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Synchronization primitives like barriers heavily impact the perfor-
mance of parallel programs. As core counts increase and granularity
decreases, the value of enabling fast barriers increases. Through
the evaluation of the performance of a variety of software imple-
mentations of barriers, we found the cost of software barriers to be
on the order of tens of thousands of cycles on various incarnations
of x64 hardware. We argue that reducing the latency of a barrier
via hardware support will dramatically improve the performance
of existing applications and runtimes, and would enable new execu-
tion models, including those which currently do not perform well
on multicore machines. To support our argument, we first present
the design, implementation, and evaluation of a barrier on the Intel
HARP, a prototype that integrates an x64 processor and FPGA in
the same package. This effort gives insight into the potential speed
and compactness of hardware barriers, and suggests useful improve-
ments to the HARP platform. Next, we turn to the processor itself
and describe an x64 ISA extension for barriers, and how it could
be implemented in the microarchitecture with minimal collateral
changes. This design allows for barriers to be securely managed
jointly between the OS and the application. Finally, we speculate
on how barrier synchronization might be implemented on future
photonics-based hardware.
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1 INTRODUCTION

The vast majority of parallel applications and execution models
depend heavily on synchronization for correctness or as an intrinsic
computational element. Their performance in turn depends on the
latency of synchronization primitives, and this dependence becomes
ever more critical as the scale of the parallel machine increases or
the granularity of parallelism decreases, for example when strong
scaling is needed.

Our focus is on collective communication at the intranode level,
particularly the barrier primitive. The individual node is of course
growing in scale and complexity. The node is also where the finest
granularity parallelism exists now, and where even finer granularity
parallelism is likely to be extracted in the future through compilers
and other means. For example, task-based execution models are
already seeing such small tasks that correspondingly low overhead
task systems are needed. Others have already been argued that such
systems require hardware support because memory system-based
synchronization is simply not fast enough [4]. Indeed, entire tasking
systems have been proposed to run at the hardware level [27].
Similar arguments have been made for hard real-time systems,
where having low (and predictable) overheads in scheduling is
necessary even for correctness. In pursuit of this goal, systems have
been built that offload CPU scheduling to FPGAs [42].

In contrast to tasking models of computation, in which global
synchronization can be minimized, we are interested specifically in
computational models that demand global synchronization, and in
particular barriers. There is a lot to be said for such models (indeed,
the success of GPUs hinges on them), but they are not currently a
good fit for the CPUs of modern nodes outside the limited domain
of vector instructions. We seek to improve that fit.

This paper is a deep dive into hardware barriers on modern
and future x64 machines. Can we make a modern or future x64
machine amenable to parallel applications and execution models
that demand low-overhead global synchronization?

Our approach to this question starts in the near future, in the
form of leveraging emerging reconfigurable hardware close to the
processor. Reconfigurable computing has a long history, as exempli-
fied by the IEEE’s long-running Symposium on Field-Programmable
Custom Computing Machines (IEEE FCCM), now in its 27th year.
Throughout this history, a commonly envisioned hardware model
has been that of a field programmable gate array (FPGA) as a



co-processor, operating in tandem with standard processors. This
model is now on the threshold of widespread adoption, with FP-
GAs becoming available in many forms, ranging from PCI-based
accelerators, through processor socket-based implementations [11],
to integration with processors in multichip modules, as in the Intel
HARP platform we use in this paper. FPGAs are becoming more
and more tightly coupled with processors, and this evolution may
eventually extend to an on-die integration with processors, or even
merging of FPGA resources with traditional processor logic and
functional units. Can we use a closely coupled FPGA to give us a
better barrier?

It may also be feasible to simply integrate a hardware barrier
mechanism on a next generation x64 processor. Changing intra-chip
and inter-chip communication technologies might also simplify the
implementation of the primitive. Such integration may also be
commercially viable. Arguably, the synchronization needs within
the node for HPC-focused applications and execution models are
closely related to the needs of more general parallelism models
beyond the scope of HPC.

Our contributions are as follows:

o We motivate the need for a low latency hardware barrier
mechanism on modern processors. We argue that current
software barriers are slow, limit current application perfor-
mance, limit novel parallel execution models, and can be
much faster. Our analysis is partially based on the measure-
ment of the performance of a microbenchmark, a widely
used application benchmark (PARSEC StreamCluster), and
an influential parallel run-time model (NESL) on four plat-
forms, including four and eight socket x64s and an Intel Xeon
Phi KNL.

e We describe the design and implementation of a barrier
mechanism for the Intel Hardware Advanced Research Pro-
totype (HARP) platform, which integrates a large FPGA and
a modern x64 processor into a single multichip module. This
includes an experience report of using such a platform for
non-application use cases. Of particular concern is the la-
tency of communication to and from logic in the FPGA.

e We evaluate our HARP-based solution against a suite of
high performance software barriers for the microbenchmark,
application benchmark, and run-time.

e We consider the integration of a hardware barrier primitive
directly into an x64 processor. We present the design of
a simple ISA interface to the kernel and application, and
a plausible, minimalist microarchitectural implementation
of it. Our design would allow an application to safely and
securely use the mechanism without invoking the kernel in
the critical path.

o We speculate on how hardware barrier synchronization
could be readily added to a future processor design that
uses photonic communication.

2 MOTIVATION

Barrier synchronization is a fundamental primitive of parallel com-
puting in which all participating threads must synchronize (“arrive
at the barrier”) before any can continue (“depart from the barrier”).

Our focus is on barrier synchronization among a group of threads
within a single shared memory node.

If the time between barriers is large, the barrier implementation
hardly matters. We are concerned with applications and parallel
execution models in which barriers are frequent, and thus barrier
implementation overhead is critical. This typically occurs when fine
grain parallelism can be extracted and is desirable. Beyond the ob-
vious desire for better strong scaling, others have made the case for
and described approaches to fine-grain parallelism in OpenMP [3].

