7, R), where:

e state S is from a finite set of states s € S;

e action A is from a finite set of actions a € A;

o 7 is the state transition probability from state s under action

a;
® R(s;) is the reward or cost received by visiting state s;.

1We denote random variables with uppercase letters, fixed variables in lowercase, and
matrices in boldface uppercase.



A sequence of states and actions, sy, a1, s2, a2, 3, - . ., ST, is pro-
duced by applying a decision policy 7(a;|s;) to the state transition
dynamics of the decision process, 7(s¢+1(s¢, ar).

In many domains, the decision processes for similar tasks differ
only in small ways. We consider these differences being parame-
terized by a goal state g (where g € G, is set of all possible goals
in the environment) that indicates the successful accomplishment
of the goal when it is reached at final time step #f (ie., s¢r = g).
In contrast, if the goal state is not reached (ie., s¢; # g), a large
cost (or negative reward) is incurred. More generally, the reward
function can be parameterized by the goal g as: Ry(s).

In this paper, we also consider continuous-valued states and ac-
tions that can be modeled using a linear-quadratic regulation (LQR)
formulation. In LQR, the dynamics of a system being investigated
are represented by a linear relationship,

st+1 = Asy + Bay + €, (1)

where s; denotes the state of the system at time t, a; denotes the
action at time t, €; denotes some zero mean Gaussian noise, and A
and B define the system dynamics. The state-action cost function,
T
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cost(sy, ap) =

a
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is a quadratic function that penalizes the dynamics of the sys-
tem/control at each time step. We also incorporate a final state
quadratic cost that penalizes the final state, s, from deviating far
from the desired goal g characterized by state sy,

cost(sty) = (st — 59) Mg(st, — sg). 3)
where M and Mg are cost parameters. Similar to the MDP setting,
the time-invariant state-action cost function and the final state cost
can vary depending on the goal being pursued.

For the discrete MDP setting and the continuous LQR setting,
the goal prediction task is defined as follows.

Definition 2.1. The goal prediction task seeks a probability
distribution over potential goals given a partial sequence of states:
P(stf = gls1,...,st) for discrete decision processes and P(G =
glsi1, . . ., s¢) for continuous control processes. In the discrete setting,
the exact goal state is reached whereas the final state need only be
sufficiently close to state g in the continuous setting.

2.2 Existing Goal Prediction Methods

Many goal prediction methods approach the goal prediction task
using Bayesian reasoning. Given a generative, goal-conditioned
model of the state sequence, P(s1:¢|g), the goal posterior is obtained
using Bayes theorem:

P(s1:t,19i)P(g:)
Ygeg Plsi;19)P(g")
where s1.;, is the partial trajectory of states from time step 1 to
time step #;, g; is the inferred goal, and g’ of a goal from the set of
pre-defined goals (@) in the environment.

A simple Bayesian approach for the discrete setting is the goal-
conditioned Markov model [13, 31]. It estimates the next state given
the current state and goal based on the empirical frequency,

Py(gilsi:t;) = 4

count(s¢4+1,5¢,9) + Aspi1,56,9

count(sy, g) + as;,g

P(st+1lst,9) =

where count(-) is the number of occurrences in the training dataset
and a provide a set of optional pseudo-count values. The state
trajectory likelihood of Eq. (4) is:

tf—l
P(s1.tlg) = P(sp) [ | Plserlse g).

t=1

Predestination [20] uses Bayes theorem to infer destinations from
driving routes. It uses a history of driver destinations and driving
behaviors to predict where the driver is heading (final destination).
Similarly, comMotion [22] uses a set of previously visited destina-
tions to predict a person’s destination using a Bayes classifier. More
sophisticated trajectory likelihood modeling approaches treat the
prediction tasks as the “inverse” of a planning process [5, 10, 14, 37].
For example, Baker, Tenenbaum & Saxe [5] use inverse planning,
which assigns a probability distribution to different plans, to com-
pute goal inferences. They investigated three different settings for
goal prediction: single underlying goal, complex goals, and chang-
ing goals. In this paper, we consider the single underlying goal
setting and leave extensions to the other settings as future work.

