
Efficient Algorithms for Finding
Edit-Distance Based Motifs

Peng Xiao , Xingyu Cai , and Sanguthevar Rajasekaran(B)

Department of Computer Science and Engineering,
University of Connecticut, Storrs, CT, USA

{peng.xiao,xingyu.cai,sanguthevar.rajasekaran}@uconn.edu

Abstract. Motif mining is a classical data mining problem which aims
to extract relevant information and discover knowledge from volumi-
nous datasets in a variety of domains. Specifically, for the temporal data
containing real numbers, it is formulated as time series motif mining
(TSMM) problem. If the input is alphabetical and edit-distance is con-
sidered, this is called Edit-distance Motif Search (EMS). In EMS, the
problem of interest is to find a pattern of length l which occurs with an
edit-distance of at most d in each of the input sequences.

There exists some algorithms proposed in the literature to solve EMS
problem. However, in terms of challenging instances and large datasets,
they are still not efficient. In this paper, EMS3, a motif mining algo-
rithm, that advances the state-of-the-art EMS solvers by exploiting the
idea of projection is proposed. Solid theoretical analyses and extensive
experiments on commonly used benchmark datasets show that EMS3 is
efficient and outperforms the existing state-of-the-art algorithm (EMS2).

Keywords: Sequence analysis · Edit-distance motif · Projection

1 Introduction

Effective data mining algorithms when applied on biological data can reveal cru-
cial information that could lead to accurate diagnosis, drug development, and
disease treatment. One set of such mining algorithms are referred to as motif
mining (or motif search) algorithm. These algorithms look for information that
is closely preserved across species. For example, a piece of gene segment may
appear exactly or with minor differences across different species. Extracting such
information is very meaningful in numerous applications, such as the determina-
tion of open reading frames, identification of gene promoter elements, location
of RNA degradation signals, and the identification of alternative splicing sites.
Many motif mining models have been proposed.

This paper focuses on the Edit-distance based Motif Search (EMS) model.
EMS is defined as follows: Inputs are two integers l and d, and n biological strings
over the alphabet Σ of a finite size. Each string is of length m. The problem is
to find all the strings of length l that appear in each of the n input strings with
c© Springer Nature Switzerland AG 2019
I. Holmes et al. (Eds.): AlCoB 2019, LNBI 11488, pp. 212–223, 2019.
https://doi.org/10.1007/978-3-030-18174-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18174-1_16&domain=pdf
http://orcid.org/0000-0001-5566-0207
http://orcid.org/0000-0003-1537-7161
http://orcid.org/0000-0002-0137-4843
https://doi.org/10.1007/978-3-030-18174-1_16

EMS3 213

the Levenshtein distance (or edit-distance) of at most d. Biologists may also be
interested in motifs that occur in a fraction of the input strings. The problem of
identifying such motifs is known as quorum Edit-distance Motif Search (qEMS).
In this case, an extra input parameter q is provided. The problem is to identify
all the (l, d, q)-motifs, that is, all (l, d)-motifs that occur in at least qn of the
input strings. The standard EMS problem becomes a special case of qEMS when
q = 1.

In EMS, the edit-distance is used to bound the variability of the pattern
across the biological sequences. It can include substitution, insertion and dele-
tion. If only substitution is allowed (i.e., the aim is to find the strings of length l
with a Hamming distance of at most d in each of the input sequences), this sim-
plified version of the problem is named as Planted Motif Search (PMS). There
are many studies on PMS problems (see e.g., [7,8,16]). EMS is more challenging
than PMS because EMS is more general.

It is known that there is a polynomial time reduction from the Closest Sub-
string problem to PMS [8]. Since the Closest Substring problem is NP-Hard
[3,4,6], PMS problem is also NP-Hard. EMS is also NP-hard since PMS is a
special case of EMS. Therefore, it is of pressing need to develop efficient exact
algorithms for EMS problems.

