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ABSTRACT

Recent theories and experiments have explored the use of entangled photons as a spectroscopic probe of physical systems. We describe here a
theoretical description for entropy production in the scattering of an entangled biphoton Fock state within an optical cavity. We develop this
using perturbation theory by expanding the biphoton scattering matrix in terms of single-photon terms in which we introduce the photon-
photon interaction via a complex coupling constant, ξ. We show that the vonNeumann entropy provides a concisemeasure of this interaction.
We then develop a microscopic model and show that in the limit of fast fluctuations, the entanglement entropy vanishes, whereas in the limit
of slow fluctuations, the entanglement entropy depends on the magnitude of the fluctuations and reaches a maximum. Our result suggests
that experiments measuring biphoton entanglement give microscopic information pertaining to exciton-exciton correlations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5083613

I. INTRODUCTION

Experiments using entangled photon pairs as probes of mate-
rial systems have opened a new arena for both linear and non-linear
spectroscopy. Measurements with quantum photons provide sen-
sitive measures of multi-photon processes and many-body corre-
lations.1–20 This sensitivity can be attributed to the “spooky action
at a distance” nature of entangled photons, whereby measurement
of one photon gives information about its entangled partner pho-
ton through either coincidence detection, interference, or quantum
state reconstruction. The fundamental problem we consider is that
of an ensemble of two-level atoms in a resonant cavity, interacting
with a two photon input Fock state |ω1, ω2⟩ to produce a final out-
going photon state that is a superposition of biphoton states of the
form

∣ψ⟩ = ∫∫ dω1dω2Fout(ω1,ω2)∣ω1,ω2⟩. (1)

The amplitude for this process is not simply the product of
amplitudes for single photon processes, rather it must reflect the
cross correlation between the same field at two different points
and at two different times. That is to say, it must consist of both
reducible, single photon terms and irreducible cross terms. Our
work here is to deduce the general form for this irreducible part
and connect it to the microscopic interaction between pairs of
atoms in the cavity. Our model draws inspiration from the work
by Milonni21 which considers correlation between two photodetec-
tors, taking into account the time-retardation of the field generated
by one atom and felt by the second atom. A simpler version of this
which does not take into account the time retardation is presented
in Ref. 22 for the case of the direct detection of one photon, given
the presence of another and hearkens back to even earlier work by
Fermi.23

The central focus of this work is the biphoton scattering

matrix S
(2)(ω1,ω2;ω

′
1,ω

′
2) which transforms a two-photon input
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state ∣ω′1,ω′2⟩ into a two-photon output state |ω1, ω2⟩ and we
develop a formal theory using both frequency-domain and time-
domain approaches. Both cases are related to the entanglement
entropy of the outgoing biphoton quantum state. Our frequency-
domain theory develops from a perturbative expansion in which
the single-photon terms are coupled order-by-order via a complex
entanglement parameter, ξ, which we take as a measure of the
photon-photon coupling mediated by the medium. We also develop
a time-domain approach whereby photon-photon entanglement is
mediated by cross-correlated spectral fluctuations. We show that
in the limit of rapid fluctuations, an entanglement gets destroyed,
whereas in the limit of slow fluctuations, the fluctuations pro-
duce entangled states with a maximum entropy determined by the
spectral width.

II. TWO-PHOTON SCATTERING AMPLITUDES

The central hypothesis of this paper is that one can directly cor-
relate changes in a biphoton state to many-body interactions within
a material system. Let us define an initial biphoton input state to be
of the form24

∣ψ in⟩ = ∫∫ dω1dω2Fin(ω1,ω2)B̂†(ω1)B̂†(ω2)∣0⟩. (2)

Here, we define Fin as the biphoton amplitude and as such |ψ in⟩ is
a superposition of Fock states. This state interacts with a sample to
produce a biphoton output state

∣ψout⟩ = ∫∫ dω′1dω′2[∫∫ dω1dω2S
(2)

× (ω1,ω2;ω
′
1,ω

′
2)Fin(ω′1,ω′2)]B̂†(ω′1)B̂†(ω′2)∣0⟩. (3)

Here, we denote photon creation operators B̂†(ω1) and B̂†(ω2) act-
ing on the photon vacuum state |0⟩. We shall leave the exact repre-

sentation of the scattering matrix, S(2)(ω1,ω2;ω
′
1,ω

′
2), undefined at

the moment.
The key to understanding entanglement is separability. An

entangled two-particle state cannot be written as a product of two
single-particle states. This separability can be quantified by perform-
ing Singular Value Decomposition (SVD) on the two-particle ampli-
tude function. This is also termed Schmidt decomposition. Suppose
we write the input amplitude asF(ω1,ω2) and perform SVD on this
function

