
Impact of Corpus Size and Dimensionality of LSA Spaces
from Wikipedia Articles on AutoTutor Answer Evaluation

Zhiqiang Cai

The University of Memphis
365 Innovation Drive, Suite 410
Memphis, TN 38152-3115, USA

zcai@memphis.edu

Qinyu Cheng
The University of Memphis

365 Innovation Drive, Suite 410
Memphis, TN 38152-3115, USA

qcheng@memphis.edu

Arthur C. Graesser

The University of Memphis
365 Innovation Drive, Suite 403
Memphis, TN 38152-3115, USA

graesser@memphis.edu

David W. Shaffer
University of Wisconsin-Madison
Aalborg University-Copenhagen

1025 West Johnson St
Madison, WI 53706-1706, USA

dws@education.wisc.edu

Leah C. Windsor

The University of Memphis
365 Innovation Drive, Suite 403
Memphis, TN 38152-3115, USA

lcwells@memphis.edu

Xiangen Hu
University of Memphis

Central China Normal University
365 Innovation Drive, Suite 403
Memphis, TN 38152-3115, USA

xhu@memphis.edu

ABSTRACT
Latent Semantic Analysis (LSA) plays an important role in
analyzing text data from education settings. LSA represents
meaning of words and sets of words by vectors from a k-dimensional
space generated from a selected corpus. While the impact of the
value of k has been investigated by many researchers, the impact of
the selection of documents and the size of the corpus has never been
systematically investigated. This paper tackles this problem based
on the performance of LSA in evaluating learners’ answers to
AutoTutor, a conversational intelligent tutoring system. We report
the impact of document sources (Wikipedia vs TASA), selection
algorithms (keyword based vs random), corpus size (from 2000 to
30000 documents) and number of dimensions (from 2 to 1000). Two
AutoTutor tasks are used to evaluate the performance of different
LSA spaces: a phrase level answer assessment (responses to focal
prompt questions) and a sentence level answer assessment
(responses to hints). We show that a sufficiently large (e.g., 20,000
to 30,000 documents) randomly selected Wikipedia corpus with
high enough dimensions (about 300) could provide a reasonably
good space. A specifically selected domain corpus could have
significantly better performance with a relatively smaller corpus size
(about 8000 documents) and much lower dimensionality (around
17). The widely used TASA corpus (37,651 documents
scientifically sampled) performs equally well as a randomly selected
large Wikipedia corpus (20,000 to 30,000) with a sufficiently high
dimensionality (e.g., k>=300).

Keywords

AutoTutor, LSA, TASA, Wikipedia, corpus size, dimensionality

1. INTRODUCTION
1.1 Latent Semantic Analysis in Education
Data Mining
Text mining is one of the most important tasks in education data
mining [21]. Education text data could be textual learning content
presented to learners, essays from learners, solutions to problems,
answers to questions, conversations between collaborators, and so
on. Researches have shown that analyzing such text data is crucial
for improving education quality and reducing education cost. For
example, Graesser et al. [9] reported that scaling texts to match the
reading level and reading style of learners could facilitate the
learning process. Foltz et al. [19] showed that automatic essay
grading could greatly reduce teachers’ workload. Wiemer-Hasting
et al. [24] and Graesser et al. [10] showed that automatic answer
evaluation makes it possible for intelligent environments to give
immediate feedback to learners’ text inputs. LSA (latent semantic
analysis) plays an important role in all these text analysis tasks.
LSA is a method that extracts the meaning of words from a large
body of texts (corpus) [15]. The mathematics behind LSA is
surprisingly simple. The extraction process is just counting the
number of occurrences of each word in each document, resulting in
a word-document matrix, with rows representing words and
columns representing documents. Thus, each row of the matrix is
actually a vector representation of a word in a high dimensional
space (the number of dimensions equals the number of documents).
The raw occurrence counts are usually transformed by certain
weighting method, such as TFIDF or Log-Entropy (see e.g., [14,
16]). After the transformation, a matrix entry has a higher value if
the corresponding word is unevenly distributed in the corpus and
frequent in the document corresponding to the column the word
entry is in. A dimension reduction technique, namely, singular value
decomposition, is applied to the weighted matrix to produce vector
representations for words (as well as documents) with lower
dimensionality. Weighted sum of word vectors is often used to form
vector representations of phrases, sentences, paragraphs and
documents. Different weight algorithms and their effects can be
found in McNamara et al. [17]. More details on LSA vector space
generation can be found in Landauer et al. [15].