It is important to note that as the granularity of parallelism is
reduced and the time between barriers shrinks, it is also much more
likely that the common case is that participating threads arrive at
a barrier with close synchrony. Various kernel-level coordinated
scheduling models [17, 35] can further increase the chances of this
case. Now, the barrier overhead, indeed, the minimum barrier cost,
becomes increasingly critical. In the limit, granularity falls to one
or close to it, giving us a SIMD machine or a GPU. There is a large
gap between this point and what can be supported on a current
processor and node. We aim to bridge that gap.

Current barriers are slow. Numerous algorithms for barriers ex-
ist [32] and in our target environment, we have implemented several
in software on top of the hardware shared memory system, lever-
aging the hardware’s general purpose coherence, consistency, and
atomicity primitives. That is, these techniques are centered around
the caches.

Figure 1 shows the performance of various software barriers,
including those in typical practical use, on four distinct platforms,
as a function of scale. NUMA-8 is a Supermicro 7089P-TR4T, which
sports eight 24 core, hyperthreaded 2.1 GHz Intel Xeon Platinum
8160 processors (384 hardware threads total), and 768 GB of RAM
split among 8 NUMA zones. NUMA-4 is a Dell R815, which sports
four 16 core 2.1 GHz AMD Opteron 6272 processors and 128 GB of
RAM split among 8 NUMA zones. Phi is a Colfax KNL Ninja plat-
form. This is an Intel-recommended platform for Xeon Phi Knights
Landing (KNL) development. It is essentially a Supermicro 5038Kki,
and includes a Intel Xeon Phi 7210 processor running at 1.3 GHz.
The processor has 64 cores, each of which has 4 hardware threads
(CPUs in our terminology). The processor is tightly coupled to 16
GB of MCDRAM, and more loosely to 96 GB of conventional DRAM.
HARPis a prototype Intel platform that integrates a Broadwell Xeon
processor and a large FPGA in a single socket (described in more
detail in Section 3).

The barriers considered here and elsewhere in the paper include
the default pthread barrier implementations (called Pthread), the
default OpenMP barrier implementation in GCC with the libgomp
run-time (OMP), a hand-tuned two generation counting barrier
(Counting), a pool barrier (Pool), a ticket barrier (Ticket), a dissem-
ination barrier (Dissemination), and a tournament barrier (Tour-
nament). Testing is done here using back-to-back barriers with
software threads locked to individual hardware threads. The ma-
chine is otherwise quiescent, so minimal or no context switching
occurs, and we are considering minimum times, as these approach
the intrinsic overhead of the barrier.

Note that on all of the platforms, the barrier latency is in ranges
of thousands to tens of thousands of cycles at any kind of scale that
approaches the scale of the machine. For NUMA-8 at 384 threads,
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Figure 1: Latency as a function of scale for various barrier implementations on different hardware.

the best software barrier (OMP) costs ~37000 cycles. For NUMA-4 at
64 threads, the best software barrier (Tournament) costs ~24000 cy-
cles. On Phi at 256 threads, the best software barrier (Tournament)
costs ~12000 cycles. On HARP, at 28 threads, the best software
barrier (OMP) costs about ~3300 cycles. The tournament and count-
ing barriers follow closely behind. These latencies place similar
lower bounds on the granularity of parallelism that involves syn-
chronization of many threads. One response is of course to adopt
parallelism models that require no such synchronization. We argue
that making the barrier faster is another effective response.

Current barriers limit current applications. The effects of bar-
rier latency are felt today, particularly when strong scaling is de-
sired. Figure 2 shows the performance of the widely used PARSEC
3.0 StreamCluster benchmark [6], given native input, on our four
platforms using the different barriers previously described. The
OpenMP barrier is not used, as we are using the PThread-based ver-
sion of StreamCluster. The dissemination and tournament barriers
are also not used here due to integration issues. In a StreamCluster
iteration, one thread makes decisions and the threads must use
a barrier to wait for these decisions to be made and also to syn-
chronize work. This means that for a fixed problem size, scaling
becomes critically dependent on the barrier cost.

As we can see from the figure, on all platforms the choice of
barrier implementation has a profound effect on performance and

scalability, particularly as the core count grows. The fastest barrier
considered here (Counting) can produce a speedup of as much as
123x over the worst barrier (PThread). This is on the NUMA-8
platform, which has the highest thread count available. Scaling
simply stops after 32 threads with the pthread barrier.

Now consider the Phi platform more closely. The 7x speedup
of StreamCluster going from PThread to Counting is due to the
59x speedup between these two barriers, as measured in our mi-
crobenchmarks (Figure 1). Yet the absolute cost of the best barrier
on Phi (Tournament) is still ~12000 cycles, meaning there remain
several orders of magnitude for improvement. The result would
likely be enhance speedups of StreamCluster. Additionally, as we
scale higher, we would expect the gain to increase.

Current barriers limit novel execution models. Barrier latency re-
stricts the application of various execution models on a general
purpose shared memory processor/node. For example, nested data
parallelism has demonstrated considerable promise. In the classic
implementation of the highly influential NESL language [8], the
compiler generates code for an abstract vector stack machine (for
arbitrary length segmented vectors), known as VCODE. The execu-
tion engine is an interpreter, compiler, or JIT of VCODE. The classic
mapping was to a vector supercomputer, and current work maps
VCODE to GPUs [5]. Non-NESL-based implementations of nested
data parallelism, for example Futhark [20], also map to GPUs. A
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Figure 2: Performance of stream cluster given different barrier implementations on different hardware.

common reason is that GPUs provide inherent fast group synchro-
nization.