F(ω1,ω2) =∑
n

rnUn(ω1)Vn(ω2), (4)

where Un and Vn are the SVD left and right eigenvectors and the rn
expansion coefficients are the SVD eigenvalues. These we assume to
be normalized to unity without loss of generality. The von Neumann
entropy provides a measure of the entanglement

S = −∑
n

r2n ln r
2
n. (5)

If only one term contributes, the function is separable and S = 0.
Otherwise, if multiple terms contribute to the SVD expansion, the
system is entangled and the resulting S > 0. Now suppose we allow
the biphoton state to interact with the sample but such that each
interaction is independent of the other interaction. The resulting
outgoing photon state must be of the form

F
′(ω1,ω2) = ∫ dω′1 ∫ dω′2G(ω1,ω

′
1)H(ω2,ω

′
2)F(ω′1,ω′2). (6)

Again, performing SVD on this new function,

F
′(ω1,ω2) = ∫ dω′1 ∫ dω′2G(ω1,ω

′
1)H(ω2,ω

′
2)

× ∑
k

rkUk(ω′1)Vk(ω′2). (7)

The function remains separable since we can rearrange this as

F
′(ω1,ω2) =∑

k

rk(∫ dω′1G(ω1,ω
′
1)Uk(ω′1))

× (∫ dω′2H(ω2,ω
′
2)Vk(ω′2)). (8)

Moreover, SVD returns the same set of coefficients although the
SVD basis vectors are different. The entanglement does not change
because there is no cross talk between the different degrees of free-
dom. If we introduce any cross correlations between the degrees of
freedoms, there is a resultant change in entanglement entropy. For
example, if we were to write the biphoton amplitude in the form of
the products of single-photon amplitudes

F
′(ω1,ω2) = ∫ dω′1 ∫ dω′2S(1)(ω1,ω

′
1)S(1)

× (ω2,ω
′
2)K(ω1,ω

′
1;ω2,ω

′
2). (9)

It is clear that the SVD of this new amplitude will produce a very
different outgoing state in which any change in the entropy must
be induced by cross correlations within the system. Experimen-
tally, by measuring the biphoton entropy with and without a sam-
ple present will produce a measure of the magnitude and nature
of such microscopic interactions. This is, of course, a central goal
of spectroscopic investigation of physical systems. We now develop

connections between the scattered biphoton amplitude S(2) and the
spectral response of the system.

A. Diagrammatic expansion of the two-photon
scattering matrix

In general, we can write the elastic scattering of a single pho-
ton through a resonant medium with a Lorentzian line shape in the
form10

S
(1)(ω,ω′) = exp(A(ω))δ(ω − ω′), (10)

where

A(ω) = − ib(ωo − ω) + iγ (11)

is the Fourier transform of the free induction decay

A(t) = −√2πbe−γteiωot (12)

for t > 0 of an oscillator with frequency ωo and dephasing rate γ.
b = αLγ/2, where αL is the optical thickness and α is a Bouger coef-
ficient. Consequently, if two independent (unentangled) photons
are scattered from the resonant medium, we anticipate a scattering
amplitude of

S
(2)(ω1,ω2;ω

′
1,ω

′
2) = S(1)(ω1)S(1)(ω2)δ(ω1 − ω′1)δ(ω2 − ω′2).

(13)
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In this case, two independent photons are transmitted without any
interaction leading to them being unentangled.

Suppose, however, that interactions leading to entanglement
are weak such that we can write the two photon scattering amplitude
as perturbation expansion of the form

S
(2) = S(2)o + S

(2)
o VS

(2) = S(2)o + S
(2)
o VS

(2)
o + S

(2)
o VS

(2)
o VS

(2)
o +⋯,

whereby S
(2)
o = S

(1)
S
(1) is separable into single photon terms and

V mediates the interaction between photon pairs via the resonant
cavity. This suggests the following diagrammatic expansion:

(14)

where solid lines are S(1) free propagators and springs denote the
interaction. Such interactions introduce nonlinearity in the form
of cross correlations (i.e., scattering) between otherwise uncoupled
single photon processes.