With vector representations, the similarity of the meaning of two
texts can be computed as the cosine between two vectors. This
similarity measure has been widely used in many applications. For
example, Coh-Metrix (cohmetrix.com) measures text cohesion by
computing the average LSA cosine between sentence vectors and
paragraph vectors [11]. AutoTutor (autotutor.org) evaluates
learners’ text inputs by computing the cosine between the input text
vector and the ideal answer vector [4]. The Intelligent Essay
Assessor [19] uses LSA cosine between vectors of target essay and
pre-scored essays as one of the most important predictor in
automatic essay scoring.
The number of dimensions of LSA vector spaces, usually denoted
by k, has been investigated by many researchers. The most
influential study is probably the one published by Landauer and
Dumais in 1997 [14]. They generated an LSA space from 30,473
encyclopedia articles and then applied the vectors in a TOEFL (Test
of English as a Foreign Language) word comparison task. They
found that the value of k had large impact on the LSA performance
and the best choice was about 300. This value, k=300, has been used
as a magic number in many later applications. However, researchers
also reported a large range of optimal values of k (from 6 to over
1000), depending on the corpus used for generating the LSA space
and the specific task the LSA was applied to. A long list of studies
can be found in Bradford (2008) [2].
In addition to dimensionality, the size and the content of the corpus
used for LSA space generation also influences the performance of
LSA. Researchers reported the use of different corpora, such as
Touchstone Applied Science Association (TASA) corpus
(http://lsa.colorado.edu/spaces.html), the Corpus of Contemporary
American English (COCA) [7], Encyclopedia, and so on. The size
of reported corpora varied from hundreds to hundreds of thousands
of documents. Some studies reported the optimal values of k for
different corpora with very different sizes. For example,
Kontostathis (2007) [13] reported a study on 7 corpora with sizes
varying from 1033 to 348,566 documents. While the optimal value
of k for each corpus was reported, no corpus size effect was
considered. A recent study reported by Crossley et al. (2017) [6]
showed significant performance differences of two corpora with
different sizes (44K vs 55K documents) and the same k =300,
assuming 300 is the optimal value. However, they did not consider
the real optimization of the value k for each corpus. Furthermore,
the two corpora, TASA and COCA, contain different kinds of
articles. It is not clear whether it was the corpus size or any other
document features (e.g. genre, readability, concreteness, cohesion,
formality, etc.) that caused the performance difference.
The size of data that needs to be stored for the word vectors of an
LSA space is proportional to the product of number of words and
the value of k. When performance is guaranteed, a small corpus with
a small k would save both storage and computation cost in using
LSA. Searching for an optimal corpus size to generate an LSA space
is a task that needs to be accomplished together with the
optimization of k. That is, it is an optimization problem involving
two parameters, which unfortunately is more difficult and
computationally more expensive. An added difficulty is to control
other document features when the corpus size varies. One way to
control the document features is to systematically sample articles
from a particular single source to form corpora of different sizes. In
this paper, we will focus on sampling corpora from Wikipedia.

1.2 Latent Semantic Analysis for AutoTutor
Answer Evaluation
AutoTutor is a conversational intelligent tutoring system. Since the
late 1990s, many AutoTutor systems have been developed, targeting
different domains, including computer literacy, physics, critical
thinking, and electronics. AutoTutor has become an ideal platform
for collecting text data from learners and a testbed for natural
language processing technologies.
AutoTutor helps learners learn by holding a conversation between
computer agents (one or more) and human learners, targeting the
solution to specific problems. AutoTutor usually starts a
conversation with a deep “main question”, to which the ideal answer
is often about a paragraph in length. The goal of the conversation is
to help a learner construct an answer semantically equivalent to the
prepared ideal answer. To learners who cannot meet the goal at the
first try, AutoTutor asks follow-up questions that target missing
information. There are two types of such AutoTutor follow-up
questions. One is called “hint”, to which the answer is about a
sentence long. Another is called “prompt”, to which the answer is
usually a word or a phrase. An AutoTutor conversation ends either
when the goal is met or the prepared questions are exhausted. The
following is an excerpt of an AutoTutor conversation in a
Newtonian physics system.
AutoTutor [main question]: Suppose a boy is in a free-falling
elevator and he holds his keys motionless right in front of his face
and then lets go. What will happen to the keys? Explain why.
Student [first try]: The keys will move up since the elevator is
falling and the keys are in the elevator, the keys will go in the
opposite direction of the free falling elevator.
AutoTutor [feedback]: Umm, that is an interesting answer!
AutoTutor [hint]: What can you say about the vertical velocity of
the keys?
Student [response to hint]: The vertical velocity will be at a
constant acceleration of 9.8.
AutoTutor [feedback]: OK. See if you can get this.
AutoTutor [prompt]: The boy and his keys have the same initial
vertical what?
Student [response to prompt]: Velocity.

In each conversation turn, AutoTutor evaluates the learner’s input
and makes decisions on the selection of feedback type and the next
move (asking a new question or ending the conversation). With the
help of regular expressions, LSA plays an important role in
matching the meaning of the learner’s input with prepared answers.
The mathematical AutoTutor assessment models, normally a
combination of LSA and regular expressions, can be found in Cai et
al. (2011) [5].

When an AutoTutor application is developed, an LSA space
generated from a domain specific corpus is often needed, because
the meaning of words may differ from domain to domain. For
example, the meaning of the word “force”, according to Oxford
Dictionary (https://en.oxforddictionaries.com) could be defined as
“strength or energy as an attribute of physical action or movement”
or “an organized body of military personnel or police”. When an
LSA space is generated, the meaning of a word can usually be
observed by the “nearest neighbors”, namely, the words with highest
LSA cosine with the target word. Table 1 shows 5 nearest neighbors
of the word “force” from three different LSA spaces: a Wikipedia
space targeting Newtonian physics articles (4000 documents, 17
dimensions), a randomly sampled Wikipedia space (4000 articles,
17 dimensions) and the TASA corpus (37651 articles, 300
dimensions). It looks obvious that the meaning of “force” in the

http://lsa.colorado.edu/spaces.html

targeted corpus and TASA is more of the sense in Newtonian
physics, while in the random Wikipedia space, the meaning is more
of the sense in military.

Table 1. Nearest neighbors of “force” in different spaces

Corpus Docs Dim Nearest Neighbors

Targeted 4000 17 exert, act, pull, experience, push

Random 4000 17 belligerent, offensive, gun,
command, patrol

TASA 37651 300 unbalanced, exert, centripetal,
turntable, Newton

It has long been believed that the performance of LSA depends on
the selection of corpus. Cai et al [5] showed that, with a well selected
corpus, LSA could be used together with regular expressions to
build a model that evaluates learners’ responses in AutoTutor almost
as good as human. However, it has never been reported about the
combined impact of the article selection, the size of the corpus and
the optimization of k for the LSA component.