EMS and its variations have been studied since a long time ago. Back in
1998, the authors in [13] proposed an algorithm to find approximate repeats
from a long DNA sequence, allowing general insertions and deletions. This is
an approximate algorithm. Suffix tree based algorithms are also developed to
find approximate repeated or common motifs [14]. The algorithms proposed in
[14] can be extended to deal with gaps but the authors did not implement it
for edit-distance but only for Hamming distance. The authors in [1] proposed
a new algorithm to extract common motifs using the techniques for extracting
approximate non-tandem repeats and they also implemented Sagot’s algorithm
in [14] and did a comparison. The result shows that their algorithm has less false
positive motifs and is also more efficient for finding moderately long motifs.

Algorithms proposed in the literature above are part of the early stage stud-
ies of the EMS problem. However, the first formal definition of EMS is given
in [11] although the authors did not explicitly name it as EMS. They also
proposed a deterministic (DMS) algorithm that runs in time O(n2mPD|Σ|D)
using O(nmD + PD|Σ|D) space (P and D are motif length and maximum
allowed edit-distance, respectively). A Monte Carlo algorithm with a run time
of O(((n2m2 log n)/q)D + gmnD) is also proposed where g is the number of P -
mers that occur in q or more sequences in the database. Following this definition,
Pathak et al. [10] proposed EMS1 which naturally extends the data structure of
d-neighborhood tree from the PMS problem and they evaluated this algorithm
on synthetic datasets as well as real datasets. However, one drawback of EMS1
is that it generates too many repeated neighborhoods which takes up a huge
memory and also the (l, d) instances it can solve are very limited. To alleviate
this problem, Pal et al. [9] proposed EMS2. They used wildcard characters to
compactly represent the neighborhood tree and also proposed 9 rules to avoid

214 P. Xiao et al.

duplications of candidate motifs. EMS2P, which is a parallel algorithm, was also
developed and tested on a multi-core machine. Experimental results showed that
EMS2 is faster than EMS1 and the parallel version has a good scaling perfor-
mance.

In this paper, an improved algorithm, EMS3, is proposed to further advance
the state-of-the-art EMS solvers. Theoretical study and extensive experimental
tests are performed. The rest of the paper is organized as follows. Section 2
presents the proposed algorithm. In Sects. 3 and 4, theoretical analyses and
empirical studies of EMS3 are provided. Finally, a brief summary concludes the
paper in Sect. 5.

2 EMS3: An Improved Algorithm

2.1 Overview of the Algorithm

EMS3 has 5 steps as follows.

Step 1: Divide Choose an appropriate value of ε1 ∈ (0, 1]. Let n′ = n ∗ ε1.
Randomly select n′ sequences from the input I. Let this set be I1. Let I2 =
I − I1.

Step 2: Compress Choose an appropriate value of ε2 ∈ (0, 1]. Let |Σ′| = |Σ| ∗
ε2. Compress I2 by projecting Σ to Σ′. Specifically, every 1/ε2 characters in Σ
will be projected to a single character in Σ′. For example, if Σ = {A,C,G, T}
and ε2 = 1/2, A,C will be projected to A while G,T will be projected to C.
Σ′ = {A,C}. This process is also called as encoding.

Step 3: Solve the subproblems Run existing EMS solver on I1 and I2. Let
the outputs be C1 and C2, respectively. Note that the strings from C2 are in
the domain of Σ′. Both C1 and C2 are sorted.

Step 4: Merge One idea is to expand the strings in C2. Let the resultant string
set be C ′

2. C ′
2 is in the domain of Σ. The intersection of C1 and C ′

2, denoted
as C, will be the final candidate set. However, this solution, to a great extent,
wipes out the advantage of reducing the alphabet size in the second step
because the size of C ′

2 will be too large. Moreover, C ′
2 is not sorted any more.

Another round of radix sort needs to be performed on C ′
2 to merge these two

sets. A better idea to salvage the execution time is to encode the strings in
C1 in the same way as discussed above. For an l-mer u ∈ C1, the encoded
string is u′. Check if it is in C2. If it is, add u to C. Note that since C2 is
sorted, a binary search can be performed.

Step 5: Verify Let the output of EMS3 be O. For every l-mer v ∈ C, check
if it is an (l, d) edit-distance motif in the remaining sequences, i.e., I2. If so,
add v to O. Three algorithms are proposed for this step.

