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ABSTRACT 
Latent Semantic Analysis (LSA) plays an important role in 
analyzing text data from education settings. LSA represents 
meaning of words and sets of words by vectors from a k-dimensional 
space generated from a selected corpus. While the impact of the 
value of k has been investigated by many researchers, the impact of 
the selection of documents and the size of the corpus has never been 
systematically investigated. This paper tackles this problem based 
on the performance of LSA in evaluating learners’ answers to 
AutoTutor, a conversational intelligent tutoring system. We report 
the impact of document sources (Wikipedia vs TASA), selection 
algorithms (keyword based vs random), corpus size (from 2000 to 
30000 documents) and number of dimensions (from 2 to 1000). Two 
AutoTutor tasks are used to evaluate the performance of different 
LSA spaces: a phrase level answer assessment (responses to focal 
prompt questions) and a sentence level answer assessment 
(responses to hints). We show that a sufficiently large (e.g., 20,000 
to 30,000 documents) randomly selected Wikipedia corpus with 
high enough dimensions (about 300) could provide a reasonably 
good space. A specifically selected domain corpus could have 
significantly better performance with a relatively smaller corpus size 
(about 8000 documents) and much lower dimensionality (around 
17).  The widely used TASA corpus (37,651 documents 
scientifically sampled) performs equally well as a randomly selected 
large Wikipedia corpus (20,000 to 30,000) with a sufficiently high 
dimensionality (e.g., k>=300). 
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1. INTRODUCTION 
1.1 Latent Semantic Analysis in Education 
Data Mining 
Text mining is one of the most important tasks in education data 
mining [21]. Education text data could be textual learning content 
presented to learners, essays from learners, solutions to problems, 
answers to questions, conversations between collaborators, and so 
on. Researches have shown that analyzing such text data is crucial 
for improving education quality and reducing education cost. For 
example, Graesser et al.   [9] reported that scaling texts to match the 
reading level and reading style of learners could facilitate the 
learning process. Foltz et al. [19] showed that automatic essay 
grading could greatly reduce teachers’ workload. Wiemer-Hasting 
et al. [24] and Graesser et al. [10] showed that automatic answer 
evaluation makes it possible for intelligent environments to give 
immediate feedback to learners’ text inputs. LSA (latent semantic 
analysis) plays an important role in all these text analysis tasks.  
LSA is a method that extracts the meaning of words from a large 
body of texts (corpus) [15]. The mathematics behind LSA is 
surprisingly simple. The extraction process is just counting the 
number of occurrences of each word in each document, resulting in 
a word-document matrix, with rows representing words and 
columns representing documents. Thus, each row of the matrix is 
actually a vector representation of a word in a high dimensional 
space (the number of dimensions equals the number of documents). 
The raw occurrence counts are usually transformed by certain 
weighting method, such as TFIDF or Log-Entropy (see e.g., [14, 
16]). After the transformation, a matrix entry has a higher value if 
the corresponding word is unevenly distributed in the corpus and 
frequent in the document corresponding to the column the word 
entry is in. A dimension reduction technique, namely, singular value 
decomposition, is applied to the weighted matrix to produce vector 
representations for words (as well as documents) with lower 
dimensionality. Weighted sum of word vectors is often used to form 
vector representations of phrases, sentences, paragraphs and 
documents. Different weight  algorithms and their effects can be 
found in McNamara et al. [17]. More details on LSA vector space 
generation  can be found in Landauer et al. [15]. 

 

 



With vector representations, the similarity of the meaning of two 
texts can be computed as the cosine between two vectors. This 
similarity measure has been widely used in many applications. For 
example, Coh-Metrix (cohmetrix.com) measures text cohesion by 
computing the average LSA cosine between sentence vectors and 
paragraph vectors [11]. AutoTutor (autotutor.org) evaluates 
learners’ text inputs by computing the cosine between the input text 
vector and the ideal answer vector [4]. The Intelligent Essay 
Assessor [19] uses LSA cosine between vectors of target essay and 
pre-scored essays as one of the most important predictor in 
automatic essay scoring. 
The number of dimensions of LSA vector spaces, usually denoted 
by k, has been investigated by many researchers. The most 
influential study is probably the one published by Landauer and 
Dumais in 1997 [14]. They generated an LSA space from 30,473 
encyclopedia articles and then applied the vectors in a TOEFL (Test 
of English as a Foreign Language) word comparison task. They 
found that the value of k had large impact on the LSA performance 
and the best choice was about 300. This value, k=300, has been used 
as a magic number in many later applications. However, researchers 
also reported a large range of optimal values of k (from 6 to over 
1000), depending on the corpus used for generating the LSA space 
and the specific task the LSA was applied to. A long list of studies 
can be found in Bradford (2008) [2].  
In addition to dimensionality, the size and the content of the corpus 
used for LSA space generation also influences the performance of 
LSA. Researchers reported the use of different corpora, such as 
Touchstone Applied Science Association (TASA) corpus 
(http://lsa.colorado.edu/spaces.html), the Corpus of Contemporary 
American English (COCA) [7], Encyclopedia, and so on. The size 
of reported corpora varied from hundreds to hundreds of thousands 
of documents. Some studies reported the optimal values of k for 
different corpora with very different sizes. For example, 
Kontostathis (2007) [13] reported a study on 7 corpora with sizes 
varying from 1033 to  348,566 documents. While the optimal value 
of k for each corpus was reported, no corpus size effect was 
considered. A recent study reported by Crossley et al. (2017) [6] 
showed significant performance differences of two corpora with 
different sizes (44K vs 55K documents) and the same k =300, 
assuming 300 is the optimal value. However, they did not consider 
the real optimization of the value k for each corpus. Furthermore, 
the two corpora, TASA and COCA, contain different kinds of 
articles. It is not clear whether it was the corpus size or any other 
document features (e.g. genre, readability, concreteness, cohesion, 
formality, etc.) that caused the performance difference. 
The size of data that needs to be stored for the word vectors of an 
LSA space is proportional to the product of number of words and 
the value of k. When performance is guaranteed, a small corpus with 
a small k would save both storage and computation cost in using 
LSA. Searching for an optimal corpus size to generate an LSA space 
is a task that needs to be accomplished together with the 
optimization of k. That is, it is an optimization problem involving 
two parameters, which unfortunately is more difficult and 
computationally more expensive.  An added difficulty is to control 
other document features when the corpus size varies. One way to 
control the document features is to systematically sample articles 
from a particular single source to form corpora of different sizes.  In 
this paper, we will focus on sampling corpora from Wikipedia. 