1.3 Wikipedia as Document Source for Corpus
Sampling
In order to investigate the impact of document selection and corpus
size, we need a reliable document source that contains enough many
articles for different domains. Wikipedia (Wikipedia.org) is an ideal
source for this. By the end of 2017, the English Wikipedia had about
5.6 million content articles, containing almost everything. New
articles are still being added.

There are reports on LSA spaces generated from Wikipedia. For
example, Ștefănescu et al. (2014) [22] compared the performance of
Wikipedia spaces with TASA spaces on a word similarity task.
However, they did not consider the “domain” specificity and the
impact of the corpus size. They took all documents in Wikipedia as
a whole for LSA space generation, taking into account of different
filtering strategies, resulting in huge spaces.

1.4 Rational and Research Questions
Researchers have believed that the corpus used to generate an LSA
space should align with the targeted domain. Gotoh et al. (1997) [8]
showed a typical way of constructing a domain specific corpus:
finding articles labeled in a category, such as “natural science”,
“world affairs”, “arts”, and so on. The targeted domain is then
represented as a mixture of such categories. People are often
convinced that domain specific spaces are needed from seeing
“nearest neighbors” that show different meaning representations
(see Table 1). However, several questions remain unanswered. For
a given task, is it really necessary to generate a domain specific
space? In other words, does a domain specific space perform
significantly better than a generic space? A related question
immediately emerges: how do we measure the “domain
specificity”? How do we know the degree to which a corpus is
targeting a given domain? Furthermore, what do we mean by a
“domain”? How should a domain be defined or specified? There are
also practical application questions related to this. For example,
would a domain specific space save storage and computation costs
with better or equivalent accuracy in performing a given task?
Answers to these questions are important. If we know a generic
space (e.g. TASA) can work as well as a domain specific space, we
will not need to spend time and resources to generate new spaces.
Domain spaces are needed only if they perform significantly better

or can save storage and computation time without sacrificing
performance.

2. METHOD
2.1 AutoTutor Data
We compared the performance of LSA spaces on evaluating
learners’ responses to a Newtonian physics AutoTutor. The data
contained responses of college students to 10 problems about
Newtonian physics. Table 2 shows the number of hints and prompts
and the number of responses in each of the 10 problems. There were
114 hints and 133 prompts in total. This resulted in 4941 hint
responses and 2643 prompt responses. On average, there were about
43 responses per hint and 20 responses per prompt. The reason why
there were more hint responses was that AutoTutor conversations
started with a hint, followed by a prompt, then another hint followed
by another prompt, and so on. An AutoTutor conversation ended
when a learner’s responses covered all aspects of the ideal answer.
Thus, if the conversation ended after a prompt, the number of hint
responses and prompt responses in that conversation would be the
same. However, if the conversation ended after a hint, the number
of hint responses would be one more than the number of prompt
responses in that conversation. The ratio of prompt responses to hint
responses depends on the number of “hint-prompt” cycles that
occurred in the conversation. The fact that there were more than
twice of hint responses than prompt responses indicates that many
conversations ended after the first or second hint question.

Table 2. Number of hint and prompt responses
Problem Hints Hint

responses
Prompts Prompt

responses

Pumpkin 16 865 12 299

Sun and earth 6 186 1 23

Free key fall 12 969 10 403

Neck injury 11 308 12 272

Clown juggling 15 540 30 481

Car collision 11 431 6 86

Packet drop 13 801 9 285

Container mass 10 454 15 403

Clay balls 11 213 25 264

Car towing 9 174 13 127

Total 114 4941 133 2643

According to the design of AutoTutor, a hint question targets an
answer about a sentence long and the answer to a prompt question
is usually a word or a phrase. Table 3 shows that the hint responses
in our data set were about 8 words on average; and the prompt
responses were about 3 to 4 words on average. Penumatsa et al.
(2006) [18] showed that the cosine values are length dependent.
That is, longer texts tend to yield larger cosine values. Cai et al.
(2016) [4] reported that LSA performed differently on hint
responses and prompt responses. Their explanation was that the hint
questions and prompt questions had different “uncertainties”. The
responses to a question with higher uncertainty would be more
divergent and thus more difficult to assess. Following this, we
investigated LSA performance on hint and prompt responses
separately.

Table 3. Hint and prompt answer/response lengths

Answer N Mean Std

Hint Ideal 112 10.64 3.59

Hint Responses 4861 8.01 8.82

Prompt Ideal 125 3.53 1.06

Prompt Responses 2603 1.64 3.06

2.2 Human Rating
The student responses were rated by two experts; one was a full
professor and the other was a graduate student. Both raters had
background in computer engineering and had good understanding of
Newtonian physics. A rating tool was built to facilitate the rating
process (see Figure 1). At the middle left panel of the tool, there is
a list box for raters to choose hints and prompts. At the top panel,
there is a text box that displays a hint/prompt question, together with
its associated main question and their answers. The data table at the
bottom right panel shows all student responses and 7 rating options.
A response is scored by a click on an option. A “0” means the
response is not an answer to the question at all, such as “what”, “I
don’t know”, “what do you mean”, and so on. A “1” indicates a
response that has no semantic similarity to the prepared ideal answer
and “6” indicates a perfect answer. Red and gray colors are used to
mark unrated and rated items, respectively. At the bottom left corner,
there is a text box that shows the number of items already rated and
the number of items that are to be rated. This tool helped the raters
more easily and accurately rate the responses.

Figure 1. Rating tool.