We are developing an implementation of a VCODE interpreter for
x64 machines that partitions the work of each VCODE instruction
hierarchically, with the top level being implemented with thread
parallelism, and the second level being implemented with x64 vector
instructions. Barriers are used to enforce agreement among threads
as to which specific VCODE instruction is currently being handled
(control flow), as well as to stage execution steps to avoid races.

Figure 3 shows the cost of a VCODE NOP instruction in our inter-
preter for each of the barriers across the four platforms, demonstrat-
ing the absolute limits of the fine-grain parallelism our interpreter is
capable of. We also include an Ideal curve, for which we’ve disabled
barriers, to measure all other interpreter overhead. Our implemen-
tation requires multiple barriers per VCODE instruction; it is based
on top of pthreads or kernel threads, and thus no OpenMP barrier
is shown. The best software barrier is tournament barrier on all
four machines.

As can be seen, barrier latency dominates the overhead of VCODE
instruction execution. On a modern x64 such as the HARP, the in-
terpreter needs O(100) cycles to decode and handle a VCODE NOP,
but takes O(10000) cycles with proper synchronization in place, us-
ing the best software barrier we have found. Each of our machines
demonstrates this difference of two orders of magnitude. The high

barrier latency essentially limits the granularity of computation
that a VCODE instruction can support, which we believe can be
supported down to the O(100) cycle mark.

Barriers should and can be faster. There is nothing intrinsic to the
barrier primitive that requires the kinds of latencies that are seen
in practice with even the best software barrier implementations.
Fundamentally, a barrier primitive is an AND gate. At the hardware
level, the time costs of transporting a logic level to and from the
construct across a processor chip or between processors is what
should be limiting barrier latency. That is, a barrier is really limited
by the latency of the wires. A within-processor barrier should be
able to operate within cycles, not tens of thousands of cycles.

It is true that there are subtleties in barrier design, whether
in software or hardware. For example, multiple generations are
typically needed to handle races from the release from one barrier
to the arrival to the next. However, these are unlikely to significantly
change the costs since they also involve very minimal logic and do
not change the wire lengths.

Similar reasoning has been previously applied to barriers and
collective communication among distributed memory nodes, re-
sulting in specialized hardware for these environments that had
much lower latency than implementations that relied on commodity
communication hardware. Examples are given in Section 1.
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Figure 3: NESL VCODE instruction execution latency for various barrier implementations on different hardware..

3 HARP BARRIER

We designed, implemented, and evaluated a hardware barrier on
the HARP, a prototype Intel platform that integrates a modern x64
processor and a large FPGA in a single package.

3.1 HARP platform

The HARP multichip module fits in one socket of a server class
motherboard. The server motherboard itself has a single socket,
a single NUMA zone, and 64 GB of DRAM. It is important to un-
derstand that both hardware and software barrier performance is
limited by the performance characteristics of the processor (partic-
ularly caches), the FPGA, and the processor<>FPGA interconnect,
all of which are within the multichip module.

Figure 4 illustrates the multichip module. The processor is from
the Intel Xeon E5-2600 v4 family, which is based on the Broadwell
microarchitecture [33]. The processor operates at 2.4 GHz, and has
14 cores, each with two hyperthreads, for a total of 28 hardware
threads. The cache hierarchy includes split 32 KB L1 caches, 256 KB
L2 caches, and a 35 MB shared last level cache. For timing, we use
the cycle counter (i.e., the rdtsc instruction and friends), which on
this hardware runs at a constant rate regardless of DVFS.

The FPGA in the multichip module is an Intel Altera Arrial0 GX
1150 [43], which is among the largest and fastest available FPGAs.
It includes 1.15 million equivalent logic elements. The logic in the

Multichip Package, Single Socket

Intel Xeon E5-2600 v4

Intel Arrial0 GX 1150

2.4 GHz Green Logic
14 cores (reconfigurable)
28 threads

AFUs and
support libraries

N —

Cache Coherent

HARP Barrier is
Interface

an AFU

Blue Logic (fixed)

Figure 4: HARP Broadwell+Arria multichip module.

FPGA is partitioned into a “blue” component, which is proprietary
and implements, among other things, the interface to the processor,
and a “green” component, which is dynamically reconfigurable by
the user. Our hardware barrier is implemented as an application
functional unit (AFU) that resides in the green logic. Our design
is based on the base clock provided to an AFU, which operates at
400 MHz. Six cycles pass on the processor for every cycle in our
AFU. We implement directly in the hardware description language
Verilog, using Quartus Prime Pro 16.0.0, a common commercial
synthesis toolchain for this kind of FPGA. Resynthesizing our AFU
takes 1-2 hours.



The FPGA, via the blue logic, is a full fledged participant in the
cache coherence network of the processor. An AFU can present
control/status registers (CSRs) to the processor via memory-mapped
I/O, which the kernel modules can in turn map directly into a
process’s address space. An AFU can also execute main memory
reads/writes itself, as well as be the target of them. The cache
coherent interface makes the FPGA (and hence the AFU) a full peer
with the processor in terms of memory. There is also a mechanism,
UMsg, for low-latency messages between the FPGA and CPU which
piggy-backs on the interface for maintaining cache coherence.

An AFU also implements a set of well-known CSRs, analogous
to the configuration space on PCI devices, that allows introspection
and rendezvous with software components. We build software com-
ponents using Intel’s Accelerator Abstraction Layer (AAL), a C++
framework designed to facilitate software use of available AFUs
via this mechanism.

The server runs Ubuntu 14.04 with the Linux kernel being version
3.13-0-123. Kernel support for the FPGA components takes the form
of Linux kernel modules. It is important to understand that while
software and hardware rendezvous via the kernel modules, in actual
operation, user space software and AFUs interact without kernel
involvement. Operation of our hardware barriers involves complete
OS bypass—interactions with our AFU are done using single mov
instructions within the application code.