VerifyMotif 1, VerifyMotif 2 and VerifyMotif 3 are the pseudocodes. For all
these three algorithms, the inputs are two integers l and d, a set of sequences
{Si} (i = 1, 2, . . . , n), and an l-mer v. The output is a boolean flag indicating
whether v is the target (l, d)-motif.

EMS3 215

Algorithm 1. VerifyMotif 1(l, d, v, {Si})
i ← 1; isMotifSeq ← False; isMotifSeqs ← True;
while i � |{Si}| do

for k ← l − d to l + d do
subSi ← the collection of all substrings of length k in Si;

for every x ∈ subSi do
e(v, x) ← EditDistance(v, x); // Dynamic programming to compute

edit-distance between v and x
if e(v, x) � d then

isMotifSeq ← True;
i ← i + 1; Break;

if isMotifSeq = False then
isMotifSeqs ← False;
Break;

return isMotifSeqs;

Algorithm 2. VerifyMotif 2(l, d, v, {Si})
i ← 1; isMotifSeq ← False; isMotifSeqs ← True;
T ← v’s d-neighborhood; // Call GenerateNeighborhoodTree in [9]

while i � |{Si}| do
for every w ∈ T do

isMotifSeq ← ExactPatternMatch(w, Si); // KMP algorithm [5] to

check if w appears exactly in Si

if isMotifSeq = True then
i ← i + 1; Break;

if isMotifSeq = False then
isMotifSeqs ← False;
Break;

return isMotifSeqs;

Algorithm 3. VerifyMotif 3(l, d, v, {Si})
i ← 1; isMotifSeq ← False; isMotifSeqs ← True;
T ← v’s d-neighborhood; // Call GenerateNeighborhoodTree in [9]

while i � |{Si}| do
for k ← l − d to l + d do

subSi ← a collection of substrings of length k in Si;
for every x ∈ subSi do

if x ∈ T then // Perform binary search

isMotifSeq ← True;
i ← i + 1; Break;

if isMotifSeq = False then
isMotifSeqs ← False;
Break;

return isMotifSeqs;

216 P. Xiao et al.

2.2 Why Project the Alphabet

It is desirable to reduce the size of the input while maintaining the accuracy of
the algorithm. One way is to project the high dimensional space of the input
data into a low dimensional one. The authors in [2] use this technique to find
the planted motifs in PMS problems. They randomly choose k selected positions
of each l-mer x as a hash function h(x). In other words, they project the motif
length from l to k. In [12,16,17], the authors use the idea of random sampling.
They randomly select n′ out of n sequences and run PMS solvers on the sample
dataset. This can be considered as a projection of the number of biological
sequences from n to n′.

To the best of the authors’ knowledge, the idea of alphabet projection has
not been employed before to solve motif mining problems. It is believed that the
alphabet size has a great impact on the time complexity of EMS algorithms. For
example, in [11], the authors proposed an algorithm to solve the qEMS problem
that runs in O(n2mld|Σ|d). In [10], the authors proposed EMS1 which has a
time complexity of O(mn(4l|Σ|)d + |Σ|l). Compared to sampling n, projecting
the alphabet to a smaller size will greatly reduce the running time.

2.3 Correctness of the Algorithm

It is easy to see that EMS3 is a deterministic algorithm that always output the
correct motifs. An important question is whether EMS3 misses any true motifs.
The answer is no. Assume that the set of true motifs is G. It can be proved that
after the merge step, the candidate motif set C is a superset of the true motif
set G, i.e., G ⊆ C.

Please note due to page limit, from this point, proof of the lemmas and
theorems are omitted. Interested readers can ask the authors for details.

Lemma 1. Let l1 and l2 be strings on Σ and let the edit-distance between l1
and l2 be d. Let l′1 and l′2 be compressed strings of l1 and l2 using the projection
technique discussed above from Σ to Σ′ (|Σ′| � |Σ|). The edit-distance between
l′1 and l′2, denoted as d′, is no more than d.

Theorem 2. G ⊆ C.