1.2 Latent Semantic Analysis for AutoTutor 
Answer Evaluation 
AutoTutor is a conversational intelligent tutoring system. Since the 
late 1990s, many AutoTutor systems have been developed, targeting 
different domains, including computer literacy, physics, critical 
thinking, and electronics. AutoTutor has become an ideal platform 
for collecting text data from learners and a testbed for natural 
language processing technologies.  
AutoTutor helps learners learn by holding a conversation between 
computer agents (one or more) and human learners, targeting the 
solution to specific problems. AutoTutor usually starts a 
conversation with a deep “main question”, to which the ideal answer 
is often about a paragraph in length. The goal of the conversation is 
to help a learner construct an answer semantically equivalent to the 
prepared ideal answer. To learners who cannot meet the goal at the 
first try, AutoTutor asks follow-up questions that target missing 
information. There are two types of such AutoTutor follow-up 
questions. One is called “hint”, to which the answer is about a 
sentence long. Another is called “prompt”, to which the answer is 
usually a word or a phrase. An AutoTutor conversation ends either 
when the goal is met or the prepared questions are exhausted. The 
following is an excerpt of an AutoTutor conversation in a 
Newtonian physics system. 
AutoTutor [main question]: Suppose a boy is in a free-falling 
elevator and he holds his keys motionless right in front of his face 
and then lets go. What will happen to the keys? Explain why.  
Student [first try]: The keys will move up since the elevator is 
falling and the keys are in the elevator, the keys will go in the 
opposite direction of the free falling elevator. 
AutoTutor [feedback]: Umm, that is an interesting answer! 
AutoTutor [hint]: What can you say about the vertical velocity of 
the keys? 
Student [response to hint]: The vertical velocity will be at a 
constant acceleration of 9.8. 
AutoTutor [feedback]: OK. See if you can get this. 
AutoTutor [prompt]: The boy and his keys have the same initial 
vertical what? 
Student [response to prompt]: Velocity. 
 
In each conversation turn, AutoTutor evaluates the learner’s input 
and makes decisions on the selection of feedback type and the next 
move (asking a new question or ending the conversation). With the 
help of regular expressions, LSA plays an important role in 
matching the meaning of the learner’s input with prepared answers. 
The mathematical AutoTutor assessment models, normally a 
combination of LSA and regular expressions, can be found in Cai et 
al. (2011) [5]. 

When an AutoTutor application is developed, an LSA space 
generated from a domain specific corpus is often needed, because 
the meaning of words may differ from domain to domain. For 
example, the meaning of the word “force”, according to Oxford 
Dictionary (https://en.oxforddictionaries.com) could be defined as 
“strength or energy as an attribute of physical action or movement” 
or “an organized body of military personnel or police”. When an 
LSA space is generated, the meaning of a word can usually be 
observed by the “nearest neighbors”, namely, the words with highest 
LSA cosine with the target word. Table 1 shows 5 nearest neighbors 
of the word “force” from three different LSA spaces: a Wikipedia 
space targeting Newtonian physics articles (4000 documents, 17 
dimensions), a randomly sampled Wikipedia space (4000 articles, 
17 dimensions) and the TASA corpus (37651 articles, 300 
dimensions). It looks obvious that the meaning of “force” in the 

http://lsa.colorado.edu/spaces.html


targeted corpus and TASA is more of the sense in Newtonian 
physics, while in the random Wikipedia space, the meaning is more 
of the sense in military.  

Table 1. Nearest neighbors of “force” in different spaces 

Corpus Docs Dim Nearest Neighbors 

Targeted 4000 17 exert, act, pull, experience, push  

Random 4000 17 belligerent, offensive, gun, 
command, patrol 

TASA 37651 300 unbalanced, exert, centripetal, 
turntable, Newton 

 

It has long been believed that the performance of LSA depends on 
the selection of corpus. Cai et al [5] showed that, with a well selected 
corpus, LSA could be used together with regular expressions to 
build a model that evaluates learners’ responses in AutoTutor almost 
as good as human. However, it has never been reported about the 
combined impact of the article selection, the size of the corpus and 
the optimization of k for the LSA component. 

1.3 Wikipedia as Document Source for Corpus 
Sampling 
In order to investigate the impact of document selection and corpus 
size, we need a reliable document source that contains enough many 
articles for different domains. Wikipedia (Wikipedia.org) is an ideal 
source for this. By the end of 2017, the English Wikipedia had about 
5.6 million content articles, containing almost everything. New 
articles are still being added.  

There are reports on LSA spaces generated from Wikipedia. For 
example, Ștefănescu et al. (2014) [22] compared the performance of 
Wikipedia spaces with TASA spaces on a word similarity task. 
However, they did not consider the “domain” specificity and the 
impact of the corpus size. They took all documents in Wikipedia as 
a whole for LSA space generation, taking into account of different 
filtering strategies, resulting in huge spaces.   