From the 7584 responses, 120 were randomly sampled as training
corpus. After rating the training corpus, two raters discussed the
rating criteria and independently rated the rest of the items. Table 4.
shows the correlations between the two raters. The correlations were
about 0.82, which indicate that there were some disagreements
between the two raters. In other words, even for human experts, such
evaluation tasks are sometimes difficult. We had thought that
answers to prompts should be easier to evaluate than answers to hint.
However, the correlation of two raters’ ratings on prompts is only
slightly higher. The Fisher transform [12] showed that the Z value
of the two correlations (hints vs prompts) was 0.90 (p=0.369), which
indicates that the difference is not significant. It should be noted that
this Z value is for two independent correlations from different
samples. There is another Z-test for dependent correlations, which
will be used in the later part of this paper. The Z transform showed
that the human rates agreed on hint and prompt responses similarly.

That indicates that human raters did not experience more difficulty
in evaluating hint responses than prompt responses.

Table 4. Correlations between ratings of two raters.

Question Type N Correlation

Hint 4861 0.820

Prompt 2603 0.827

All 7464 0.828

2.3 Sampling Corpora from Wikipedia
2.3.1 Seeding method for sampling domain specific
corpus
Our goal was to investigate whether or not a “domain specific”
corpus generates an LSA space with higher performance for our
tasks. However, it is hard to quantify what a “domain specific”
corpus really is. Many researchers used corpora that showed obvious
domain labels. For example, MED corpus is for “Medical”, CISI
corpus for “Information Science” [3], COCA for “Contemporary
American English” [7], and so on. However, we don’t really know
how specific these corpora are with respect to the labeled domain.
Our way of handling this problem starts from specifying a domain
by a seed corpus – a small number of documents representing the
targeted domain. The seed corpus could be the sections of a book, a
small collection of articles focusing on a specific topic, or just some
documents that are under analysis.
Once a seed corpus is identified, we extract keywords out of the seed
corpus and assign a “keyness” value to each keyword. Thus, a
“domain” is represented by the keyness assignment to the domain
vocabulary. This is similar to the idea in topic modeling, where a
topic is represented by probability distribution on a word list (see,
for example, [1]).
The word keyness computation is then applied to compute document
keyness by averaging the keyness of the words in a document. To
search documents from a large document source (such as
Wikipedia), we compute the keyness of each document. The
documents in the source are then ranked by the document keyness.
We select the high ranking documents from the source as a domain
corpus. We call this process the “seeding method.”

Figure 2. Illustration of seeding method.

Figure 2 visually illustrates the process of selecting documents from
Wikipedia articles. It is difficult to directly evaluate the validity of
this process. A possible way is to present a sample of documents to
experts and see what proportion of documents are highly relevant to
the desired domain. We do not do so in this paper. Instead, we
evaluate this process by comparing the LSA performance of selected
corpora with randomly sampled corpora. Our logic is simple: if

domain specificity matters and the selected corpora work better than
random corpora, then the seeding method is valid.

2.3.2 Computing word keyness
To compute the keyness of words, we considered two factors. First,
a high keyness word should not be very common in general use. To
quantify this, we used the log-entropy weight from a general
reference corpus, TASA, as a measure of how common a word is in
general use:

𝐸(𝑤) = 1 +
∑ 𝑝𝑖(𝑤)𝑙𝑜𝑔𝑝𝑖(𝑤)𝑁

𝑖=1

𝑙𝑜𝑔𝑁

where

𝑝𝑖(𝑤) =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑤 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑤 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠

In the above equations, N is the number of documents in TASA,
which is 37,651. The log-entropy weight, 𝐸(𝑤) , ranges from 0 to
1. A value close to 0 indicates that the word 𝑤 is evenly distributed
in TASA corpus, such as function words. A value close to 1
indicates that the word distributed unevenly in the corpus. More
detailed information about entropy use can be found in LSA
publications (for example, Martin et al. (1994) [16]).
Another factor we considered was that a high keyness word should
be highly frequent in the seed corpus. We used the normalized
logarithm of frequency to quantify this. The final word keyness with
respect to the seed corpus was computed as the product of two
values. One was the logarithm of the number of seed documents the
word is in, divided by the logarithm of the total number of
documents; and the other was the log-entropy weight of the word in
TASA:

𝑘𝑒𝑦𝑛𝑒𝑠𝑠 =
log 𝑓(𝑤)

log 𝐷
𝐸(𝑤)

where
𝑓(𝑤): the number of seed documents the word 𝑤 is in;
𝐷: the total number of seed documents; and
𝐸(𝑤): the log-entropy weight of the word 𝑤 from TASA corpus.

2.3.3 Sampling a Newtonian physics corpus from
Wikipedia
For this study, we used the 114 hint questions and the 133 prompt
questions as seed corpus to compute the word keyness. This is such
a small corpus that it only covered a small part of Newtonian
physics. However, it provided a good starting point for us to find
related categories from Wikipeida. Using the keyness equation, each
word in the seed corpus was assigned a keyness. We ignored the
words with keyness less than 0.01 and obtained 262 keywords. The
top 10 keywords, together with their keyness values are listed
below:

1) free-fall: 0.588
2) packet: 0.537
3) pumpkin: 0.526
4) acceleration: 0.496
5) velocity: 0.478
6) clown: 0.467
7) velocities: 0.449
8) horizontal: 0.427
9) keys: 0.424
10) headrest: 0.407

From the list above, we see that some words, such as “acceleration”,
“velocity” are concepts of Newtonian physics. However, other

words are specific to the 10 problems. To construct a corpus that has
a wide coverage of Newtonian physics, we queried Wikipedia
categories with these 262 keywords and obtained 154 associated
categories. From these 154 categories we manually selected 16
categories that are highly related to Newtonian physics, as shown in
the list below:

1) Acceleration
2) Change
3) Classical mechanics
4) Concepts in physics
5) Dynamics(mechanics)
6) Force
7) Gravitation
8) Kinematics
9) Mass
10) Mechanics
11) Motion
12) Physics
13) Systems
14) Temporal rates
15) Time
16) Velocity

In Wikipedia, each category is associated with a set of articles and a
set of subcategories. For example, at the time this paper was written,
the category “force” contained 67 articles (such as “force”,
“friction”, “weight”, etc.) and 8 subcategories (such as “motion”,
“fictitious forces”, “friction”, etc.) The above 16 selected categories
served as “seed categories” of our query. We downloaded all articles
from these 16 categories. Then we downloaded the articles from
subcategories. Since each subcategory also contained subcategories,
we could actually find a very large number of articles by following
the subcategories of subcategories. In this study, we downloaded
30,000 articles.