3.2 Design and implementation

The design of our barrier is split between a performance critical
component, which is implemented in FPGA hardware as an AFU,
and a software interface that interacts with the hardware. The de-
sign is based around a counting barrier model with atomic arrival
counting and termination count notification pushed into hardware.
The software side also handles a common race condition encoun-
tered in counting (and other) barrier designs by making use of two
copies of the hardware. While other hardware barrier designs are
certainly possible, and indeed, more in keeping with the parallelism
provided by an FPGA, Amdahl’s Law applied to this specific plat-
form suggested to us that the critical path would not be in the FPGA
hardware, but rather the interaction with it. As such, we explored
very nearly the full range of possible means to communicate be-
tween the CPU and FPGA, while leaving the barrier mechanism
relatively untouched.

Shared hardware. Figure 5 illustrates our hardware design (on the
right) and its interface to software (on the left). Two copies of this
design are instantiated in the FPGA, and the software alternates
between them. One is handling the threads departing from the
“current” barriex, while the other is handling the threads arriving at
the “next” barrier. We now consider just one copy.

At its core, the hardware increments an internal counter register,
CUR COUNT, each time an arrival trigger CSR is written by the soft-
ware. When CUR COUNT equals the size of the barrier, the hardware
resets CUR COUNT and signals that a barrier departure is in progress
to the software. There is some slight subtlety in handling the first
arrival after a hard reset, versus the next arrival after a previous
departure, and this is captured in the three input multiplexer shown
in the figure. As a whole, however, the hardware is very simple.

MMIQ interface
CPU COUNT

Internals

<&
<t &

TE =00 Idle

TE = 10 Arrival Trigger, Current Round

TE = 11 Arrival Trigger, Next Round

Reset on write to CPU COUNT (CUR COUNT set to 0)

Each hardware thread has a private, cacheline-
separated arrival and departure interface to
altow for maximum read/write parallelism in the
CPU/FPGA interfuce

Figure 5: HARP barrier hardware and its MMIO interface.
Two copies are instantiated. Software alternates between
the two copies, similar to a classic counting barrier. A wide
range of alternative interfaces to the internals were also im-
plemented and evaluated.

Not shown is set of CSRs that allow configuration of how the
AFU will be informed of barrier arrivals and how it will inform the
CPU of barrier departures.

Read and write parallelism. To allow the hardware to process
barrier arrivals and signal barrier departures efficiently, we need
to leverage parallelism within the memory system, specifically the
cache coherent interconnect that integrates the processor and FPGA.
Although both the processor and the blue logic within the FPGA
are black boxes to us, we were able to infer that such parallelism
does exist. Because the interconnect operates at the level of cache
lines, we can access this parallelism by segregating the targets of
design-independent read/write operations into distinct cache lines.
It is vitally important that we do this. Empirically, if we do not,
performance suffers dramatically.

Consider a simple interface in which a barrier arrival occurs by
writing a ARRIVAL TRIGGER CSR, and barrier departure is sensed by
reading a DEPARTURE SENSE CSR. In the MMIO interface, hardware
handles a write to this CSR by advancing the current count as
described above. Our design synthesizes to operate within a single
cycle of the 400 MHz clock. The trick is to keep it fed with arrivals at
this rate. If ARRIVAL TRIGGER is mapped to a single MMIO address,
then a write to this address from one hardware thread may have
to wait on a write to the address from another hardware thread
due to the nature of the coherence protocol. This will occur even
if the blue logic is capable of feeding the writes into our AFU
at the full rate. In effect, by having every hardware thread use
the same address for ARRIVAL TRIGGER we create false sharing
for the coherence protocol, artificially limiting the rate at which
we can push arrivals into our hardware. To ameliorate this, we
replicate ARRIVAL TRIGGER in the MMIO space, separating the
replicas by a cache line, the unit of operation of the coherence
network. Each hardware thread then writes to its own, private
replica of ARRIVAL TRIGGER, avoiding creating any potential false



sharing within the memory system logic, and giving the potential to
feed our hardware with arrivals at the maximum rate it can support.
Similar reasoning applies to the design of the MMIO interface for
the DEPARTURE SENSE, hence its replication across cachelines.

Arrival triggering. There are multiple means available to commu-
nicate an arrival to the AFU, of which we considered CSR writes,
UMsg and UMsgH writes, and FPGA-based memory polling. Each
of these methods have their own subtleties and implications when
being used to receive low-latency messages in parallel.

In CSR write triggering, a hardware thread simply writes to its
own private cache line to access the ARRIVAL TRIGGER CSR as in
Figure 5.

In UMsg and UMsgH triggering, a hardware thread sends data to
the FPGA by writing specially reserved addresses in a special UMAS
region that in turn is visible to AFU via a specialized interface. This
is intended by Intel to be a low latency path, and is administered
via QPI or UPI as the interconnect, directly leveraging the same
hardware used to maintain cache-coherence across the CPU and the
FPGA. Our understanding is that the UMsgH is the equivalent of a
cache-line snoop/invalidation, whereas a UMsg is the equivalent of
the transfer of a new cache-line upon invalidation.

Unfortunately, the number of simultaneous addresses currently
supported for UMsg/UMsgH is only eight, which is a severe limita-
tion as a serviceable barrier needs to scale up to a larger number
of hardware threads. Even worse, concurrent writes to the same
UMsg/UMsgH address can result in a single UMsg/UMsgH or a lost
write. Without resorting to an atomic write to the UMAS region
address (invalidating the point of a hardware barrier in the first
place), arrival triggering in this way is likely to be incorrect if the
eight UMsg/UMsgH addresses are shared. Even when limited to
four hardware threads, reserving one address for each generation,
UMsg/UMsgH triggering did not produce significant performance
gains over CSR write triggering.