1.4 Rational and Research Questions 
Researchers have believed that the corpus used to generate an LSA 
space should align with the targeted domain. Gotoh et al. (1997) [8] 
showed a typical way of constructing a domain specific corpus: 
finding articles labeled in a category, such as “natural science”, 
“world affairs”, “arts”, and so on. The targeted domain is then 
represented as a mixture of such categories. People are often 
convinced that domain specific spaces are needed from seeing 
“nearest neighbors” that show different meaning representations 
(see Table 1). However, several questions remain unanswered. For 
a given task, is it really necessary to generate a domain specific 
space? In other words, does a domain specific space perform 
significantly better than a generic space? A related question 
immediately emerges: how do we measure the “domain 
specificity”? How do we know the degree to which a corpus is 
targeting a given domain? Furthermore, what do we mean by a 
“domain”? How should a domain be defined or specified? There are 
also practical application questions related to this. For example, 
would a domain specific space save storage and computation costs 
with better or equivalent accuracy in performing a given task? 
Answers to these questions are important. If we know a generic 
space (e.g. TASA) can work as well as a domain specific space, we 
will not need to spend time and resources to generate new spaces. 
Domain spaces are needed only if they perform significantly better 

or can save storage and computation time without sacrificing 
performance. 

2. METHOD 
2.1 AutoTutor Data 
We compared the performance of LSA spaces on evaluating 
learners’ responses to a Newtonian physics AutoTutor. The data 
contained responses of college students to 10 problems about 
Newtonian physics. Table 2 shows the number of hints and prompts 
and the number of responses in each of the 10 problems. There were 
114 hints and 133 prompts in total. This resulted in 4941 hint 
responses and 2643 prompt responses. On average, there were about 
43 responses per hint and 20 responses per prompt. The reason why 
there were more hint responses was that AutoTutor conversations 
started with a hint, followed by a prompt, then another hint followed 
by another prompt, and so on. An AutoTutor conversation ended 
when a learner’s responses covered all aspects of the ideal answer. 
Thus, if the conversation ended after a prompt, the number of hint 
responses and prompt responses in that conversation would be the 
same. However, if the conversation ended after a hint, the number 
of hint responses would be one more than the number of prompt 
responses in that conversation. The ratio of prompt responses to hint 
responses depends on the number of “hint-prompt” cycles that 
occurred in the conversation. The fact that there were more than 
twice of hint responses than prompt responses indicates that many 
conversations ended after the first or second hint question. 

Table 2. Number of hint and prompt responses 
Problem Hints Hint 

responses 
Prompts Prompt 

responses 

Pumpkin 16 865 12 299 

Sun and earth 6 186 1 23 

Free key fall 12 969 10 403 

Neck injury 11 308 12 272 

Clown juggling 15 540 30 481 

Car collision 11 431 6 86 

Packet drop 13 801 9 285 

Container mass 10 454 15 403 

Clay balls 11 213 25 264 

Car towing 9 174 13 127 

Total 114 4941 133 2643 

According to the design of AutoTutor, a hint question targets an 
answer about a sentence long and the answer to a prompt question 
is usually a word or a phrase. Table 3 shows that the hint responses 
in our data set were about 8 words on average; and the prompt 
responses were about 3 to 4 words on average. Penumatsa et al. 
(2006) [18] showed that the cosine values are length dependent. 
That is, longer texts tend to yield larger cosine values.  Cai et al. 
(2016) [4] reported that LSA performed differently on hint 
responses and prompt responses. Their explanation was that the hint 
questions and prompt questions had different “uncertainties”. The 
responses to a question with higher uncertainty would be more 
divergent and thus more difficult to assess. Following this, we 
investigated LSA performance on hint and prompt responses 
separately. 



Table 3. Hint and prompt answer/response lengths 

Answer N Mean Std 

Hint Ideal 112 10.64 3.59 

Hint Responses 4861 8.01 8.82 

Prompt Ideal 125 3.53 1.06 

Prompt Responses 2603 1.64 3.06 
 

2.2 Human Rating 
The student responses were rated by two experts; one was a full 
professor and the other was a graduate student. Both raters had 
background in computer engineering and had good understanding of 
Newtonian physics. A rating tool was built to facilitate the rating 
process (see Figure 1). At the middle left panel of the tool, there is 
a list box for raters to choose hints and prompts. At the top panel, 
there is a text box that displays a hint/prompt question, together with 
its associated main question and their answers. The data table at the 
bottom right panel shows all student responses and 7 rating options. 
A response is scored by a click on an option. A “0” means the 
response is not an answer to the question at all, such as “what”, “I 
don’t know”, “what do you mean”, and so on. A “1” indicates a 
response that has no semantic similarity to the prepared ideal answer 
and “6” indicates a perfect answer. Red and gray colors are used to 
mark unrated and rated items, respectively. At the bottom left corner, 
there is a text box that shows the number of items already rated and 
the number of items that are to be rated. This tool helped the raters 
more easily and accurately rate the responses.  

 
Figure 1. Rating tool. 

From the 7584 responses, 120 were randomly sampled as training 
corpus. After rating the training corpus, two raters discussed the 
rating criteria and independently rated the rest of the items. Table 4. 
shows the correlations between the two raters. The correlations were 
about 0.82, which indicate that there were some disagreements 
between the two raters. In other words, even for human experts, such 
evaluation tasks are sometimes difficult. We had thought that 
answers to prompts should be easier to evaluate than answers to hint. 
However, the correlation of two raters’ ratings on prompts is only 
slightly higher. The Fisher transform [12] showed that the Z value 
of the two correlations (hints vs prompts) was 0.90 (p=0.369), which 
indicates that the difference is not significant. It should be noted that 
this Z value is for two independent correlations from different 
samples. There is another Z-test for dependent correlations, which 
will be used in the later part of this paper. The Z transform showed 
that the human rates agreed on hint and prompt responses similarly. 

That indicates that human raters did not experience more difficulty 
in evaluating hint responses than prompt responses. 

Table 4. Correlations between ratings of two raters. 