We did not treat each article as a document of our corpus for LSA
space generation. Instead, we used selected sections in the articles.
Each Wikipeida article contained a definition section and many
other sections. For example, the article “force” in physics contained
17 sections, such as “Development of the concept”, “Pre-Newtonian
concepts”, “Newtonian mechanics”, etc. We computed the keyness
of each section of each article by averaging the word keyness
computed from the seed corpus. Words that did not appear in the
seed corpus or with keyness less than 0.01 were ignored. Notice that,
although the problem specific keywords, such as “packet”,
“pumpkin”, “clown”, etc., had high keyness, since they are unlikely
to appear in the articles from the selected categories, their effect in
the section selection process was limited. The list below shows the
number of sections of the top 10 keywords appeared in a corpus with
32,000 selected sections:

1) free-fall:73
2) packet:106
3) pumpkin:7
4) acceleration:1906
5) velocity:4424
6) clown:4
7) velocities:866
8) horizontal:1204
9) keys:124
10) headrest:1

Obviously, the Newtonian physics concepts, such as “velocity”,
“acceleration”, etc., dominated the selection process. The problem
specific terms, such as “headrest”, “clown” and “pumpkin” rarely
appeared in the selected sections.

To avoid section length effect, we ignored any section with length <
50 words. For sections with words between 50 and 300, the section
keyness was the average word keyness. For long sections with more
than 300 words, the keyness was computed as the average over the
first 300 words.

To compare the impact of the corpus size, we selected 5 corpora
with size (number of sections) 2,000, 4,000, 8,000, 16,000 and

30,000. We name them NP2000, NP4000, …, NP30000, where
“NP” stands for “Newtonian Physics”. Each Newtonian physics
corpus contained the highest keyness sections in the selected
articles. Therefore, they were nested, namely, the sections of a
smaller Newtonian physics corpus were all included in a larger
Newtonian physics corpus. For example, NP8000 contained all
sections of NP2000 and NP4000 (see Figure 3, left).

Figure 3. Illustration of nested domain corpora (left) and overlapped random corpora (right).

2.3.4 Sampling a random corpus
In order to compare the effect of the keyness-based sampling, we
randomly sampled 5 corpora with same sizes as Newtonian physics
corpora. The sampling process was similar to the Newtonian physics
corpora sampling. The difference was that the seed keywords were
1000 words randomly sampled from TASA vocabulary. We
downloaded 30,000 articles from the categories and their
subcategories associated with the 1000 seed keywords. Then we
randomly sampled sections from the 30,000 articles. Like NP
sampling, sections with less than 50 words were ignored. The five
random corpora were named, based on their sizes, as R2000, R4000,
R8000, R16000 and R30000. The random corpora could be
overlapped but not necessarily nested (see Figure 3, right).

2.4 LSA Spaces
A total of 11 LSA spaces were generated, 5 Newtonian physics
spaces, 5 random spaces and a TASA space. The log-entropy
weighting was applied to the word-document matrices. Function
words and words appeared less than 3 documents in a corpus were
ignored. The dimensions were all 1,000. In the rest of the paper, we
will only refer to these 11 spaces. However, the similarities in each
space were computed with varied dimensions. Mathematically
speaking, different dimensions means different spaces. For example,
NP8000 with 100 dimensions is a different space than NP8000 with
300 dimensions. However, in this paper, we refer to them as the
“same space” and treat the dimension as a parameter in computing
LSA similarities.

2.5 Evaluating AutoTutor Responses by LSA
For each of the above 11 spaces, the LSA semantic similarities
between ideal answers and learners’ responses were computed for
the varying number of dimensions (k=2, 3, …, 1000). The
performance of each space with each value of k was measured by
the correlation between the LSA similarity and the average human
rating on the responses. Cai et al [4] showed that LSA performances

on hint questions and prompt questions are very different. Therefore,
we considered the LSA performance on hint questions and prompt
questions separately. Table 5 shows some example responses of a
hint question, their LSA similarity to the ideal answer, and the
human rating.

Table 5. Example of learners’ responses to the hint question
“How does the net force affect the car?”. The ideal answer is
“The net force exerted on the car results in an acceleration of

two meters per second squared.” LSA similarities were
computed using TASA space, 300 dimensions. Human ratings

are average scores of two raters.

Response LSA Human

Horizontally 0.16 1

it stays the same 0.16 1

it does not effect the car 0.19 1

it causes it to accelerate 0.49 2
the net force doesn't change and
therefore when the mass is doubled the
acceleration must be halved

0.51 5.5

The net force on the car is what causes
it to accelerate 0.69 5.5

It causes an acceleration of two meters
per second 0.71 5.5

The significance of performance differences were measured by
Steiger Z-test [23], which is a statistic method for testing the
significance of differences between two dependent correlations that
share a variable in common. This is different from the independent
correlation comparison that we used earlier. The Steiger Z-test
compares correlation coefficients involving three variables.
Assuming the three variables are A, B and C, with C as the shared
common variable, the two correlations under comparison are:

• The correlation coefficient between A and C and
• The correlation coefficient between B and C.