Maximum Entropy Inverse Reinforcement Learning (MaxEnt
IRL) [39], which we describe in more detail in the next subsec-
tion, uses a trajectory likelihood model to predict driver destina-
tions given partial driving trajectories. It has also been used to
predict user intent for robotic teleoperation with application to
brain-computer interface (BCI) manipulation tasks [24]. In another
extension of MaxEnt IRL, the notion of legibility and predictability
[10] are used to interpret action analogy, and by Holladay et al
[14] to generate pointing configurations that make the goal object
legible.

All of the these works use generative models of the trajectory
distribution to enable goal prediction using Bayesian reasoning.
Though less prevalent, there is some work on discriminative ap-
proaches for goal prediction given partial trajectory [3, 35]. The
Delphian Desktop [3] predicts user intentions in a desktop environ-
ment given the cursor trajectories using simple linear regression
based on features like peak velocity and distance to the target. Lo-
gistic regression [15] has been used to predict the goal given partial
trajectory [8] based on features like cosine of the angle, distance
using peak velocity, and curve fitting for predicting intended goal.
Additionally, the anticipatory temporal conditional random field
(ATCRF) [19] and object affordances [18] is used to anticipate hu-
man activities. They have produced the Cornell Activity Dataset
(CAD-120) [18] for their experiments. We use the same CAD-120
dataset for evaluating our method and compare against this ap-
proach.

2.3 Maximum Entropy Inverse Optimal
Control

Inverse optimal control (also known as inverse reinforcement learn-
ing) [1, 17, 25] considers a Markov decision process without a re-
ward function and learns the reward function that rationalizes
demonstrated decision sequences [1]. Assumption a reward func-
tion linear in the state feature vectors parameterized by reward
parameter 6, R(s;) = 0 - #(s;), Abbeel & Ng [1] propose the ap-
prenticeship learning approach based on Inverse Reinforcement



Learning [25]. They devise a strategy of matching feature expecta-
tions between expert’s policy () and learner’s policy (7):
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< e, (5)

where € is the largest error allowed when approximately matching
feature vectors. While useful for prescriptive behavior in imitation
learning tasks, this approach is not as useful for prediction due to the
ambiguities arising from many different mixtures of deterministic
policies producing the same feature counts.

Ziebart et al. [39] employed the principle of maximum entropy
[16] to resolve the ambiguity of mixing policies to match feature
counts by selecting a probability distribution:
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is the trajectory or path traveled from time step 1 through t. The
parameters 0 that maximize the trajectory log likelihood,

0* = argmax Z log P(s1:¢,10), @)

S1:zf €=

are employed by the model. Further, the gradient of Z? (partition
function) is established in Lemma 2.2.

LEMMA 2.2. The gradient of the partition function, Zg, is:
r
0 — — — —
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=1

Proor. Using the definition of Z 9 from equation 6 we have,
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Following from Lemma 2.2, the gradient of the trajectory log
likelihood function for a set of trajectories and corresponding goals,
denoted by =, is:

Volog [ Plouil0.9) =B [¢(Sep)lg| - $Gs1p). (®)

(sl;zf,g)eE

Thus, when maximized, this gradient is zero and the expected fea-
ture counts must match the training data feature counts.

In this paper, we extend MaxEnt IRL to predict human intentions
given partial trajectory by maximizing the true goal likelihood
instead of the trajectory likelihood.

2.4 Inverse Linear-Quadratic-Regulation

Maximum entropy inverse reinforcement learning methods for
MDPs have been extended to linear-quadratic regulation (LQR)
settings to learn the M and My coefficient matrices (reward parame-
ters) from demonstrated behaviors using the principle of maximum
causal entropy [38]. Under this model, computing the features ¢,
of the partial trajectory (s1.¢;) given the goal (g;),

ti—1 a a T
By, (s1:4;) = Z [s:] [Stt] i’

t=0

the expectation of the features @y, (s¢;—g;) of the remaining trajec-
tory (s¢;—g;) from the current position (¢;) to the goal (g;),

tf—l
E[ngi(stiagi)lgi] = Z (Irlatszllgtst + Zatst), (10)

t=t;