3 Analysis of EMS3

3.1 Time Complexity Analysis

Expected Number of Candidate Motifs. The expected number E of can-
didate motifs is a function of m,n, l, d, |Σ|, and is derived in [9], to which the
interested reader is referred for details. In that paper, the Eqs. 1, 2 and 3 below,
with δ, β, α, and q acting as dummy variables, lead to an expression for E in
Eq. 4.

N(δ, β, α, l, |Σ|, q) =
(

l+q

δ

)(
l+q−δ

β

)(
l+q−δ+α

α

)
|Σ|α(|Σ|−1)β . (1)

EMS3 217

P (l, |Σ|, d, q) =

d+q
2∑

δ=max{0,q}

N(δ, d + q − 2δ, δ − q, l, |Σ|, q)
|Σ|l+q

. (2)

R(m, l, d, |Σ|) = Πd
q=−d(1 − P)m−l−q+1. (3)

E(m,n, l, d, |Σ|) = |Σ|l(1 − R)n. (4)

The expected sizes of C1 and C2 can be written as:

E(|C1|) = E(m,n′, l, d, |Σ|). (5)

E(|C2|) = E(m, (n − n′), l, d, |Σ′|). (6)

An l-mer has a probability of p1 = (1 − R(m, l, d, |Σ|))n′
to be in C1. If it

is encoded, it has a probability of p2 = (1 − R(m, l, d, |Σ′|))n−n′
to be in C2.

Every (1/ε2)l l-mers in Σ will be projected to a single l-mer in Σ′. Therefore,
the expected number of l-mers in C is:

E(|C|) = |Σ|lp1p2/εl
2. (7)

In order to make sure that the expected number of candidate motifs is
reduced, it is desirable to have:

p2/εl
2 < 1. (8)

However, it does not mean that p2/εl
2 should be as small as possible. When

ε2 is large, the size of the candidate motif set is small thus reducing the running
time in Step 5 of EMS3. However, the running time of Step 3 increases because
of a relatively large alphabet size.

Time Complexity of EMS2. Time complexity of EMS2 is not given in its
original paper [9]. It can be shown that the overall time complexity of EMS2 is:

TEMS2 = O(mndld+1|Σ|d). (9)

Note that this may be larger than the time complexity in [10,11]. This is
because unlike [10,11], in EMS2 and EMS3, assumption that the motifs of inter-
est should come exactly from one of the input sequences is removed to make this
problem more general. However, this only represents the worst time complexity.
A lot of branches of the neighborhood tree can be pruned because of the rules
proposed in [9]. Therefore, the actual running time is much less. But it is hard
to estimate how many branches will be pruned.

218 P. Xiao et al.

Time Complexity of Verifying Candidate Motifs. There are three algo-
rithms to verify the candidate motifs. The first algorithm uses dynamic program-
ming to compute the edit-distance between an l′-mer (l − d � l′ � l + d) and an
l-mer. Therefore the time taken is:

Tverify 1 = |C|n
l+d∑

l′=l−d

O(l′l(m − l′ + 1)) = O(|C|mndl2).

|C| is the size of the candidate motif set. An expected number of the candidate
motifs E(|C|) can be found in Eq. 7.

The second algorithm will generate the d-neighborhood tree and use a lin-
ear time complexity algorithm to locate the neighborhoods within the input
sequence. It is known that the number of d-neighborhoods of an l-mer is
O(ld|Σ|d). Thus, time taken in this algorithm is (assuming d < l < m):

Tverify 2 = |C|nO(ld|Σ|d(m + l)) = O(|C|mnld|Σ|d).
The third algorithm also generates d-neighborhood tree but tries to locate the

k-mer (l − d � k � l + d) from the input sequences in the tree. Time complexity
for this algorithm is:

Tverify 3 = |C|nO(
l+d∑

k=l−d

(m − k + 1) log(ld|Σ|d)) = O(|C|mnd2(log l + log |Σ|)).

These are only upper bounds of the time taken in each algorithm. It looks
like that the second algorithm takes the longest time. However, in generating
the neighborhood tree, a lot of branches are pruned. The neighborhoods are also
sorted and duplications are removed. Therefore the actual number of neighbor-
hoods is far less than ld|Σ|d.