Question Type N Correlation 

Hint 4861 0.820 

Prompt 2603 0.827 

All 7464 0.828 

 

2.3 Sampling Corpora from Wikipedia 
2.3.1 Seeding method for sampling domain specific 
corpus 
Our goal was to investigate whether or not a “domain specific” 
corpus generates an LSA space with higher performance for our 
tasks. However, it is hard to quantify what a “domain specific” 
corpus really is. Many researchers used corpora that showed obvious 
domain labels. For example, MED corpus is for “Medical”, CISI 
corpus for “Information Science” [3], COCA for “Contemporary 
American English” [7], and so on. However, we don’t really know 
how specific these corpora are with respect to the labeled domain.   
Our way of handling this problem starts from specifying a domain 
by a seed corpus – a small number of documents representing the 
targeted domain. The seed corpus could be the sections of a book, a 
small collection of articles focusing on a specific topic, or just some 
documents that are under analysis. 
Once a seed corpus is identified, we extract keywords out of the seed 
corpus and assign a “keyness” value to each keyword. Thus, a 
“domain” is represented by the keyness assignment to the domain 
vocabulary. This is similar to the idea in topic modeling, where a 
topic is represented by probability distribution on a word list (see, 
for example, [1]).  
The word keyness computation is then applied to compute document 
keyness by averaging the keyness of the words in a document. To 
search documents from a large document source (such as 
Wikipedia), we compute the keyness of each document. The 
documents in the source are then ranked by the document keyness. 
We select the high ranking documents from the source as a domain 
corpus. We call this process the “seeding method.” 

 
Figure 2. Illustration of seeding method. 

Figure 2 visually illustrates the process of selecting documents from 
Wikipedia articles. It is difficult to directly evaluate the validity of 
this process. A possible way is to present a sample of documents to 
experts and see what proportion of documents are highly relevant to 
the desired domain. We do not do so in this paper. Instead, we 
evaluate this process by comparing the LSA performance of selected 
corpora with randomly sampled corpora. Our logic is simple: if 



domain specificity matters and the selected corpora work better than 
random corpora, then the seeding method is valid. 

2.3.2 Computing word keyness 
To compute the keyness of words, we considered two factors. First, 
a high keyness word should not be very common in general use. To 
quantify this, we used the log-entropy weight from a general 
reference corpus, TASA,  as a measure of how common a word is in 
general use: 

𝐸(𝑤) = 1 +
∑ 𝑝𝑖(𝑤)𝑙𝑜𝑔𝑝𝑖(𝑤)𝑁

𝑖=1

𝑙𝑜𝑔𝑁
 

where 

𝑝𝑖(𝑤) =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑤 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑤 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠
 

In the above equations, N is the number of documents in TASA, 
which is 37,651. The log-entropy weight, 𝐸(𝑤) , ranges from 0 to 
1. A value close to 0 indicates that the word 𝑤 is evenly distributed 
in TASA corpus, such as function words. A value close to 1 
indicates that the word distributed unevenly in the corpus. More 
detailed information about entropy use can be found in LSA 
publications (for example, Martin et al. (1994) [16]).  
Another factor we considered was that a high keyness word should 
be highly frequent in the seed corpus. We used the normalized 
logarithm of frequency to quantify this. The final word keyness with 
respect to the seed corpus was computed as the product of two 
values. One was the logarithm of the number of seed documents the 
word is in, divided by the logarithm of the total number of 
documents; and the other was the log-entropy weight of the word in 
TASA: 

𝑘𝑒𝑦𝑛𝑒𝑠𝑠 =
log 𝑓(𝑤)

log 𝐷
𝐸(𝑤) 

where 
𝑓(𝑤): the number of seed documents the word 𝑤 is in; 
𝐷: the total number of seed documents; and  
𝐸(𝑤): the log-entropy weight of the word 𝑤 from TASA corpus. 

2.3.3 Sampling a Newtonian physics corpus from 
Wikipedia 
For this study, we used the 114 hint questions and the 133 prompt 
questions as seed corpus to compute the word keyness. This is such 
a small corpus that it only covered a small part of Newtonian 
physics. However, it provided a good starting point for us to find 
related categories from Wikipeida. Using the keyness equation, each 
word in the seed corpus was assigned a keyness. We ignored the 
words with keyness less than 0.01 and obtained 262 keywords. The 
top 10 keywords, together with their keyness values are listed 
below: 

1) free-fall: 0.588 
2) packet: 0.537 
3) pumpkin: 0.526 
4) acceleration: 0.496 
5) velocity: 0.478 
6) clown: 0.467 
7) velocities: 0.449 
8) horizontal: 0.427 
9) keys: 0.424 
10) headrest: 0.407 

From the list above, we see that some words, such as “acceleration”, 
“velocity” are concepts of Newtonian physics. However, other 

words are specific to the 10 problems. To construct a corpus that has 
a wide coverage of Newtonian physics, we queried Wikipedia 
categories with these 262 keywords and obtained 154 associated 
categories. From these 154 categories we manually selected 16 
categories that are highly related to Newtonian physics, as shown in 
the list below: 

1) Acceleration 
2) Change 
3) Classical mechanics 
4) Concepts in physics 
5) Dynamics(mechanics) 
6) Force 
7) Gravitation 
8) Kinematics 
9) Mass 
10) Mechanics 
11) Motion 
12) Physics 
13) Systems 
14) Temporal rates 
15) Time 
16) Velocity 

In Wikipedia, each category is associated with a set of articles and a 
set of subcategories. For example, at the time this paper was written, 
the category “force” contained 67 articles (such as “force”, 
“friction”, “weight”, etc.) and 8 subcategories (such as “motion”, 
“fictitious forces”, “friction”, etc.) The above 16 selected categories 
served as “seed categories” of our query. We downloaded all articles 
from these 16 categories. Then we downloaded the articles from 
subcategories. Since each subcategory also contained subcategories, 
we could actually find a very large number of articles by following 
the subcategories of subcategories. In this study, we downloaded 
30,000 articles.  
 