the expectation of the features ¢4, (s1— 4, ) of the complete trajectory
(S1—4;) from the starting point to the goal (g;),

tf—l
Elpg,(S1-g)19:] = D (Haysibays, + Zars,)> (1)
t=1

can be achieved efficiently based on the fact that all marginal state
probabilities are multivariate Gaussians with analytical expressions
mean (liq,s,) and variance (24, s,) for these expectations. Finally,
the probability of the true goal (g;) given the partial trajectory (s1.z;)
is obtained using Bayes theorem as;

i
P(gilsie,) o Plgilse) | | m(arlse, gi). (12)

i=1

This predictive linear-quadratic regulator [23] for inverse optimal
control is used to predict human intentions and trajectory fore-
casting. Promising results have been demonstrated on the Cornell
Activity Dataset (CAD-120) [18]. In this paper, we have extended
the technique used in [23] by training the MaxEnt IRL model by
maximizing true goal likelihood.

3 APPROACH

Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL)
is a widely used method to infer the true goal or intentions of a
sequential decision maker given a partial trajectory by employ-
ing Bayesian reasoning. The reward parameters in the MaxEnt
IRL setting are trained via maximizing the trajectory likelihood as
shown in Equation 8. The trajectory likelihood models are designed
and optimized solely with consideration to trajectory prediction
rather than goal predictions. While Bayes theorem, the foundation
of Bayesian reasoning, holds correctly for the true distributions
of goal posteriors and trajectory likelihoods, it can produce error-
prone goal posteriors when the likelihood model noisily estimated
from limited amounts of available data. To address this problem,
in this section, we develop our approach for training the MaxEnt
IRL model for goal prediction using goal likelihood maximization
in place of the traditional trajectory likelihood maximization ap-
proach.



3.1 Goal Likelihood Maximization Formulation

To derive our optimization procedure, we first establish Lemma 3.1
for computing the gradient (Vy) of the log likelihood of a partial
trajectory given a goal (Pg(s1:¢,|9:)) with respect to the reward
parameter (6).

LEMMA 3.1. The gradient for computing the probability of a partial
trajectory (s1.¢, ) given the goal (g;) can be separated into the sum of
expectations and the feature vector,

VQ lOg Pg(slzt,' |gl) == ¢g,- (sliti) - E[d’gi (Sti—>gi)|gij|

+E

¢g,»<ngi>|gi].

Proor. Using the definition from equation 6, we have:

) —log(Z8_ )

S1—g;

log P(s1:¢;19i) = —costg(s1:t;) + log(Z‘9

Sti—gi
[Since, log * = logm — log n]. Taking the gradient with respect
to the reward parameter 0 and simplifying after using Lemma 2.2
proves Lemma 3.1. O

Next, using Lemma 3.1, we establish the maximum goal likeli-
hood gradient for MaxEnt IRL given a partial sequence of states.

THEOREM 3.2. The gradient for MaxEnt IRL for maximum goal
likelihood given a partial trajectory decomposes into a sum of expec-
tations, features and probabilities,

Vo log Po(gilsi:t;) = =g, (s1:1;) — E[d’gi (Sti—>gi)|gi]

+E|dg,(S154;)19i

+ Z P(g'|$1:t,~)(¢g'(sl:ti)

9'€G

+E ¢g'(5ti—>g’)|g/] - E[¢g’(sl—>g’)|g,] )v

where: s1.4; is the partial trajectory from time step 1 to t;, g; is the
true goal and g’ are the possible goals (G) in the environment.

Proor. Taking the gradient with respect to 6 of the goal log
likelihood, after expanding using Equation 4:

Vo (logPo(s1.1;191) + log (1) ~log ., Po(sir;19)P(9)))
g9'eG

@ 9glogPo sy lg:) + Vo log P(g:)
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where: (a) follows from properties of the gradient applied to loga-

rithms and the definition of the goal posterior and (b) is obtained

after employing Lemma 3.1. o

¢gf<ngf>|g']),

This gradient trivially equals zero when the goal predictions
are perfectly correct (ie, P(tf = gilsi;) = 1). However, this is
often difficult to achieve when training from noisy data. In general,
optimizing the reward parameter to maximize goal likelihood is

non-concave. However, we can obtain a reasonable local maxima
by changing the starting conditions and other factors. For example,
initializing the reward parameter optimization at the maximum
trajectory likelihood parameters guarantees no worse parameters
than the trajectory-based approach.