To compare the two correlation coefficients, the correlation
coefficient between A and B is also included in the computation,
together with the number of data points, N. When the absolute value
of Z is greater than 1.96, the two correlation coefficients under
comparison are considered significantly different. In our study, C is
the human rating whereas and A and B are two LSA similarities.

3. RESULTS
3.1 Impact of corpus size and number of
dimensions for Newtonian physics spaces
Consider first the hint responses. Although the corpus sizes were
very different among the five Newtonian physics spaces, the
performance curves as functions of dimensions were surprising
similar. They all had lowest performance at k=2, with correlations
about 0.28. When the number of dimensions increased, the
performance curves of all spaces quickly increased. The peak of
about 0.425 was reached around k=17. The performance curves then
dropped and reached a trough around k=128. After that, they grew
up again and converged from about k=300 to a value about 0.40.
Figure 4 shows the performance as functions of k for the NP spaces
on hint responses from k=2 to k=1000. We used a logarithm scale
on dimensions, following the method that Landauer et al. (1998)
used when plotting the dimensionality effects on TOEFL tests.

Figure 4. Performance of NP spaces on hint responses.

Although not very large, significant differences were observed
among different spaces. The best performance on hint responses was
NP8000 at k=17, with the highest correlation being 0.428. Z-test
showed that, with the same k value, NP8000 performed significantly
better than other spaces (see Table 6). The differences of
correlations were from 0.01 to 0.036. This value, 0.428, was also
significantly better than the performance of the same space NP8000
with k value less than 16 or greater than 64 (see Table 7).

Table 6. Z-test comparing performance of target spaces with
fixed k=17 and varied corpus size on hints to the optimal target

space (corpus size=8000, k=17) and performance (0.428). R-
opt is the correlation with the optimal space. N=4861.

Space Performance R-opt Z p(2-tail)
NP2000 0.415 0.916 2.449 0.014
NP4000 0.418 0.964 2.837 0.004
NP16000 0.409 0.970 5.654 0.000
NP30000 0.392 0.934 7.607 0.000

Table 7. Z-test comparing performances of target spaces with
fixed corpus size=8000 and varied k on hints to the optimal

target space (corpus size=8000, k=17) and performance
(0.428). R-8000 is the correlation to the optimal space. N=4861.

Dim Performance R-opt Z p(2-tail)

2 0.286 0.582 11.837 0

4 0.322 0.731 11.031 0

8 0.394 0.913 6.265 0

16 0.425 0.997 2.986 0.003

32 0.425 0.953 0.756 0.45

64 0.412 0.88 2.525 0.012

128 0.395 0.794 3.976 0

256 0.391 0.732 3.916 0

512 0.393 0.689 3.448 0

1000 0.396 0.655 3.001 0.003

The Newtonian physics spaces performed differently on prompt
questions. The overall performance on prompts were higher than on
hints. Also, the corpus size had a larger impact. NP8000 performed
best overall. Two smaller spaces, NP2000 and NP4000, performed
significantly worse. Larger spaces performed almost equally as well
as NP8000. For k=2, the performance of smaller spaces was around
0.2, while for larger spaces, the performance was over 0.3. The
performance curves for all spaces increased when the value of k
increased. However, there was no early peak. At about k=24, the
performance curves started to converge. The best performance for
k=24 was again the space NP8000, which was 0.542. When the
value of k further increased, the performance curves continuously
and slowly increased. The maximum performance was at about
k=300, which is 0.566 for larger spaces. The performance curves
slowly dropped after k=300. At k=1000, the performance of small
spaces was about 0.51 and the larger spaces around 0.54. Figure 5
shows the performance curves of the spaces as functions of k on
prompt responses.

Figure 5. Performance of NP spaces on prompt responses

3.2 Comparing with Random Wikipedia
Spaces and TASA Space
For small values of k (<32), Newtonian physics spaces performed
much better (about 0.1 higher) than random spaces and TASA space
on both hint responses and prompt responses. TASA space was
worse than Newtonian physics spaces but better than random spaces.
However, the performance curves of all large spaces converged to
almost the same after about 300 dimensions. Figure 6 shows the

0

0.1

0.2

0.3

0.4

0.5

2 4 8 16 32 64 128 256 512 1000

NP2000 NP4000 NP8000

NP16000 NP30000

0

0.2

0.4

0.6

2 4 8 16 32 64 128 256 512 1000

NP2000 NP4000 NP8000

NP16000 NP30000

performance of NP8000, R8000 and TASA on hint responses.
Unlike Newtonian physics spaces, random spaces and TASA space
did not have a peak performance. Instead, their performance curves
continuously and slowly grew and converged.

Figure 6. Comparing NP8000, R8000 and TASA on hint

responses.
Figure 7 shows the performance of NP8000, R8000 and TASA
spaces on prompt questions. Newtonian physics space NP8000
performed best, especially at around k=17. For lower
dimensionality, TASA space was slightly better than random space.
However, after k=32, the random space became slightly better than
TASA.

Figure 7. Comparing NP8000, R8000 and TASA space on

prompt responses.

4. DISCUSSION AND FUTURE WORK
In AutoTutor applications, LSA similarities has been used as an
important feature for building models to evaluate learners’
responses. Every time a new application was created, a new “domain
specific” spaces was generated. The so called “domain specific”
spaces were usually generated from a corpus provided by domain
experts. It was often unclear whether or not the documents in the
domain corpus were sufficiently representative. That motivated us
to explore the impact of document selection and corpus size, taking
into account the optimal space dimensionality.