We did not treat each article as a document of our corpus for LSA 
space generation. Instead, we used selected sections in the articles. 
Each Wikipeida article contained a definition section and many 
other sections. For example, the article “force” in physics contained 
17 sections, such as “Development of the concept”, “Pre-Newtonian 
concepts”, “Newtonian mechanics”, etc. We computed the keyness 
of each section of each article by averaging the word keyness 
computed from the seed corpus. Words that did not appear in the 
seed corpus or with keyness less than 0.01 were ignored. Notice that, 
although the problem specific keywords, such as “packet”, 
“pumpkin”, “clown”, etc., had high keyness, since they are unlikely 
to appear in the articles from the selected categories, their effect in 
the section selection process was limited. The list below shows the 
number of sections of the top 10 keywords appeared in a corpus with 
32,000 selected sections:  

1) free-fall:73 
2) packet:106 
3) pumpkin:7 
4) acceleration:1906 
5) velocity:4424 
6) clown:4 
7) velocities:866 
8) horizontal:1204 
9) keys:124 
10) headrest:1 

Obviously, the Newtonian physics concepts, such as “velocity”, 
“acceleration”, etc., dominated the selection process. The problem 
specific terms, such as “headrest”, “clown” and “pumpkin” rarely 
appeared in the selected sections. 



To avoid section length effect, we ignored any section with length < 
50 words. For sections with words between 50 and 300, the section 
keyness was the average word keyness. For long sections with more 
than 300 words, the keyness was computed as the average over the 
first 300 words.  
 
To compare the impact of the corpus size, we selected 5 corpora 
with size (number of sections) 2,000, 4,000, 8,000, 16,000 and 

30,000. We name them NP2000, NP4000, …, NP30000, where 
“NP” stands for “Newtonian Physics”. Each Newtonian physics 
corpus contained the highest keyness sections in the selected 
articles. Therefore, they were nested, namely, the sections of a 
smaller Newtonian physics corpus were all included in a larger 
Newtonian physics corpus. For example, NP8000 contained all 
sections of NP2000 and NP4000 (see Figure 3, left).  

 

 
Figure 3. Illustration of nested domain corpora (left) and overlapped random corpora (right). 

2.3.4 Sampling a random corpus  
In order to compare the effect of the keyness-based sampling, we 
randomly sampled 5 corpora with same sizes as Newtonian physics 
corpora. The sampling process was similar to the Newtonian physics 
corpora sampling. The difference was that the seed keywords were 
1000 words randomly sampled from TASA vocabulary. We 
downloaded 30,000 articles from the categories and their 
subcategories associated with the 1000 seed keywords. Then we 
randomly sampled sections from the 30,000 articles. Like NP 
sampling, sections with less than 50 words were ignored. The five 
random corpora were named, based on their sizes, as R2000, R4000, 
R8000, R16000 and R30000. The random corpora could be 
overlapped but not necessarily nested (see Figure 3, right). 

2.4 LSA Spaces 
A total of 11 LSA spaces were generated, 5 Newtonian physics 
spaces, 5 random spaces and a TASA space. The log-entropy 
weighting was applied to the word-document matrices. Function 
words and words appeared less than 3 documents in a corpus were 
ignored. The dimensions were all 1,000. In the rest of the paper, we 
will only refer to these 11 spaces. However, the similarities in each 
space were computed with varied dimensions. Mathematically 
speaking, different dimensions means different spaces. For example, 
NP8000 with 100 dimensions is a different space than NP8000 with 
300 dimensions. However, in this paper, we refer to them as the 
“same space” and treat the dimension as a parameter in computing 
LSA similarities.  

2.5 Evaluating AutoTutor Responses by LSA 
For each of the above 11 spaces, the LSA semantic similarities 
between ideal answers and learners’ responses were computed for 
the varying number of dimensions (k=2, 3, …, 1000). The 
performance of each space with each value of k was measured by 
the correlation between the LSA similarity and the average human 
rating on the responses. Cai et al [4] showed that LSA performances 

on hint questions and prompt questions are very different. Therefore, 
we considered the LSA performance on hint questions and prompt 
questions separately. Table 5 shows some example responses of a 
hint question, their LSA similarity to the ideal answer, and the 
human rating. 

Table 5. Example of learners’ responses to the hint question 
“How does the net force affect the car?”. The ideal answer is 
“The net force exerted on the car results in an acceleration of 

two meters per second squared.” LSA similarities were 
computed using TASA space, 300 dimensions. Human ratings 

are average scores of two raters.  

Response LSA Human 

Horizontally 0.16 1 

it stays the same  0.16 1 

it does not effect the car 0.19 1 

it causes it to accelerate  0.49 2 
the net force doesn't change and 
therefore when the mass is doubled the 
acceleration must be halved 

0.51 5.5 

The net force on the car is what causes 
it to accelerate 0.69 5.5 

It causes an acceleration of two meters 
per second 0.71 5.5 

The significance of performance differences were measured by 
Steiger Z-test [23], which is a statistic method for testing the 
significance of differences between two dependent correlations that 
share a variable in common. This is different from the independent 
correlation comparison that we used earlier. The Steiger Z-test 
compares correlation coefficients involving three variables. 
Assuming the three variables are A, B and C, with C as the shared 
common variable, the two correlations under comparison are: 



• The correlation coefficient between A and C and 
• The correlation coefficient between B and C. 

To compare the two correlation coefficients, the correlation 
coefficient between A and B is also included in the computation, 
together with the number of data points, N.  When the absolute value 
of Z is greater than 1.96, the two correlation coefficients under 
comparison are considered significantly different.  In our study, C is 
the human rating whereas and A and B are two LSA similarities. 