Algorithm 1 Learning IOC model for goal prediction

Input: The reward parameter §; Set of training trajectories reach-
ing goals E; Set of Goals G
Output: The optimized/learned reward parameter
1: for (s, gi, t;) € E do
2 Extract partial trajectory si.;

V@ — _¢gi(31:tl-) - E[¢gi (Sti—>gi)|gi
4 forgeGdo

+E

w

¢gi(51—>gi)|gi]

5: Vg' — ¢g'(sl:t,~) +E ¢g'(sti—>g’)|gl] - E[d’g'(sl—»g')w,]
6 Compute P(g’[s1:s;)

7: Vg — Vg + P(gl|81;tl.)vg/

8 end for

9. 0« 0+nVy

10: end for

11: return 0

The learning procedure (Algorithm 1) takes as input an initial
reward parameter, a set of training trajectories, and a set of possible
goals in the space. It iterates over randomly selected training trajec-
tories, extracting the partial trajectory from the selected trajectory,
i.e., s1.¢;, and then constructs the full gradient from its components
in step 3, step 5, and step 7. Step 3 computes the difference in
expected features for the true goal. Step 5 computes the same differ-
ences for each possible goal and then Step 7 weights these by the
goal probabilities. Lastly, Step 9 applies a gradient step weighted
by 1 to improve towards locally optimal reward parameters 6* us-
ing expectations computed for the true goal and all other goals. In
practice, more sophisticated gradient-based updates [11, 34] can
be employed. The algorithm repeats steps 2 through 8 (with de-
creasing learning weights) for all of the training trajectories until
approximately converging to a locally optimal point.

We note the contrast from previous goal prediction methods
using MaxEnt IRL trained by maximizing the likelihood over the
trajectory to train the reward parameter as explained in Equation (8).
Critically, the likelihood of the correct goal given a partial sequence
of actions is inferred using Bayesian reasoning. This produces a
mismatch between the training and application objective and can
produce error-prone goal likelihoods. Thus, the most significant
advantage of training using the proposed method (maximum goal
likelihood) is that we maximize the likelihood over the true goal,
which correctly matches the application objective.

3.2 Extension to Linear-Quadratic Regulation

Algorithm 1 provides a general algorithm for MaxEnt IRL trained
to maximize goal prediction for the case of discrete state/action
decision processes. We can extend this general method to other
settings/controllers to match other real-life scenarios. In this paper,
we use inverse LQR to conduct our experiments and we have the
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Figure 1: A partial trajectory (S1.;;) and distribution for two
goals in the space at a trajectory point S;. Inverse LQR with
the trained reward parameters using the algorithm 1 are
used to calculate the distributions for both goals.

cost function M and My to train as mentioned in section 2. In
algorithm 1, for our inverse LQR setting we replace the reward
parameter 8 with M and M¢. The computation of terms of Algorithm
1 in inverse LQR formulations can be referred from Equations (9),
(10), (11), and (12) from section 2.4.

Figure 1 depicts the scenario of goal prediction based on the
partial trajectory traveled in a real-time situation. There is an agent
who starts from the starting point s; and travels to point s;. The
goal set G consists of two goals: g; and g;. At trajectory point s¢,
we can compute goal distributions for both goals in the space based
on the partial trajectory s;.; covered. The color contours represent
the corresponding probability distribution (likelihood) of the goal.
The corresponding mathematical expressions for each action con-
ditioned on goal in the figure provide the goal probability in the
inverse LQR setting, as part of Equation 12. These distributions are
calculated using the trained reward parameter from Algorithm 1.
The most probable goal can be obtained from the posterior goal
distribution. In Figure 1, for example, goal g; is the most probable.
Thus, in this way we predict the goal given the partial trajectory in
real-time.