In FPGA-based memory polling, the AFU directly polls target
addresses in main memory, waiting for the CPU to write to them
to signal arrival. This has no restrictions in terms of the number
of addresses that can be monitored, and is supposed to have the
same latency as a UMsg. Of course, polling main memory across
multiple locations is likely to be problematic.

Departure sensing. We also experimented with different means
of AFU—CPU messaging, namely CSR polling, and AFU-based
memory writes across different interconnects.

In CSR polling, each hardware thread polls, via its own private
cache line, the DEPARTURE SENSE output of Figure 5.

In AFU-based memory write polling, each hardware thread sim-
ply polls a main memory location (per-thread or shared) that is
written by the AFU when the barrier is complete. The write can
be executed across several interconnects. We found no significant
difference between using “VA” (the automatically scheduled inter-
connect), “VH0” and “VH1” (the PCI-e lanes), or “VL0” (QPI/UPI),
or using any intentional mixture/parallelism of the channels.

Software. The software interface provided to the programmer
is simple and its implementation is dominated by AFU discovery,
loading, and configuration concerns. The barrier wait function itself
simply triggers the barrier and waits for a barrier departure using

the configured mechanisms. It also alternates between two copies
of the hardware. The code is carefully engineered so that these
operations involve, at heart, single, user-level mov instructions.

3.3 Evaluation

Our AFU is a single cycle design that operates at 400 MHz, while the
processor operates at 2.4 GHz. One cycle of our AFU takes six CPU
cycles. Consider the case where the interconnect and the blue logic
can feed our hardware at the maximum rate. Assume that all CPUs
arrive at the barrier simultaneously, which is what we are trying to
optimize for. The best possible case for any barrier hardware then
occurs when every CPU does its write to its ARRIVAL TRIGGER
before any do their read from their DEPARTURE SENSE For 28 hard-
ware threads, we would then expect this to take 2 X 28 = 56 FPGA
cycles, or 56 X 6 = 336 CPU cycles. This is an order of magnitude
faster than the best software barrier we considered in Section 2.

This analysis ignores aspects of the latency through the inter-
connect; however, it is doubtful that the hardware provides perfect
parallelism in the interconnect. Our analysis suggests it provides
8-way parallelism at best. Even if we were to improve our core bar-
rier, for example, via a tree-based model, Amdahl’s law tells us the
speedup would likely be minimal compared to our simple hardware
since the critical path is not likely to be the barrier hardware.

Our measurements bear this out. In Figure 6(a) we show mi-
crobenchmark results for each interesting configuration of the
HARP barrier. While there are differences, none of the HARP
barrier configurations are able to beat the counting barrier and
OpenMP barrier significantly. The intrinsic barrier cost of 336 cy-
cles is swamped by the 3000+ cycle cost of communicating with
the AFU, leading to lower performance than our analysis would
suggest. These results are reflected in the StreamCluster benchmark
(Figure 6(b)) and NESL execution rate (Figure 6(c)).

In Figure 7 we show the microbenchmarks for all of the barriers
considered in the paper on the HARP platform, except Dissemina-
tion and Tournament, which are no better here. We also include a
projection of HARP barrier performance that assumes the above
analysis and sets the latency of communication with the barrier
hardware to be on par with last-level cache latency. A hypothetical
HARP system that could provide this latency to the FPGA would
be able to perform barriers at full scale over three times faster than
the best software barrier on the platform.

Improving HARP. In our opinion, there are two primary issues
HARP presents in allowing for the effective implementation of
barrier synchronization and other similar primitives that are latency
sensitive. First, there is no CPU—AFU communication path that
has the latency that might be expected given the close physical
proximity of the two. Second, there is limited parallelism for traffic
going into and out of the FPGA itself, thus causing queuing that
compounds the latency limitation. If a highly parallel, low latency
path for signaling small amounts of data to/from the AFU from
every hardware thread were made available, implementing a far-
faster-than-software barrier on the FPGA side would be extremely
plausible. Even a single, low-latency pin from each hardware thread
would make a huge difference.
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4 ON-PROCESSOR IMPLEMENTATION

We now consider how fast hardware barriers could be integrated
into the processor chip and processor complex itself, focusing on
adding subset barriers to x64. This model is likely to result in far
lower latencies than would be possible with reconfigurable hard-
ware, even after latency optimizations such as we describe in Sec-
tion 3.3 are applied. On the other hand, the model requires careful
consideration of security and protection because the instruction
set architecture (ISA) is changed, and an implementation should
require minimal changes in the existing microarchitectural design.

4.1 1ISA and kernel integration

Our proposed x64 ISA extension pushes as much responsibility
for barriers as possible to the kernel. Only the critical fast path of
executing a quickly-completing barrier wait is invoked directly by
the application. The design is influenced by Intel’s Cache Alloca-
tion Technology (CAT) ISA extension [22, Volume 3, Chapter 17],
Intel’s TSC Deadline Mode feature for the Advanced Programmable
Interrupt Controller [22, Volume 3, Chapter 10], and Intel’s Hard-
ware Lock Elision (HLE) feature [22, Volume 1, Chapter 14]. The

software-visible structures have been selected to minimize the de-
gree of coordination among hardware threads of a single processor
and across the entire processor complex, with the goal that the only
coordination is that needed to do the actual barrier synchronization.

Drawing on CAT’s interface as a model, the processor will report,
via a cpuid leaf, the maximum number of barrier participants (n)
and the maximum number of simultaneous subset barrier groups it
supports (m). n is defined to be the number of hardware threads the
processor provides plus the number of peer processors it supports.
A processor with 8 cores, hyperthreading, and quad-socket support
would report n = 8 X 2 + 3 = 19. m is implementation-specific.