Instead of relying on experts’ selections, we used Wikipedia as a
universal source to select corpus for any domain. In this study, we
used a method called “seeding method” to select Wikipedia articles
based on a small seed corpus. Although the seeding method started
with an automatic keyness computation and ended with automatic
document ranking and selection, the method was not fully
automatic, because, in the middle of the process, a manual

Wikipedia category selection was involved. Because of this manual
selection, the document ranking was constrained by the category
selection. That is, the document ranking was computed only over a
subset of Wikipedia articles. Although this reduced the searching
cost, it is not clear how much better a space could be if the
documents were selected from all Wikipedia articles. A fully
automatic and inexpensive Wikipedia article selection algorithm
apparently is still needed.

The seeding method was not directly evaluated. However, its effect
has been shown by the fact that the selected spaces perform
significantly better than random spaces. Yet, the seeding method
might have room for improvement. Better keyness assignment and
document ranking algorithms are possible. For example, the entropy
based keyword extraction algorithm provided by Yang et al. [25] is
a good candidate for more sophisticated keyness assignment
algorithms. Even further, instead of keyness based document
ranking, other methods without keyness assignment are possible.
For example, a seed LSA space could be generated from the seed
corpus. Then a small number of Wikipedia articles could be selected
to form a slightly larger corpus. Then a larger LSA space is
generated and more Wikipedia articles are added. Such an iterative
process could be more expensive but may provide better LSA
spaces.

This study revealed several interesting results about the impact of
dimensionality. When we examined the performance, we did not
expect that k=2 could provide a significant correlation. It turned out
that 2 dimensional spaces (e.g. NP8000, TASA) could actually
perform quite well (around 0.3). This fact is important because two
dimensional vectors are easy for visualization. Therefore, if a 2-
dimensional space could provide acceptable performance, it may be
considered if visualization is a concern.

Another interesting finding is that the optimal k could be very small
(e.g., 17 for NP8000). A small k implies low cost in both storage and
computation. However, it may not be possible to identify the optimal
k without dependent data, such as human ratings. When such data is
not available, we certainly want to know what k is safe for use. This
study showed that k=300 is a safe dimensionality for both hint and
prompt response evaluation.

It seems obvious that there must be an optimal corpus size, which is
not too small and not too large. If a corpus is too small, it may have
two problems: 1) it cannot represent the desired domain and 2) it
cannot provide enough semantic associations for generating
meaningful vectors. If a corpus is too large, it will lose focus. This
study shows that NP8000 is better than smaller and larger corpora.
The problem, however, is that this optimal size is identified using
human rated data. When human ratings are not available, a relatively
large corpus would be safer.

TASA space has been widely used in LSA research, as discussed
earlier. However, it has been an open question whether a domain
specific LSA space would have better performance than a broader
TASA space. This study shows that the performance of TASA space
on AutoTutor tasks is close to random Wikipedia spaces of large
enough corpora and high dimensionality. Even compared with well
selected corpora, a TASA space with high dimensionality (e.g.,
k>=300) performs reasonably well on AutoTutor tasks. Therefore,
for an application in English language, it should be safe to use TASA
space (with k=300) when LSA is used for semantic comparison.

However, there are two problems in using TASA. The first problem
is that there could be important domain specific terms that are not
included in TASA corpus. Another problem is that TASA is an

0

0.1

0.2

0.3

0.4

0.5

NP8000 R8000 TASA

0
0.1
0.2
0.3
0.4
0.5
0.6

NP8000 R8000 TASA

English corpus. When a space for another language, such as
Chinese, French, etc., is needed, there is no simple way to compose
a TASA corpus in other languages. Sampling documents from
Wikipedia using the seeding method is a good solution to these
problems.

There are hundreds of Wikipedias in different languages. Sampling
a Wikipedia corpus in any language is easy and free. The seeding
method guarantees that the selected articles would include the
keywords in the targeted domain. The seeding method also provides
significantly better performance with relatively smaller spaces, a
smaller vocabulary and a smaller number of dimensions. This means
the that the seeding method helps reducing the cost of storage and
computing while maintaining performance levels.

In our study, the performance of domain specific spaces could be
approximated reached in random Wikipedia spaces or TASA space.
The difference is that, domain specific spaces could perform well
with very low dimensionality, while non-domain specific spaces
need much higher dimensionality to get to the same level of
performance. Therefore, the value of using domain specific spaces
could be the possible use of low dimensionality. This may have
important implications is other applications. For example, in deep
learning on natural language processing, reliable low dimensional
word embedding will save training cost and make trained models
more generalizable.

To conclude, using seeding method and Wikipedia in LSA space
generation has the following advantages:

• It guarantees domain keyword inclusion;
• The same method can be applied to all languages;
• It reduces cost of storage and computing; and
• It improves semantic evaluation accuracy.

Once again, LSA similarity is only one of the factors considered in
evaluating AutoTutor responses. The correlation values, about 0.43
on hint responses and 0.56 on prompt responses, are still far away
from human’s agreement (r>=0.82). In order to further improve
AutoTutor assessment accuracy, other evaluation methods are
needed, such as regular expressions. Cai et al. (2016) [4] proposed
an alternative way in computing the LSA similarity. Instead of
comparing the responses with the author-prepared ideal answer,
they compared it with group responses. As we mentioned earlier,
combining regular expression with LSA would make a better
assessment model. In other words, LSA similarity may be used as a
very powerful predictor to build a model to simulate human rating.
However, using LSA alone is usually not enough. LSA vectors
could also be used as word embedding to train deep learning models
[20]. We did not include such algorithms in this paper, because our
focus is on the quality of spaces, not the quality of AutoTuotor
assessment model.

5. ACKNOWLEDGMENTS
The research on was supported by the National Science Foundation
(DRK-12-0918409, DRK-12 1418288), the Institute of Education
Sciences (R305C120001), Army Research Lab (W911INF-12-2-
0030), and the Office of Naval Research (N00014-12-C-0643;
N00014-16-C-3027). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF, IES, or DoD. The
Tutoring Research Group (TRG) is an interdisciplinary research
team comprised of researchers from psychology, computer science,
and other departments at University of Memphis (visit
http://www.autotutor.org).