3.3 Complexity Analysis

The time complexity of the discrete case proposed in Theorem I is
O(|G||S||A|T), where G is the set of potential goals, S is the set of
states, A is the set of action and T is the total time steps in the tra-
jectory (i.e., trajectory length). In this paper, we have implemented
the above general algorithm for the inverse LQR setting which is
an example of the continuous case. So, the time complexity of the
proposed algorithm for inverse LQR setting requires O(T) matrix
updates.

The most significant advantage of using this approach is that the
matrix updates only need to be computed once when performing
inference over sequences sharing the same time horizon and goal
positions. Further, to improve the efficiency of our computation
we used the Armadillo C++ linear algebra library for fast linear
computations [29].

4 EXPERIMENTAL SETUP

In this section, we explain our experimental setup used for eval-
uating our proposed Algorithm 1 from Section 3 for the inverse

LOR setting. We have used two real-life datasets to evaluate our
proposed method.

4.1 Goal Pointing Task Data

For our first set of experiments, we have used an existing dataset of
pointing tasks [30]. The data was collected using a Baxter robot from
Rethink Robotics and a Microsoft Kinect camera. For the training
data, 10 balls were hung from the ceiling (5 on both sides of the
Baxter robot), and a teleoperator was asked to stand in front of the
Kinect Camera (input sensor). The teleoperator was asked to reach
the displayed ball number on Baxter’s head-mounted display from
a neutral position. Another operator moved Baxter’s corresponding
arm in zero gravity mode from a neutral position to the displayed
goal in synchronization with the human arm motion. This Kinect-
Baxter correspondence data was used to train a linear regression
correspondence model for robotic teleoperation. Further, we used
the training sequence to extract states and actions for inverse LQR
system and trained cost functions M and Mg.

The 10 hanging balls from the ceiling were then shuffled to
new positions (different from the training set-up) for the testing
phase. The 18 teleoperators were asked to teleoperate the Baxter
robot’s arm by standing in front of the Kinect camera from a neutral
position to reach the goal that was displayed on the Baxter head-
mounted screen. This process was repeated for each goal and three
different control assistance method ((i) Sigmoid assist, (ii) Step assist,
and (iii) No assist), for details please refer to [30]. The three control
assistance methods were also repeated twice in random order to
maintain consistency. Thus, each person performed 60 trajectory
sequences of reaching the displayed goal.

In total, the dataset consisted of 1080 goal reaching trajectories.
Figure 2 explains the steps of test data collection. The dataset con-
tains the Kinect skeleton values, the Baxter end-effector position
while the volunteer was teleoperating the Baxter robot and the
probability distribution across all five goals along the trajectory. In
this paper, we use the Baxter end-effector positions as the trajectory
points (states) for training and testing of the inverse LQR model.

4.2 Cornell Activity Dataset (CAD-120)

For our second set of experiments, we employed our Algorithm 1 to
train reward parameters on the publicly available Cornell Activity
Dataset (CAD-120) to strengthen our claim. This dataset consists of
120 depth camera video of daily activities. There are ten high-level
activities: making cereal, taking medicine, stacking objects, unstack-
ing objects, microwaving food, picking objects, cleaning objects,
carrying food, organizing objects and eating a meal. These activi-
ties are further divided into ten sub-activities: reaching, moving,
pouring, eating, drinking, opening, placing, closing, cleaning and
null. For example, the task of making cereal can be broken down:
reaching (cereal box), moving (cereal box on top of bowl), pouring
(from cereal box to a bowl), moving (cereal box to the previous
position) and null (moving the hand back).

In this study, we have divided the trajectories based on the above
10 sub-activities. We disregarded null sub-activity as it has an un-
defined goal or intention. First, we extracted goals for each of the
trajectory in the sub-activity. Second, we trained the cost functions
M and Mg for each of these sub-activities separately. We withheld



a. Starting Neutral Position

b. Teleoperate Arm Towards Goal

c. At Goal d. Results Displayed

Figure 2: The steps of a task in our testing sequence from a pointing dataset [30] include starting from the robot’s neutral
position (a) and then teleoperating the arm of the robot (b) to the goal location (c) at which point confirmation is displayed on

the robot’s screen (d).

10% of each sub-activity dataset for testing and used the rest 90%
to train the reward parameters (i.e., M and My). Similar to the pre-
vious experiment, trajectory points were used as states and final
trajectory point as goal state.