A region of m model-specific registers (MSRs) will be added to
the MSR address space at a given base. Each MSR will represent
a subset barrier group, and will consist of a vector of n bits and
a timeout value ¢, in cycles. The ith subset barrier group will be
represented by the MSR at offset i from the base.!

MSRs are conceptually per-hardware thread constructs. The ker-
nel is responsible for managing barriers across hardware threads
and processors, which essentially means maintaining the MSR con-
tents across these. To create and initialize a barrier, the application
makes a system call:

int bar = create_barrier(thread_list, timeout);

In response, the kernel will (a) determine if the application’s desired
timeout is acceptable given the kernel’s global constraints, and (b)
attempt to find an unused barrier group MSR to allocate.? If both
are successful, it will use privileged wrmsr instructions to copy the
barrier group and timeout to the MSR. The barrier is now known
to the hardware. The kernel will then interrupt all other hardware
threads, forcing them into the kernel to install the new MSR.

At this point, all threads will also invoke a privileged barrier
init instruction, barinit %rax, with the index of the new barrier
being the argument. This will reset the barrier for first use. Finally,

! As MSRs are only 64 bits wide, and we can only expect n to grows with time, the
obvious clustering approach will be used as needed. For example, on a Phi KNL there
are 256 hardware threads, so groups of five 64 bit MSRs would be used to represent
the 256 bits and the 64 bit timeout value. i would then be scaled by five. The actual
cluster size would be provided by a CPU ID leaf.

2The bit vector in the MSR represents the processor-local hardware threads, plus the
remote sockets, hence on a multi-socket machine, the kernel also needs to translate
the application’s flat request into this two level hierarchy in the obvious way.



the kernel will return the MSR index it selected to the calling ap-
plication, which it shares with its other threads through existing
mechanisms.

At this point, the barrier is set and ready to use by the application.
Invoking the barrier is done by an unprivileged instruction,

barwait %rax

where the argument is the previously returned index. In the com-
mon case, all threads participating in the barrier are currently sched-
uled and invoke their barwait instructions with near simultaneity.
The result is that these threads execute a barrier with only minimal
overhead.

Because barwait is both unprivileged and blocks the hardware
thread, the hardware and kernel must protect against attacks, bugs,
or simply surprising delays that would cause starvation. The pur-
pose of the timeout is to handle these uncommon cases correctly.
Recall that the kernel vets any choice of timeout the application
asks for, hence it can easily have a policy about the maximum
allowed timeout. If during barwait any hardware thread’s cycle
counter reaches the timeout point, the hardware will raise a lo-
cal exception for the barwait instruction, invoking the kernel (an
interrupt at this time will also invoke the kernel). At this point,
the kernel interrupts all the other participating hardware threads.
Every participating hardware thread is now in the kernel either due
to a timeout of its barwait or due to an interrupt from some other
hardware thread that has timed out.? The kernel then coordinates
its action across the threads. The coordination model would depend
on the scheduling model, but, for example, the kernel can simply
do a rescheduling pass and then resume by restarting all the inter-
rupted instructions. Another alternative might be to raise a signal
to the application. The application could use such signals to dy-
namically choose among barrier implementations—if the hardware
barrier is frequently timing out, it’s the wrong implementation to
use or the workload has become unbalanced.

To encode the barinit and barwait instructions, we use an
approach similar to HLE: we overload an existing single operand
instruction by using an existing instruction prefix that currently
has no meaning when used with it.

4.2 Microarchitectural model and analysis

The proposed electronic barrier implementation requires only min-
imal hardware modifications. The hardware can implement the m
barriers using a 2nXxm-bit register file that provides on-chip hard-
ware storage for all m barrier MSRs (Figure 8). Although MSRs are
per-hardware thread constructs at the ISA level, in our implemen-
tation, we think of the barrier MSRs (or alternatively the internal
state they front) as being shared by the hardware threads. At the
hardware layer, each barrier MSR utilizes n bits to store the par-
ticipation bitmask P, and an additional n bits to store the current
state of the barrier S (i.e., which participating hardware threads
and sockets have arrived at the barrier).

*Depending on how closely clocks can be kept synchronized, most interrupts could
likely be avoided by simply waiting. However, if a hardware thread has not yet ad-
vanced into the barrier wait instruction an interrupt is needed.
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Figure 8: Hardware Barrier Structure (HBS). The example
shows an HBS placed at the system agent along the L3 ring
on an Intel Coffee Lake processor.

Only one such hardware barrier structure (HBS) needs to exist in
a processor, as barriers are a resource shared among all cores/hard-
ware threads and processors in a system. This achieves two signifi-
cant benefits: (a) the HBS can act as a serialization structure for the
entire processor, which simplifies the handling of race conditions,
and (b) the HBS has a negligible silicon area overhead. For example,
a 6T SRAM bitcell at 14nm finFET technology can be implemented
at a mere 0.05um? [24]. At that density, a 4-socket system with 28
cores per socket with hyperthreading (similar to an Intel Xeon Plat-
inum 8180) could implement support for 128 simultaneous subset
barriers using only 944 bytes of storage, with an area occupancy
of just 378um?. To put this in perspective, one could fit more than
22K barriers in only 0.01% of the Xeon Platinum 8180’s die. Due to
its very small size, the HBS would also have negligible energy and
power requirements.