3. RESULTS 
3.1 Impact of corpus size and number of 
dimensions for Newtonian physics spaces 
Consider first the hint responses. Although the corpus sizes were 
very different among the five Newtonian physics spaces, the 
performance curves as functions of dimensions were surprising 
similar. They all had lowest performance at k=2, with correlations 
about 0.28. When the number of dimensions increased, the 
performance curves of all spaces quickly increased. The peak of 
about 0.425 was reached around k=17.  The performance curves then 
dropped and reached a trough around k=128. After that, they grew 
up again and converged from about k=300 to a value about 0.40. 
Figure 4 shows the performance as functions of k for the NP spaces 
on hint responses from k=2 to k=1000. We used a logarithm scale 
on dimensions, following the method that Landauer et al. (1998) 
used when plotting the dimensionality effects on TOEFL tests. 

 
Figure 4. Performance of NP spaces on hint responses. 

Although not very large, significant differences were observed 
among different spaces. The best performance on hint responses was 
NP8000 at k=17, with the highest correlation being 0.428. Z-test 
showed that, with the same k value, NP8000 performed significantly 
better than other spaces (see Table 6). The differences of 
correlations were from 0.01 to 0.036. This value, 0.428, was also 
significantly better than the performance of the same space NP8000 
with k value less than 16 or greater than 64 (see Table 7).   

Table 6. Z-test comparing performance of target spaces with 
fixed k=17 and varied corpus size on hints to the optimal target 

space (corpus size=8000,  k=17) and performance (0.428). R-
opt is the correlation with the optimal space. N=4861. 

Space Performance R-opt Z p(2-tail) 
NP2000 0.415 0.916 2.449 0.014 
NP4000 0.418 0.964 2.837 0.004 
NP16000 0.409 0.970 5.654 0.000 
NP30000 0.392 0.934 7.607 0.000 

 

Table 7. Z-test comparing performances of target spaces with 
fixed corpus size=8000 and varied k on hints to the optimal 

target space (corpus size=8000,  k=17) and performance 
(0.428). R-8000 is the correlation to the optimal space. N=4861. 

Dim Performance R-opt Z p(2-tail) 

2 0.286 0.582 11.837 0 

4 0.322 0.731 11.031 0 

8 0.394 0.913 6.265 0 

16 0.425 0.997 2.986 0.003 

32 0.425 0.953 0.756 0.45 

64 0.412 0.88 2.525 0.012 

128 0.395 0.794 3.976 0 

256 0.391 0.732 3.916 0 

512 0.393 0.689 3.448 0 

1000 0.396 0.655 3.001 0.003 

The Newtonian physics spaces performed differently on prompt 
questions. The overall performance on prompts were higher than on 
hints. Also, the corpus size had a larger impact. NP8000 performed 
best overall. Two smaller spaces, NP2000 and NP4000, performed 
significantly worse. Larger spaces performed almost equally as well 
as NP8000. For k=2, the performance of smaller spaces was around 
0.2, while for larger spaces, the performance was over 0.3. The 
performance curves for all spaces increased when the value of k 
increased. However, there was no early peak. At about k=24, the 
performance curves started to converge. The best performance for 
k=24 was again the space NP8000, which was 0.542. When the 
value of k further increased, the performance curves continuously 
and slowly increased. The maximum performance was at about 
k=300, which is 0.566 for larger spaces. The performance curves 
slowly dropped after k=300. At k=1000, the performance of small 
spaces was about 0.51 and the larger spaces around 0.54. Figure 5 
shows the performance curves of the spaces as functions of k on 
prompt responses. 

 
Figure 5. Performance of NP spaces on prompt responses 

3.2 Comparing with Random Wikipedia 
Spaces and TASA Space 
For small values of k (<32), Newtonian physics spaces performed 
much better (about 0.1 higher) than random spaces and TASA space 
on both hint responses and prompt responses. TASA space was 
worse than Newtonian physics spaces but better than random spaces. 
However, the performance curves of all large spaces converged to 
almost the same after about 300 dimensions. Figure 6 shows the 
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performance of NP8000, R8000 and TASA on hint responses. 
Unlike Newtonian physics spaces, random spaces and TASA space 
did not have a peak performance. Instead, their performance curves 
continuously and slowly grew and converged.  

 
Figure 6. Comparing NP8000, R8000 and TASA on hint 

responses.  
Figure 7 shows the performance of NP8000, R8000 and TASA 
spaces on prompt questions. Newtonian physics space NP8000 
performed best, especially at around k=17. For lower 
dimensionality, TASA space was slightly better than random space. 
However, after k=32, the random space became slightly better than 
TASA. 
 

 
Figure 7. Comparing NP8000, R8000 and TASA space on 

prompt responses. 

4. DISCUSSION AND FUTURE WORK 
In AutoTutor applications, LSA similarities has been used as an 
important feature for building models to evaluate learners’ 
responses. Every time a new application was created, a new “domain 
specific” spaces was generated. The so called “domain specific” 
spaces were usually generated from a corpus provided by domain 
experts. It was often unclear whether or not the documents in the 
domain corpus were sufficiently representative. That motivated us 
to explore the impact of document selection and corpus size, taking 
into account the optimal space dimensionality. 

Instead of relying on experts’ selections, we used Wikipedia as a 
universal source to select corpus for any domain. In this study, we 
used a method called “seeding method” to select Wikipedia articles 
based on a small seed corpus. Although the seeding method started 
with an automatic keyness computation and ended with automatic 
document ranking and selection, the method was not fully 
automatic, because, in the middle of the process, a manual 

Wikipedia category selection was involved. Because of this manual 
selection, the document ranking was constrained by the category 
selection. That is, the document ranking was computed only over a 
subset of Wikipedia articles. Although this reduced the searching 
cost, it is not clear how much better a space could be if the 
documents were selected from all Wikipedia articles. A fully 
automatic and inexpensive Wikipedia article selection algorithm 
apparently is still needed. 