6. REFERENCES
[1] Blei, D.M., Ng, A.Y. and Jordan, M.I. 2015. Latent

Dirichlet Allocation. Journal of Machine Learning
Research. 3, (2015), 993–1022.

[2] Bradford, R.B. 2008. An empirical study of required
dimensionality for large-scale latent semantic indexing
applications. Proceeding of the 17th ACM conference on
Information and knowledge mining - CIKM ’08. (2008),
153.

[3] Buckley, C. 1985. Implementation of the smart information
retrieval system. Ithaca.

[4] Cai, Z., Gong, Y., Qiu, Q., Hu, X. and Graesser, A. 2016.
Making autotutor agents smarter: Autotutor answer
clustering and iterative script authoring. Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics). 10011 LNAI, (2016), 438–441.

[5] Cai, Z., Graesser, A., Forsyth, C., Burkett, C., Millis, K.,
Wallace, P., Halpern, D. and Butler, H. 2011. Trialog in
{ARIES}: User input assessment in an intelligent tutoring
system. Proceedings of the 3rd IEEE International
Conference on Intelligent Computing and Intelligent
Systems. March 2016 (2011), 429–433.

[6] Crossley, S.A., Dascalu, M. and Mcnamara, D.S. 2017.
How important is size? An Investigation of Corpus Size
and Meaning in both Latent Semantic Analysis and Latent
Dirichlet Allocation. FLAIRS Conference (2017), 293–
296.

[7] Davies, M. 2010. The Corpus of Contemporary American
English as the first reliable monitor corpus of English.
Literary and Linguistic Computing. 25, 4 (2010), 447–464.

[8] Gotoh, Y. and Renals, S. 1997. Document space models
using latent semantic analysis. 7, (1997), 6–9.

[9] Graesser, A.C., Feng, S. and Cai, Z. 2017. Two
Technologies to Help Adults with Reading Difficulties
Improve their Comprehension. Developmental
perspectives in written language and literacy. In honor of
Ludo Verhoeven. E. Segers and P. van den Broek, eds. John
Benjamin Publishing Company. 296–313.

[10] Graesser, A.C., Forsyth, C.M. and Foltz, P. 2017.
Assessing conversation quality, reasoning, and problem-
solving performance with computer agents. The nature of
problem solving: Using research to inspire 21st century
learning. 245–261.

[11] Graesser, A.C., McNamara, D.S., Louwerse, M.M. and
Cai, Z. 2004. Coh-Metrix: Analysis of text on cohesion and
language. Behavior Research Methods, Instruments, &
Computers. 36, 2 (2004), 193–202.

[12] Hotelling, H. 1953. New Light on the Correlation
Coefficient and its Transforms. Journal of the Royal
Statistical Society. Series B (Methodological). 15, 2 (1953),
193–232.

[13] Kontostathis, A. 2007. Essential Dimensions of Latent
Semantic Indexing (LSI). (2007), 1–8.

[14] Landauer, T.K. and Dumais, S.T. 1997. A Solution to
Plato’s Problem: The Latent Semantic Analysis Theory of
Acquisition, Induction, and Representation of Knowledge.
Psychological Review. 104, 2 (1997), 211–240.

http://www.autotutor.org/

[15] Landauer, T.K., Folt, P.W. and Laham, D. 1998. An
introduction to latent semantic analysis. Discourse
processes. 25, 2 (1998), 259–284.

[16] Martin, D.I., Bear, S. and Consulting, T. 1994.
Mathematical Foundations Behind Latent Semantic
Analysis. 35–55.

[17] McNamara, D., Cai, Z. and Louwerse, M. 2007.
Optimizing LSA Measures of Cohesion. Handbook of
latent semantic analysis. T.K. Landauer, D.S. McNamara,
S. Dennis, and W. Kintsch, eds. Erlbaum. 379–400.

[18] Penumatsa, P., Ventura, M., Graesser, A.C., Louwerse, M.,
Hu, X., Cai, Z. and Franceschetti, D.R. 2006. The Right
Threshold Value: What is the Right Threshold of Cosine
Measure When Using Latent Semantic Analysis for
Evaluating Student Answers? International Journal on
Artificial Intelligence Tools. 15, 05 (2006), 767–777.

[19] Peter W. Foltz Lynn A. Streeter, K.E.L.T.K.L.
Implementation and Applications of the Intelligent Essay
Assessor.

[20] Riordan, B., Horbach, A., Cahill, A., Zesch, T. and Lee,
C.M. 2017. Investigating neural architectures for short
answer scoring. $Bea17. (2017), 159–168.

[21] Slater, S., Joksimović, S., Kovanovic, V., Baker, R.S. and
Gasevic, D. 2017. Tools for Educational Data Mining: A
Review. Journal of Educational and Behavioral Statistics.
42, 1 (2017), 85–106.

[22] Ștefănescu, D., Banjade, R. and Rus, V. 2014. Latent
Semantic Analysis Models on Wikipedia and TASA.
Proceedings of the 9th International Conference on
Language Resources and Evaluation (LREC’14). (2014),
1417–1422.

[23] Steiger, J.H. 1980. Tests for comparing elements of a
correlation matrix. Psychological Bulletin.

[24] Wiemer-Hastings, P., Graesser, A.C., Harter, D. and Grp,
T.R. 1998. The foundations and architecture of autotutor.
Intelligent Tutoring Systems. 1452, (1998), 334–343.

[25] Yang, Z., Lei, J., Fan, K. and Lai, Y. 2013. Keyword
extraction by entropy difference between the intrinsic and
extrinsic mode. Physica A. 392, 19 (2013), 4523–4531.