The HBS can be placed at a location that all cores can reach
using the existing interconnect, thereby obviating the need for
expensive dedicated wires. In processors with a shared L3 cache,
for example, the HBS could be placed at the L3 cache controller or
along the L3 interconnect, making barriers roughly as expensive as
an L3 cache access (around 42 cycles for Intel’s Skylake and Coffee
Lake processors at 14nm [45]). For the architectures in Figure 1, in
particular, placing the HBS at the L3 cache controller would result
in hardware barrier latency within a single socket of about 20 cycles
for the AMD Opteron 6272 processor [12], and 38 cycles for the
Intel Xeon E5-2600 v4 that is in the HARP [9]. A hardware barrier
across multiple sockets would exhibit higher cost, dominated by
the inter-socket latency. For the 4-socket NUMA AMD system in
Figure 1, a roundtrip on a hyper-transport interconnect [13] in ring
topology would take 4 X 44ns X 2.1cycles/ns = 370 cycles. Thus, a
hardware barrier across all four sockets would take an estimated
390 cycles, including the L3 access. In the case of Intel-based multi-
socket systems, we estimate the latency of the QPI interconnect at
around 30-110 cycles. For a 4-socket ring, we estimate the latency
of a hardware barrier to be 38 + 4 X 110 = 480 cycles. In either
case, the expected latency for a hardware barrier is two orders
of magnitude lower than the latency we measure on the 4-socket
NUMA system in Figure 1.



On a machine such as the Intel Xeon Phi 7210 processor [39],
where there is no shared last-level cache, the HBS could be co-
located with the coherence directory controller or the memory
controller, or even placed somewhere along the chip’s interconnect,
achieving similar on-chip latency of a few tens of cycles. Placing
the HBS near the center of the 36-tile mesh interconnect of the Phi
results in a barrier latency of about 6 interconnect hops, which we
estimate at 48 cycles (assuming a 1-cycle wire traversal and 3-cycle
router/switch delay per hop). Placing it at the distributed cache
coherence directory or the memory controller would result in no
more than 64-88 cycles for a hardware barrier versus the ~33000
for a software barrier.

The hardware can utilize the existing interconnect to communi-
cate with the HBS by introducing five new message types (create,
initialize, core arrive, socket arrive, and complete). Upon calling
create_barrier(), the core executes a wrmsr instruction to copy
the barrier group and timeout to the allocated MSR. This causes the
hardware to send a barrier-create message to the HBS along with
the index to the allocated MSR and the bitmask of the participating
hardware threads and remote sockets. The HBS then fills the P
participation bitmask of the hardware MSR by storing 0s to all bit
positions that correspond to participating hardware threads and
remote sockets, and 1s to all other positions. In addition, the HBS
copies the P participation bitmask to the S barrier state.

Abarwait instruction causes the executing core to send a barrier-
core-arrive message to the HBS, which sets the corresponding bit
in the S state bitmask to 1, indicating that this core arrived at the
barrier. All bits in the MSR’s current state S are then fed into an
AND gate, which calculates whether all participating cores arrived
at the barrier. If they did, the HBS sends a barrier-socket-arrive mes-
sage to the remote sockets that participate in the barrier (known by
inspecting P) indicating that all participating cores in this socket
arrived at the barrier. This result is further ANDed with the S bits
that correspond to remote sockets. A true result signifies that all
participating cores and sockets have arrived at the barrier. In that
case, the HBS sends a barrier-complete message to all cores within
its socket, signaling that the barrier is complete, and copies the P
participation bitmask back to the S state bitmask to prepare for a
new round.

Upon receiving a barrier-socket-arrive message from a remote
socket, the HBS sets to 1 the corresponding socket bit in S to
record that all cores in the remote socket arrived at the barrier,
and also checks whether the barrier has completed. The execution
of a barinit instruction sends a barrier-init message that causes
HBS to store 0 at the corresponding S location, resetting the barrier
state for the executing core.

5 SPECULATION: SILICON-PHOTONIC
ON-CHIP BARRIERS

A highly efficient hardware barrier mechanism could be readily
implemented on future processors that use photonics to transfer
data. In effect, the transfer mechanism can provide a natural “wired
AND” behavior that the barrier is based on. Such a barrier could
operate in 10s of cycles or fewer.

Silicon photonic interconnects utilize light to transmit informa-
tion. In a typical silicon photonic interconnect shown in Figure 9(a),
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Figure 9: On-processor hardware barrier implementation
with silicon photonics.

an off-chip laser source produces coherent light at a certain wave-
length (typically in the C-band), which is coupled onto an on-chip
silicon waveguide in which light is transmitted. Small rings made
from the same material as the waveguide are placed close to the
waveguide. These rings act as light modulators. They are tuned to
resonate at the exact wavelength that the laser produces. When
a ring is in the ON state, i.e. a voltage is applied to it, it couples
light at its resonant wavelength and does not allow it to proceed
on the waveguide. When the ring is in the OFF state, light is trans-
mitted on the waveguide past the ring. The example in Figure 9(a)
shows rings 1, 2, and 4 in the OFF state, and ring 3 in the ON state.
Ring 3 stops light from being transmitted on the remainder of the
waveguide.

To implement an on-chip optical barrier, the silicon waveguide
passes through all the cores in a socket, and each core controls one
ring modulator. Upon initializing the barrier, all participating cores
set their rings to the ON state, thereby preventing the propagation
of light. When a core arrives at the barrier, it switches off its ring
modulator, allowing light to pass. Only when all cores arrive at the
barrier will all the rings be in the OFF state, thus allowing light
to propagate through all the cores. In effect, one traversal through
all the cores acts as a large AND gate over the barrier-core-arrive
messages. Light propagating beyond the last core is equivalent to
sending a barrier-complete signal. All cores need to receive that
signal. To achieve this, the waveguide curves around and traverses
all the cores a second time. On this second traversal, each core taps
the waveguide by splitting the light with an optical splitter and
redirecting some of the optical power to a Ge-doped photodetector.
When photons hit the Germanium the photodetector produces an
electrical charge, which can then drive transistor logic (Figure 9(b)).
Detecting light at this stage is equivalent to receiving a barrier-
complete message.