Time Complexity of EMS3. Step 1 and 2 take time that is negligible.
Time complexities of Step 3 and 5 are already analyzed. Step 4 takes time
O(l|C1| log |C2|). An expected number of E(|C1|) and E(|C2|) can be found in
Eqs. 5 and 6. Therefore, assuming using VerifyMotif 1 in the final step to verify
the candidate motifs, the time complexity of EMS3 is:

TEMS3 = O(mdld+1(n′|Σ|d + (n − n′)|Σ′|d) + l|C1| log |C2| + |C|mndl2). (10)

where n′ = n ∗ ε1, |Σ′| = |Σ| ∗ ε2.

3.2 How to Choose ε1 and ε2

Equation 8 shows the first guideline to choose ε1 and ε2. Generally, in a divide
and conquer algorithm, it is desirable to split the input into nearly equal halves
so that the performance of the algorithm is the best. However, in EMS3, in order

EMS3 219

to balance the run times of the two subproblems, their running times should be in
the same scale. Therefore, ε1 is smaller than 1/2. Solve n′|Σ|d = Θ((n−n′)|Σ′|d):

ε1 = Θ((1 − ε1)εd
2). (11)

It is also noteworthy to point out that in conventional notion of divide and
conquer, the same algorithm is applied recursively to the subproblems whereas
in EMS3, the subproblems are solved non-recursively using EMS2 solver.

3.3 A Discussion on qEMS and Approximate EMS3

EMS3 can be extended to qEMS problems as well. Under such circumstances,
besides ε1 and ε2, another parameter ε3 (0 < ε3 � 1) is needed.

Theorem 3. If an l-mer x is an (l, d, q) edit-distance motif on Σ, then the
encoded l-mer x′ is also an (l, d, q) edit-distance motif on Σ′ using the projection
technique as discussed, with |Σ′| � |Σ|.
Theorem 4. If an l-mer x is an (l, d, q) edit-distance motif on n sequences,
then it is also an (l, d, qε3) edit-distance motif on nε1 (0 < ε1 � 1) sequences as
long as the following condition is satisfied: ε1(1 − ε3q) � 1 − q.

Theorem 5. If an l-mer x is an (l, d, q) edit-distance motif on n sequences,
then it is also an (l, d, qε3) edit-distance motif on nε1 (0 < ε1 � 1) sequences
with a high probability as long as: (1 − ε3)2ε1 � 2β ln(n)

nq . β is a constant. A high
probability means that the probability is higher than 1 − n−β.

When n is small, ε1 and ε3 can be chosen according to Theorem 4 to make
sure the algorithm can always output the correct answer. When n is large, ε1
and ε3 can be chosen according to Theorem 5. In this case, EMS3 becomes a
randomized algorithm.

If Step 5 of EMS3 is removed, EMS3 becomes an approximate algorithm. It
is known that the candidate motifs set C is a superset of the true motifs set G.

Theorem 6. If Step 5 of EMS3 is removed, then it becomes an approximate
algorithm with an expected approximation ratio of E(|C|)/E(m,n, l, d, |Σ|).
E(|C|) and E(m,n, l, d, |Σ|) can be found in Eqs. 7 and 4, respectively.

4 Experimental Evaluations of EMS3

Extensive experiments on existing standard benchmark datasets are performed
to evaluate EMS3. All the algorithms are evaluated on a Dell Precisions Work-
station T7910 running RHEL 7.0 on two sockets each containing 8 Dual Intel
Xeon Processors E5-2667 (8C HT, 20 MB Cache, 3.2 GHz) and 256 GB RAM.
VerifyMotif 1 is used as the algorithm to verify the candidate motifs.