The seeding method was not directly evaluated. However, its effect 
has been shown by the fact that the selected spaces perform 
significantly better than random spaces. Yet, the seeding method 
might have room for improvement. Better keyness assignment and 
document ranking algorithms are possible. For example, the entropy 
based keyword extraction algorithm provided by Yang et al. [25] is 
a good candidate for more sophisticated keyness assignment 
algorithms. Even further, instead of keyness based document 
ranking, other methods without keyness assignment are possible. 
For example, a seed LSA space could be generated from the seed 
corpus. Then a small number of Wikipedia articles could be selected 
to form a slightly larger corpus. Then a larger LSA space is 
generated and more Wikipedia articles are added. Such an iterative 
process could be more expensive but may provide better LSA 
spaces.  

This study revealed several interesting results about the impact of 
dimensionality. When we examined the performance, we did not 
expect that k=2 could provide a significant correlation. It turned out 
that 2 dimensional spaces (e.g. NP8000, TASA) could actually 
perform quite well (around 0.3). This fact is important because two 
dimensional vectors are easy for visualization. Therefore, if a 2-
dimensional space could provide acceptable performance, it may be 
considered if visualization is a concern.  

Another interesting finding is that the optimal k could be very small 
(e.g., 17 for NP8000). A small k implies low cost in both storage and 
computation. However, it may not be possible to identify the optimal 
k without dependent data, such as human ratings. When such data is 
not available, we certainly want to know what k is safe for use. This 
study showed that k=300 is a safe dimensionality for both hint and 
prompt response evaluation.   

It seems obvious that there must be an optimal corpus size, which is 
not too small and not too large. If a corpus is too small, it may have 
two problems: 1) it cannot represent the desired domain and 2) it 
cannot provide enough semantic associations for generating 
meaningful vectors. If a corpus is too large, it will lose focus. This 
study shows that NP8000 is better than smaller and larger corpora. 
The problem, however, is that this optimal size is identified using 
human rated data. When human ratings are not available, a relatively 
large corpus would be safer. 

TASA space has been widely used in LSA research, as discussed 
earlier. However, it has been an open question whether a domain 
specific LSA space would have better performance than a broader 
TASA space. This study shows that the performance of TASA space 
on AutoTutor tasks is close to random Wikipedia spaces of large 
enough corpora and high dimensionality. Even compared with well 
selected corpora, a TASA space with high dimensionality (e.g., 
k>=300) performs reasonably well on AutoTutor tasks. Therefore, 
for an application in English language, it should be safe to use TASA 
space (with k=300) when LSA is used for semantic comparison. 

However, there are two problems in using TASA. The first problem 
is that there could be important domain specific terms that are not 
included in TASA corpus. Another problem is that TASA is an 
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English corpus. When a space for another language, such as 
Chinese, French, etc., is needed, there is no simple way to compose 
a TASA corpus in other languages. Sampling documents from 
Wikipedia using the seeding method is a good solution to these 
problems.  

There are hundreds of Wikipedias in different languages. Sampling 
a Wikipedia corpus in any language is easy and free. The seeding 
method guarantees that the selected articles would include the 
keywords in the targeted domain. The seeding method also provides 
significantly better performance with relatively smaller spaces, a 
smaller vocabulary and a smaller number of dimensions. This means 
the that the seeding method helps reducing the cost of storage and 
computing while maintaining performance levels.  

In our study, the performance of domain specific spaces could be 
approximated reached in random Wikipedia spaces or TASA space. 
The difference is that, domain specific spaces could perform well 
with very low dimensionality, while non-domain specific spaces 
need much higher dimensionality to get to the same level of 
performance. Therefore, the value of using domain specific spaces 
could be the possible use of low dimensionality. This may have 
important implications is other applications. For example, in deep 
learning on natural language processing, reliable low dimensional 
word embedding will save training cost and make trained models 
more generalizable. 

To conclude, using seeding method and Wikipedia in LSA space 
generation has the following advantages: 

• It guarantees domain keyword inclusion; 
• The same method can be applied to all languages; 
• It reduces cost of storage and computing; and 
• It improves semantic evaluation accuracy. 

Once again, LSA similarity is only one of the factors considered in 
evaluating AutoTutor responses. The correlation values, about 0.43 
on hint responses and 0.56 on prompt responses, are still far away 
from human’s agreement (r>=0.82). In order to further improve 
AutoTutor assessment accuracy, other evaluation methods are 
needed, such as regular expressions. Cai et al. (2016) [4] proposed 
an alternative way in computing the LSA similarity. Instead of 
comparing the responses with the author-prepared ideal answer, 
they compared it with group responses. As we mentioned earlier, 
combining regular expression with LSA would make a better 
assessment model. In other words, LSA similarity may be used as a 
very powerful predictor to build a model to simulate human rating. 
However, using LSA alone is usually not enough. LSA vectors 
could also be used as word embedding to train deep learning models 
[20]. We did not include such algorithms in this paper, because our 
focus is on the quality of spaces, not the quality of AutoTuotor 
assessment model.  

5. ACKNOWLEDGMENTS 
The research on was supported by the National Science Foundation 
(DRK-12-0918409, DRK-12 1418288),  the Institute of Education 
Sciences (R305C120001), Army Research Lab (W911INF-12-2-
0030), and the Office of Naval Research (N00014-12-C-0643; 
N00014-16-C-3027). Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the authors 
and do not necessarily reflect the views of NSF, IES, or DoD.  The 
Tutoring Research Group (TRG) is an interdisciplinary research 
team comprised of researchers from psychology, computer science, 
and other departments at University of Memphis (visit 
http://www.autotutor.org). 