4.3 Estimating the Reward Parameters

The inverse LQR model used in this paper has two separate re-
ward/cost parameter matrices M and Mg to train. To provide the
strongest guarantees, we first train the reward parameters using
the maximum trajectory likelihood method as explained in Equa-
tion (8) on the training data for both datasets. Then we use these
trained reward parameters to initialize Algorithm 1 to learn us-
ing our proposed method for maximizing goal likelihood on the
training data.

We have used accelerated stochastic gradient descent with an
adaptive learning rate [11, 34] and L1 regularization on both pa-
rameters simultaneously. This regularized approach prevents over-
fitting over the demonstrated trajectories of the datasets used in
this paper. In the next section, we would describe goal predictions
using inverse LQR controller on the test data for both datasets.

4.4 Goal Prediction via Inverse LQR

Following the existing formulations employed for maximum tra-
jectory likelihood methods [30], a goal is defined as a location
in x4, Y4, z4 translational space that we want the robot arm end-
effector to approximately reach. The end-effector is the endpoint of
the robot arm, which is calculated using forward kinematics [32].
The end-effector consists of x, y;, z; translational and x,, yr, z,, wr
quaternion angles as rotational dimensions referenced from the
associated robot’s coordinate frame. We have considered only trans-
lational dimensions for goal positions.

Following the approach outlined for the inverse LQR setting [23],
the authors of [30] assume the linear dynamics of Equation (1), in

which the state of the end-effector is defined as,

St = [xt,yt,Zt,ft,yt,iz,ft,_l]'t,i'ts1]T, (13)

and end-effector actions as
ar =[x, ¢, 217, (14)

where (X, y;, 2;) are velocities, (¥, ij;, Z;) are accelerations, and
a constant of 1 is added to the state representation to incorporate
linear features into the quadratic cost function in Equation (2).
Additionally, goal state i of the end-effector is represented using
only the goal’s translational position,

9i = [Xg:s Ygi» 24:+0,0,0,0,0,0,0] 7. (15)

To compute goal predictions along the test trajectories, we train
the reward parameters M and Mg using our proposed method (max-
imum goal likelihood) as described in Algorithm 1 on the training
data. From these trained cost matrices, the probabilities of different
possible goal states are inferred given the observed partial trajec-
tory of the end-effector in real time. The process is clearly depicted
in Figure 1 and Equation (12). These goal state probabilities are
P(gils1:¢;) and the probability of the most likely intended goal of
the partial trajectory, I, is,

I= ml,axP(gilsm)- (16)

4.5 Prior Distribution

The inverse LQR goal prediction method is a Bayesian inference
method that benefits significantly from a prior distribution over
the possible goals [23]. In the previous trajectory likelihood maxi-
mization experiment [30], they used a distance prior similar to the
one used in previous work [23],

P(gilst) oc e Pistlseg0), 17)

where dist(st,g;) is a function that computes the Euclidean dis-
tance between the spatial coordinates of s; and g;, and f is an
adjustable coefficient that increases the importance of distance on
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Figure 3: (a) Plot showing comparison of logloss by our goal likelihood maximization method to the trajectory likelihood
maximization model on goal pointing task data; (b) Change of probability distribution over goals across a trajectory of reaching
goal #3 using trajectory likelihood maximization model; (c) Change of probability distribution over goals across a trajectory
of reaching goal #3 using goal likelihood maximization method; (d) Plot showing comparison of logloss by goal likelihood to

trajectory likelihood on CAD-120.

the distribution. As dist(s;, g;) decreases, P(g;|s;) increases effec-
tively making closer targets more probable. We have used the same
formulation for most intended goal prediction for both experiments
in this paper.

4.6 Baselines

To compare our goal likelihood method on goal pointing task data
from the two datasets, we use the nearest target (predicting the
nearest goal as the true goal along the trajectory points) prediction.
It is the simplest baseline for goal prediction, and all methods should
be expected to perform better than it. We additionally use logistic
regression [8] as the discriminative method comparison baseline.
We also compare with the previous approach of constructing a
model using trajectory likelihood maximization [23]. For CAD-
120 dataset, in addition to comparing to the trajectory likelihood
method, we also compared our method with ATCRF [19].