220 P. Xiao et al.

Table 1. Size of candidate motif sets with different n′ and |Σ|′

(a) (l, d) = (8, 1)

n′ |C1| |C|
|Σ|′ = 2 |Σ|′ = 3

2 6762 6762 4549
4 667 667 503
6 74 74 58
8 7 7 5
10 2 2 1

(b) (l, d) = (12, 2)

n′ |C1| |C|
|Σ|′ = 2 |Σ|′ = 3

2 72763 72749 21157
4 389 389 99
6 9 9 5
8 1 1 1
10 1 1 1

(c) (l, d) = (16, 3)

n′ |C1| |C|
|Σ|′ = 2 |Σ|′ = 3

2 721497 719577 18794
4 203 203 7
6 1 1 1
8 1 1 1
10 1 1 1

4.1 Synthetic Datasets

Following the tradition, n (= 20) DNA sequences of length m (= 600) each
are generated, where each character is independent and identically distributed
(i.i.d.) over the alphabet under concern (Σ = {A,C,G, T}). A random string M
of length l is randomly generated as the target motif. Besides, a d-neighborhood
string is planted in each of the n sequences. In addition to the motif planted,
there could be other motifs that occur by random chance. Challenging instances
of (l, d) = (8, 1), (12, 2), (16, 3) are tested. (l, d) = (20, 4) is not tested because
EMS2 cannot complete it within stipulated 72 h.

n′ varies from 2 to 10. |Σ|′ = 2 and 3. From Table 1, it can be seen that
when |Σ|′ = 2, the size of candidate motif set |C| is not reduced. In fact, it is
almost exactly the same as |C1|. Therefore, as discussed before, it does not mean
a large compression ratio is necessarily better. However, when |Σ|′ = 3, |C| is
much smaller than |C1|. It concurs with the analysis in Sect. 3. It is wise to pick
a relatively small value of ε1 and a relatively large value of ε2. For example, when
(l, d) = (16, 3), setting |Σ|′ = 3 and n′ = 4 will reduce the size of candidate set
from 203 to 7.

The running time of EMS2 for (l, d) = (8, 1), (12, 2), (16, 3) are 0.14 s, 14.86 s
and 21.18 m, respectively. Table 2 shows that generally EMS3 has a good speedup
over EMS2. The best speedups for (l, d) = (8, 1), (12, 2), (16, 3) are 1.75, 1.68 and
1.84 when n′ = 8 (or 10), 4, 2. Figure 1 shows the speedups of EMS3 over EMS2
with different n′ on the challenging instances. When n′ is chosen appropriately,
EMS3 is expected to have around 70% or 80% improvement in speed. When
the alphabet size or the number of sequences is larger, EMS3 is expected to
perform much better than EMS2. There will also be more choices for picking the
parameters.

4.2 Real Biological Datasets

EMS3 is also compared against EMS2 on the real biological DNA datasets (Σ =
{A,C,G, T}) discussed in [7,15]. The datasets can be downloaded from http://
bio.cs.washington.edu/assessment/download.html.

http://bio.cs.washington.edu/assessment/download.html
http://bio.cs.washington.edu/assessment/download.html

EMS3 221

Table 2. Running time of EMS3 with dif-
ferent n′ (|Σ|′ = 3)

n′ (l, d)
(8, 1) (12, 2) (16, 3)

2 5.83 s 1.24 m 11.54m

4 0.72 s 8.83 s 12.70 m

6 0.15 s 10.15 s 14.61 m

8 0.08 s 11.67 s 17.22 m

10 0.08 s 13.45 s 19.87 m

(l, d)
(8, 1) (12, 2) (16, 3)S

pe
ed

up
s

of
 E

M
S

3
ov

er
 E

M
S

2

0

0.5

1

1.5

2 n = 2
n = 4
n = 6
n = 8
n = 10

Fig. 1. Speedups of EMS3 over EMS2 with
different (l, d) and n′

The “real” benchmark datasets (file names with suffix r) which have the
binding sites in their real genomic promoter sequences are chosen as the test
files. Datasets with less than 8 input sequences are excluded because they are
not very challenging. For each dataset, d is set to 2 and 3. l is chosen on a dataset
basis to ensure that the number of reported motifs is not excessive but the
instance is challenging as well. When running the experiment of EMS3, instead
of exhaustedly varying the parameters of ε1 and ε2, only one combination of ε1
and ε2 is tested. However, in the real datasets, no assumption should be made on
the statistical distribution. Therefore, the second guideline can be utilized here
to choose the parameters. For example, manually set ε2 = 3/4 and ε1 = (1−ε1)εd