The description above discusses only one barrier and uses only
one wavelength to implement it. Multiple barriers map to differ-
ent wavelengths. These wavelengths can be produced by a wide-
band multi-wavelength laser source, and they can be multiplexed



within the same waveguide with Dense Wave Division Multiplexing
(DWDM). Up to 40 discrete wavelengths can be multiplexed within
a single waveguide today, with projections of 64-way DWDM com-
ing in the near future [34]. The optical devices are also relatively
small, fast, and energy efficient. On-chip waveguide arrays can
be implemented at a 20um pitch [28]. Silicon nitride waveguides
(Si3N4) have high light confinement, offer low intrinsic optical loss
in the C-band (0.4dB/cm), and can achieve superior reproducibility
in a CMOS-compatible platform [18].

The low-latency of optics allows light to traverse even a long
43cm waveguide at only 5ns latency at energies approximating
1pJ/bit [15]. Rings with diameter of a few tens of ym and Ge-
doped photodetectors have been manufactured and demonstrated
to handle energy-efficient modulation/demodulation at 317 f J/ bit
at speeds higher than 10GHz [40]. The optical barrier could be
easily extended to support multiple sockets by simply running the
waveguide across sockets using a board-level waveguide. The costs
of going off-chip optically are considerably lower than doing so
electronically.

All these photonic components are compatible with today’s
CMOS processes, and have been integrated alongside CMOS devices
on the same die [40]. Thus, we argue that an optical barrier imple-
mentation is feasible even with today’s technology, and it is likely
to exhibit performance that surpasses even a processor-integrated
all-electronic implementation (Section 4).

6 RELATED WORK

Collective communication (c.f. [29]) including barriers, scans, and
reductions, is an important concept in parallel computing and has
seen significant work over decades.

Classic and modern distributed memory parallel machines such
as the Cray T3E [37], Thinking Machines CM5 [30], Ultracom-
puter [19], iWarp [10], and Blue Gene/L [14] either specifically
included physically separate low latency networks, geared for col-
lective communication instead of data transfer, or made it possible
to execute carefully planned collective communication on a shared
data network that could be configured for low latency use. Clever,
inexpensive hardware for commodity clusters, such as the Purdue
PAPERS network [16], made possible a separate, cheap, low-latency
collective communication network alongside commodity Ethernet.
Infiniband’s low latency enabled innovation in collective communi-
cation without adding hardware to clusters that are already built
around this network technology for data transfer [21, 23], includ-
ing for barriers [25]. The idea of specialized hardware support
for internode collective communication is still being investigated,
most recently in the context of network interfaces that provide a
malleable hardware substrate, for example an FPGA [2]. Recent
work provides collective communication that is adaptive to the
environment [31]. In contrast, the focus of this paper is on col-
lective communication, specifically barriers, on a shared memory
machines such as chip multiprocessors and NUMA machines.

Collective communication, and barrier synchronization more
specifically, is also a well-studied problem in the shared memory
context as well. For software-based barriers on multiprocessors,
Mellor-Crummey and Scott [32] is the classic work, both consid-
ering lock-based models and inventing lock-free/wait-free data

structures for barrier and other synchronization. The focus of this
paper is on hardware-based barriers for such machines.

The desirability of specialized hardware for fast collective com-
munication, including barriers, for shared memory machines, par-
ticularly chip multiprocessors, NUMA machines, and NoC-based
processors has been pointed out before [26]. Most recently, Tang et
al showed how to use the programmer-exposed NoC primitives on
the SW26010 processor of the Sunway TaihuLight supercomputer
to accelerate the processing of contended locks by an order of mag-
nitude [41]. We have added a new motivation for such hardware,
namely fine-grain parallel languages such as nested data parallel
languages like NESL. Several works have explored the nature of
such hardware [36, 38] of which the work of Abellan et al [1] is
probably the closest. The present paper contrasts with such prior
work in three ways. First, we study the design and implementa-
tion of a hardware barrier mechanism on a specific, compelling
new prototype hardware, the Intel HARP, that has the potential to
become a mainstream product. Second, we analyze and report on
the capabilities of the HARP prototype platform with respect to
latency-constrained functions such as barrier. This has utility be-
yond the specifics of barrier implementation itself. Finally, both our
HARP work, and the design of our on-processor implementation
(Section 4) focuses specifically on x64 platforms.

Our speculative design for silicon-photonic on-chip barriers is in-
fluenced and informed by the work of Binkert et al [7], which intro-
duces nanophotonic barriers, and the broader context of Vantrease’s
thesis [44].

7 CONCLUSIONS

We have described our deep dive into hardware barriers on mod-
ern and future x64 machines. It appears to be feasible to provide
hardware barriers with significantly lower latency than the best
current software barriers. One approach would be via reconfig-
urable logic, such as the integrated FPGA of the Intel HARP, for
which we estimate an order of magnitude possible improvement of
latency, provided the latency of communication from application
software to application hardware (AFU) were optimized.

More generally, closely coupled FPGA accelerators have the
opportunity to provide much lower CPU—FPGA latency. They
should. Approaches to using FPGA accelerators have traditionally
been application-centric, namely by hoisting performance-critical
data paths out of software and reimplementing them as functional
units on the FPGA, providing high bandwidth but not low latency.
In contrast, parallel run-time and OS-centric approaches to using
FPGA’s generally focus on latency.

We have also presented a second approach in which hardware
barriers would be integrated into the ISA and microarchitecture of
the processor. Such an integration would almost certainly reduce
barrier latency by several orders of magnitude compared to software
barriers. It is possible to make a modern or near future x64 machine
amenable to parallel applications and execution models that demand
low-overhead global synchronization. Finally, we speculated about
barrier support using a far future photonic processor, where we
believe the barriers could be readily added, and provide overheads
potentially as low as 10s of cycles and lower.
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