4.7 Evaluation Metrics

To evaluate our proposed method against the existing trajectory
maximum likelihood method, we use two evaluation metrics. First,
we compute the logarithmic loss for true goal probability across
the whole trajectory. The logarithm loss has been plotted for both
methods at various fractions of the trajectory covered in Figure 3-a
on pointing task dataset and Figure 3-d on CAD-120. Second, we
compute the accuracy of our proposed method and other baselines
across different fractions of the trajectory in predicting the true
goal. We have also reported precision and recall for both methods.
Tables 1 and 2 report the results for both datasets.

5 RESULTS AND DISCUSSION

The proposed optimization of the reward parameter to maximize
goal likelihood involves maximizing a non-concave function. This
prevents any guarantees of convergence to a global optimum. How-
ever, still, we can reach some local maximum that provides a better
result than previous trajectory-based optimization methods. We
have experimented with three different starting points to train the
cost function M and Mg: (1) initial values of all 0; (2) pre-trained
initial values using the optimization objective of past work (i.e.,
trajectory likelihood maximization); and (3) randomized starting

Table 1: A comparison of the trajectory likelihood model,
the goal likelihood model, and the nearest goal baseline for
the goal pointing task dataset evaluated using the accuracy,
macro precision, and macro recall given various fractions of
the trajectory.

Fraction of the trajectory

Method Measure 20% 40% 60% 80% 100%
Accuracy 214 28.6 586 100 100
Nearest

Goal Macro Prec. 50.0 50.0 50.0 100 100
Macro Recall 10.7 14.2 393 100 100

Trajectory Accuracy 286 286 643 100 100
Likelihood Macro Prec.  50.0 50.0 50.0 100 100
Macro Recall 14.3 143 322 100 100

Goal Accuracy 28.6 357 928 100 100
Likelihood Macro Prec. 50.0 50.0 50.0 100 100

Macro Recall 143 179 46.5 100 100

Table 2: A comparison of the trajectory likelihood model,
the goal likelihood model, and the ATCRF model for the
CAD-120 dataset evaluated using accuracy, macro precision,
and micro precision given various fractions of the trajec-
tory.

Fraction of the trajectory

Method Measure 20% 40% 60% 80% 100%
ATCRF Accuracy - - - - 86.0
[19] Macro Prec. - - - - 84.2
Macro Recall - - - - 76.9

Traiector Accuracy 80.9 825 841 904 100
LikeJ: lihooZl Macro Prec.  65.0 734 791 87.5 100
Macro Recall 77.3 914 942 962 100

Goal Accuracy 81.8 86.4 90.1 100 100
1 M Prec. 71.8 78.1 833 100 100

Likelihood acto rrec

Macro Recall 75.0 81.0 875 100 100

points. We find convergence to very similar parameters with all
three of the different starting points, indicating that we can reach a
stable local maxima without strong sensitivity to the initial values.



We have tested our method on two different real-life datasets
involving human and robot goal-directed movements. Figure 3-a
illustrates the logarithmic loss of the correct goal prediction given a
partial trajectory computed across the fraction of the trajectory for
the pointing task dataset. The black color represents the trajectory
likelihood method and the green color represents the proposed goal
likelihood approach. It is evident from Figure 3-a that the goal like-
lihood maximization method’s logarithmic loss decreases faster and
reaches the true goal probability in approximately 50% of the tra-
jectory. On the other hand, the trajectory likelihood maximization
method achieves the same performance at 70% of the trajectory. In
both settings, we have used a distance prior, so the probability dis-
tribution rapidly increases from a uniform distribution as the true
goal may be farther from the neutral position than other targets.

To illustrate the behavior of the goal prediction methods, we
select a trajectory from pointing task test data and plot the proba-
bility distribution across five goals along the trajectory length in
Figure 3-b and c. The plot of the resulting distribution in Figure
3-b corresponds to the trajectory likelihood method and Figure 3-c
corresponds to our proposed goal likelihood maximization method.
We can see that our goal likelihood maximization method performs
better than the trajectory likelihood maximization method. Our
proposed method realizes a high probability prediction for the true
much earlier than the previous trajectory likelihood maximization
method with a smoother transition across different goal probabili-
ties.