2

and solve it for ε1 = 9/25 when d = 2 and ε1 = 27/91 when d = 3.
In Table 3, the dataset name, the total number of sequences, the total number

of bases in each dataset, the l and d combination, size of candidate motif set
when running EMS3, the runtimes of the two algorithms and the speedup of
EMS3 over EMS2 are reported. From this table, it is obvious that size of the
candidate motif set is generally greatly reduced (i.e., |C| < |C1|). This shows the
necessity and effectiveness of pruning |C1| by checking if the pattern in |C1|, after
encoding, can survive in |C2|. When d = 2, the improvement in speed is around
30% to 60%, but in rare cases, it only performs slightly better than EMS2. It
may be because for some small instances, the overhead brought by EMS3 more or
less balances out its advantage. However, when d = 3, the improvement in speed
is generally over 50% with the maximum speedup of 2.1 when (l, d) = (17, 3) on
mus11r dataset.

4.3 Summary of Experimental Evaluation

EMS3 outperforms EMS2 on both synthetic and real datasets. EMS3 works well
with challenging instances. This is because the size of the candidate motif set is
relatively small thus it will not take much time to verify the candidate motifs.
If there is only one motif found which is the planted motif, then EMS3 is very
good at capturing this one. EMS3 works better for large datasets and instances.
It is expected EMS3 will perform better on protein data and datasets with more
input sequences. This is proved in the time complexity analysis above. However,
the corresponding experiments are not carried out because EMS2 consumes more
than 500 GB memory for protein data even when d = 3.

222 P. Xiao et al.

Table 3. Running time of EMS3 over EMS2 on real datasets

Dataset n No. bases l d |C1| |C| TEMS3 (s) TEMS2 (s) Speedup

hm01r 18 36000 14 2 1 0 65.63 89.93 1.37

18 3 0 0 5774.66 9104.86 1.58

hm02r 9 9000 15 2 68 7 19.44 23.58 1.21

19 3 266059 1974 1260.21 2065.53 1.64

hm03r 10 15000 15 2 219 18 32.41 42.56 1.31

19 3 196662 2079 2288.51 3931.03 1.72

hm04r 13 26000 14 2 349 102 44.45 61.27 1.38

18 3 14938 2338 3232.39 6280.58 1.94

hm08r 15 7500 13 2 5 0 8.07 12.16 1.51

17 3 1 0 570.29 1107.60 1.94

hm20r 35 70000 13 2 10 7 82.63 132.36 1.60

17 3 0 0 8809.21 12406.11 1.41

hm26r 9 9000 15 2 220 51 17.32 23.60 1.36

19 3 105908 579 1121.93 2152.78 1.92

mus02r 9 9000 15 2 178 75 17.40 23.85 1.37

19 3 230537 3285 1455.39 2026.11 1.39

mus11r 12 6000 13 2 639 15 6.14 9.75 1.59

17 3 3443 27 417.52 878.54 2.10

yst01r 9 9000 15 2 154 9 17.03 23.62 1.39

19 3 213654 3920 1278.39 1969.11 1.54

yst03r 8 4000 14 2 8462 421 6.92 7.28 1.05

19 3 30398 5 441.78 830.92 1.88

yst08r 11 11000 14 2 3603 510 20.91 23.96 1.15

18 3 20359 831 1432.57 2093.48 1.46

yst09r 169 16000 13 2 96 66 17.17 27.89 1.62

17 3 784 215 1560.99 2483.25 1.59

5 Conclusions and Future Work

In this paper, EMS3, an improved algorithm is proposed to efficiently solve the
EMS problem. EMS3 is a non-recursive divide and conquer algorithm and uses
the idea of projection. Theoretical analysis shows that EMS3 is even more com-
petitive for large datasets and challenging instances. The experimental results
reveal that EMS3 outperforms EMS2 which is the state-of-the-art algorithm.