6. REFERENCES 
[1] Blei, D.M., Ng, A.Y. and Jordan, M.I. 2015. Latent 

Dirichlet Allocation. Journal of Machine Learning 
Research. 3, (2015), 993–1022. 

[2] Bradford, R.B. 2008. An empirical study of required 
dimensionality for large-scale latent semantic indexing 
applications. Proceeding of the 17th ACM conference on 
Information and knowledge mining - CIKM ’08. (2008), 
153. 

[3] Buckley, C. 1985. Implementation of the smart information 
retrieval system. Ithaca. 

[4] Cai, Z., Gong, Y., Qiu, Q., Hu, X. and Graesser, A. 2016. 
Making autotutor agents smarter: Autotutor answer 
clustering and iterative script authoring. Lecture Notes in 
Computer Science (including subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in 
Bioinformatics). 10011 LNAI, (2016), 438–441. 

[5] Cai, Z., Graesser, A., Forsyth, C., Burkett, C., Millis, K., 
Wallace, P., Halpern, D. and Butler, H. 2011. Trialog in 
{ARIES}: User input assessment in an intelligent tutoring 
system. Proceedings of the 3rd IEEE International 
Conference on Intelligent Computing and Intelligent 
Systems. March 2016 (2011), 429–433. 

[6] Crossley, S.A., Dascalu, M. and Mcnamara, D.S. 2017. 
How important is size? An Investigation of Corpus Size 
and Meaning in both Latent Semantic Analysis and Latent 
Dirichlet Allocation. FLAIRS Conference (2017), 293–
296. 

[7] Davies, M. 2010. The Corpus of Contemporary American 
English as the first reliable monitor corpus of English. 
Literary and Linguistic Computing. 25, 4 (2010), 447–464. 

[8] Gotoh, Y. and Renals, S. 1997. Document space models 
using latent semantic analysis. 7, (1997), 6–9. 

[9] Graesser, A.C., Feng, S. and Cai, Z. 2017. Two 
Technologies to Help Adults with Reading Difficulties 
Improve their Comprehension. Developmental 
perspectives in written language and literacy. In honor of 
Ludo Verhoeven. E. Segers and P. van den Broek, eds. John 
Benjamin Publishing Company. 296–313. 

[10] Graesser, A.C., Forsyth, C.M. and Foltz, P. 2017. 
Assessing conversation quality, reasoning, and problem-
solving performance with computer agents. The nature of 
problem solving: Using research to inspire 21st century 
learning. 245–261. 

[11] Graesser, A.C., McNamara, D.S., Louwerse, M.M. and 
Cai, Z. 2004. Coh-Metrix: Analysis of text on cohesion and 
language. Behavior Research Methods, Instruments, & 
Computers. 36, 2 (2004), 193–202. 

[12] Hotelling, H. 1953. New Light on the Correlation 
Coefficient and its Transforms. Journal of the Royal 
Statistical Society. Series B (Methodological). 15, 2 (1953), 
193–232. 

[13] Kontostathis, A. 2007. Essential Dimensions of Latent 
Semantic Indexing ( LSI ). (2007), 1–8. 

[14] Landauer, T.K. and Dumais, S.T. 1997. A Solution to 
Plato’s Problem: The Latent Semantic Analysis Theory of 
Acquisition, Induction, and Representation of Knowledge. 
Psychological Review. 104, 2 (1997), 211–240. 

http://www.autotutor.org/


[15] Landauer, T.K., Folt, P.W. and Laham, D. 1998. An 
introduction to latent semantic analysis. Discourse 
processes. 25, 2 (1998), 259–284. 

[16] Martin, D.I., Bear, S. and Consulting, T. 1994. 
Mathematical Foundations Behind Latent Semantic 
Analysis. 35–55. 

[17] McNamara, D., Cai, Z. and Louwerse, M. 2007. 
Optimizing LSA Measures of Cohesion. Handbook of 
latent semantic analysis. T.K. Landauer, D.S. McNamara, 
S. Dennis, and W. Kintsch, eds. Erlbaum. 379–400. 

[18] Penumatsa, P., Ventura, M., Graesser, A.C., Louwerse, M., 
Hu, X., Cai, Z. and Franceschetti, D.R. 2006. The Right 
Threshold Value: What is the Right Threshold of Cosine 
Measure When Using Latent Semantic Analysis for 
Evaluating Student Answers? International Journal on 
Artificial Intelligence Tools. 15, 05 (2006), 767–777. 

[19] Peter W. Foltz Lynn A. Streeter, K.E.L.T.K.L. 
Implementation and Applications of the Intelligent Essay 
Assessor. 

[20] Riordan, B., Horbach, A., Cahill, A., Zesch, T. and Lee, 
C.M. 2017. Investigating neural architectures for short 
answer scoring. $Bea17. (2017), 159–168. 

[21] Slater, S., Joksimović, S., Kovanovic, V., Baker, R.S. and 
Gasevic, D. 2017. Tools for Educational Data Mining: A 
Review. Journal of Educational and Behavioral Statistics. 
42, 1 (2017), 85–106. 

[22] Ștefănescu, D., Banjade, R. and Rus, V. 2014. Latent 
Semantic Analysis Models on Wikipedia and TASA. 
Proceedings of the 9th International Conference on 
Language Resources and Evaluation (LREC’14). (2014), 
1417–1422. 

[23] Steiger, J.H. 1980. Tests for comparing elements of a 
correlation matrix. Psychological Bulletin. 

[24] Wiemer-Hastings, P., Graesser, A.C., Harter, D. and Grp, 
T.R. 1998. The foundations and architecture of autotutor. 
Intelligent Tutoring Systems. 1452, (1998), 334–343. 

[25] Yang, Z., Lei, J., Fan, K. and Lai, Y. 2013. Keyword 
extraction by entropy difference between the intrinsic and 
extrinsic mode. Physica A. 392, 19 (2013), 4523–4531. 

 
 
 
 

 