Figure 3-d shows the logarithmic loss of goal prediction along
the trajectory for reaching a goal from the CAD-120 dataset. The
trajectory likelihood maximization method is represented by the
black color and our proposed goal likelihood maximization method
is shown in green. The plot clearly shows that our goal likelihood
maximization method predicts the true goal (approximately 60%)
much earlier in the trajectory than the trajectory likelihood method
(approximately 80%).

In Table 1, we report the accuracy, precision, and recall for goal
prediction for three methods, i.e., the nearest goal predictor, tra-
jectory likelihood maximization model, and the goal likelihood
maximization model. Both the previous (trajectory likelihood) and
proposed (goal likelihood) models perform significantly better than
the simplest baseline method, i.e., the nearest goal baseline. At
40% and 60% of the trajectory, our proposed goal likelihood-based
method outperforms the trajectory likelihood-based method by a
noticeable margin. The result also matches with our log loss met-
rics as shown in Figure 3-a. We also compare our results with a
logistic regression model [8] as the generative method baseline.
The reported goal prediction accuracy of 57.9% is obtained from a
partial trajectory of length 60 time-steps. The average range of the
trajectories of pointing task dataset is 110 time-step. So, at 60% of
the trajectory length, we found that our proposed method predicts
the true goal with an accuracy of 92.8%, which is significantly better
than logistic regression.

Table 2 shows the performance results of the experiment con-
ducted on the CAD-120 dataset. We compared the performance
of our proposed goal-based method with other baselines based on
trajectory likelihood maximization and the ATCRF model (only
result for 100% is available). We can see that the trajectory likeli-
hood method achieves comparable accuracy at 40% of the trajectory

what is not realized until 100% of the sequence is observed using the
ATCRF model. The result of the ATCRF method is on the unmodi-
fied CAD-120 dataset, which consists of null sub-activities, which
prevents it from achieving 100% accuracy even when observing the
complete trajectory. From the beginning of the trajectory, our pro-
posed goal-based method outperforms the trajectory-based method
by a considerable margin, which matches the log loss results shown
in Figure 3-d and achieves 100% accuracy in prediction at 80% of
the trajectory.

Thus, these experiments strongly support our claim that by
re-training the MaxEnt IRL approach using goal likelihood max-
imization for goal predictions, we can achieve better and faster
goal prediction than existing methods—specifically those based on
trajectory likelihood maximization. As this is an important sub-
problem for planning symbiotic robot behavior, we believe these
improvements will help increase the productivity of human-robot
collaborative tasks when used appropriately.

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed training inverse reinforcement
learning models that were initially designed for policy estimation,
to instead be optimized for goal prediction. We derived the gra-
dient for optimizing goal likelihoods under the general discrete
maximum entropy inverse reinforcement learning (MaxEnt IRL)
setting and under the continuous inverse linear-quadratic regu-
lation (LQR) setting. We demonstrated that our goal likelihood
maximization method provides significant improvements for goal
prediction compared to previous methods based on trajectory like-
lihood maximization in practice. Thus, with our new approach, we
can more accurately infer intended goals farther in advance than
previous approaches, enabling robots to know human intentions to
make more compatible decisions.

As future work, we will test our method on real-world human-
robot tasks like assisting robotic teleoperation [30]. These tasks
often involve additional complications that should also be modeled
to improve goal prediction. For example, though we have assumed
that the robot’s workspace is free of obstacles in this paper, many
real-world robotic workspaces contain numerous obstacles. We
plan to extend our goal prediction optimization approach to the
hybrid, two-level imitation learning method [7] that incorporates
discrete waypoints at the top level and employed LQR predictions
conditioned on the waypoints at the bottom level. We believe that
through arm motion demonstrations of obstacle avoidance during
training, the cost function can be learned to reason about arm move-
ments around obstacles in testing environments. Further, in this
paper, we have assumed that the goals are static in the environment.
We will relax this assumption by allowing goals to change over
time without being reached [5, 12].
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