In future the authors plan to improve the performance of EMS solvers by
reducing the memory usage and focusing on larger datasets. Quorum support
can be added to the existing EMS solver. How to project l, d or m in EMS

EMS3 223

problems is worth considering as well. Besides, developing efficient approximate
and randomized algorithms for the EMS problem is also interesting.

Acknowledgment. This work has been supported in part by the NSF grants 1447711,
1743418, and 1843025.

References

1. Adebiyi, E.F., Kaufmann, M.: Extracting common motifs under the levenshtein
measure: theory and experimentation. In: Guigó, R., Gusfield, D. (eds.) WABI
2002. LNCS, vol. 2452, pp. 140–156. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45784-4 11

2. Buhler, J., Tompa, M.: Finding motifs using random projections. In: Proceedings
of Fifth Annual International Conference on Computational Molecular Biology
(RECOMB) (2001)

3. Cai, X., Mamun, A.A., Rajasekaran, S.: Novel algorithms for finding the closest l-
mers in biological data. In: 2017 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pp. 525–528. IEEE (2017)

4. Cai, X., Zhou, S., Rajasekaran, S.: Jump: a fast deterministic algorithm to find
the closest pair of subsequences. In: Proceedings of the 2018 SIAM International
Conference on Data Mining, pp. 73–80. SIAM (2018)

5. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

6. Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. Inf. Comput. 185(1), 41–55 (2003)

7. Nicolae, M., Rajasekaran, S.: Efficient sequential and parallel algorithms for
planted motif search. BMC Bioinform. 15(1), 1 (2014)

8. Nicolae, M., Rajasekaran, S.: qPMS9: an efficient algorithm for quorum planted
motif search. Sci. Rep. 5, 7813 (2015)

9. Pal, S., Xiao, P., Rajasekaran, S.: Efficient sequential and parallel algorithms for
finding edit distance based motifs. BMC Genomics 17(4), 465 (2016)

10. Pathak, S., Rajasekaran, S., Nicolae, M.: EMS1: an elegant algorithm for edit
distance based motif search. Int. J. Found. Comput. Sci. 24(04), 473–486 (2013)

11. Rajasekaran, S., et al.: High-performance exact algorithms for motif search. J. Clin.
Monit. Comput. 19(4–5), 319–328 (2005)

12. Rajasekaran, S., Dinh, H.: A speedup technique for (l, d)-motif finding algorithms.
BMC Res. Notes 4(1), 54 (2011)

13. Rocke, E., Tompa, M.: An algorithm for finding novel gapped motifs in DNA
sequences. In: Proceedings of the Second Annual International Conference on Com-
putational Molecular Biology, pp. 228–233. ACM (1998)

14. Sagot, M.-F.: Spelling approximate repeated or common motifs using a suffix tree.
In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 374–390.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054337

15. Tompa, M., et al.: Assessing computational tools for the discovery of transcription
factor binding sites. Nat. Biotechnol. 23(1), 137 (2005)

16. Xiao, P., Pal, S., Rajasekaran, S.: qPMS10: a randomized algorithm for efficiently
solving quorum Planted Motif Search problem. In: 2016 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM), pp. 670–675. IEEE (2016)

17. Xiao, P., Pal, S., Rajasekaran, S.: Randomised sequential and parallel algorithms
for efficient quorum planted motif search. Int. J. Data Min. Bioinform. 18(2), 105–
124 (2017)

https://doi.org/10.1007/3-540-45784-4_11
https://doi.org/10.1007/3-540-45784-4_11
https://doi.org/10.1007/BFb0054337

	Efficient Algorithms for Finding Edit-Distance Based Motifs
	1 Introduction
	2 EMS3: An Improved Algorithm
	2.1 Overview of the Algorithm
	2.2 Why Project the Alphabet
	2.3 Correctness of the Algorithm

	3 Analysis of EMS3
	3.1 Time Complexity Analysis
	3.2 How to Choose 1 and 2
	3.3 A Discussion on qEMS and Approximate EMS3

	4 Experimental Evaluations of EMS3
	4.1 Synthetic Datasets
	4.2 Real Biological Datasets
	4.3 Summary of Experimental Evaluation

	5 Conclusions and Future Work
	References