For the special case of elastic scattering, V(ω) contributes a
phase-shift of the form

V(ω) = ξei�δ(ω) (15)

but does not create a frequency shift. Then only the term at ω = 0
will contribute (so that ω1 = ω′1 and ω2 = ω′2)

S
(2)
1 = ξei�S(1)(ω1)S(1)(ω2)S(1)(ω1)S(1)(ω2). (16)

Iterating this,

S
(2)
n = Vn(S(2)o )n+1 = ξnein�(S(1)(ω1))n+1(S(1)(ω2))n+1. (17)

Taking

S
(1)(ωi) = exp[− ib(ωo − ωi) + iγ ] = zi (18)

is a complex number that is determined by the input photon fre-
quency. Thus, the whole perturbation series becomes

S
(2) = z1z2 ∞∑

n=0
(ξei�z1z2)n. (19)

Setting q = ξei�z1z2 and assuming |q| < 1, then the series can be
summed exactly

S
(2) = z1z2

1 − q . (20)

Writing this in terms of the S(1) functions, we obtain

S
(2)(ω1,ω2;ω1,ω2) = S

(1)(ω1)S(1)(ω2)
1 − ξS(1)(ω1)S(1)(ω2)ei� . (21)

We shall refer to ξ as the entanglement parameter. When ξ = 0,

S
(2)(ω1,ω2) = exp[A(1)(ω1)] exp[A(1)(ω2)] = S(1)(ω1)S(1)(ω2)

(22)

is separable in terms of the individual photon amplitudes. It is worth
mentioning that the output biphoton state is not normalized due
to the entanglement parameter ξ. Therefore, the proposed formal-
ism could account for signal attenuation and disentanglement effect
resulting from the matter-mediated photon coupling.

The expansion in Eq. (19) is in the form of a Schmidt decom-
position, which we shall discuss in Sec. II B 2. Taking � → 0 for
convenience and letting ξ < 1, it becomes trivial to write that the
normalized Schmidt coefficients are given by as λ2n = ξ2n(1 − ξ2)
producing a von Neumann entropy

S = −( ξ2 ln ξ2
1 − ξ2 + ln(1 − ξ2)). (23)

This shows that there exists a 1:1 correspondence between the non-
linear coupling ξ and the resultant von Neumann entropy, S.

In principle, the phase � introduced in Eq. (15) depends upon
the microscopic details of the system, such as the relative orienta-
tion of the atomic or molecular scattering sites within the sample,
and may merely be a random quantity. Averaging over phase, we
write

S
(2)(ω1,ω2;ω1,ω2) = ⟨ S

(1)(ω1)S(1)(ω2)
1 − ξS(1)(ω1)S(1)(ω2)ei� ⟩. (24)

Writing this again as a geometric series,

S
(2)(ω1,ω2;ω1,ω2) = S(1)(ω1)S(1)(ω2)

× ∞∑
n=0
(ξS(1)(ω1)S(1)(ω2))n⟨ein�⟩. (25)

Suppose that the phase � is uniform over [0, 2π), then

⟨ein�⟩ =
2π

∫
0

ein�

2π
d� = δn0.

In this case, the relative phase is completely randomized and the
biphoton amplitude collapses exactly into the product of two single
photon terms

S
(2)(ω1,ω2;ω1,ω2)→ S

(1)(ω1)S(1)(ω2). (26)

On the other hand, suppose the phase is normally distributed
about a central value, which we can take to be zero, i.e., � = 0 and

�2 = σ2. Here, the average over � can be cast as

⟨ein�⟩ = ⎛⎝1 − n
2
�2

2!
+
n4�4

4!
−⋯⎞⎠.

Writing this in terms of the second moment,

⟨ein�⟩ = ∞∑
k=0
(−1)k(nσ)2k (2k − 1)‼(2k)!

= ∞∑
k=0
(−1)k (nσ)2k

2kk!
= e−(nσ)2/2. (27)
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This gives

S
(2)(ω1,ω2;ω1,ω2) = S(1)(ω1)S(1)(ω2)K(2)(ω1,ω2;ω1,ω2),

(28)

where

K
(2)(ω1,ω2;ω1,ω2) = ∞∑

n=0
ξne−n

2σ2/2(S(1)(ω1)S(1)(ω2))n (29)

denotes a scattering kernel that reflects the response of the media
due to the mode cross correlations facilitating photon-photon
scattering and for all intents and purposes is responsible for
entanglement.

Plots for this are shown in Fig. 1 for the case of a model sys-
tem with spectral parameters for Eq. (18): ωo = π, b = 1, and γ = 2.
In each case, we assume that an input of the two-photon Fock state
with amplitude Fin(ω1,ω2) is transformed to an output biphoton

state with the amplitude up to the factor of S(2), which is correlated
along ω1 = ω2. For the case of Gaussian noise, the final state is corre-
lated in frequency, as shown in Fig. 1 for various choices of spectral
parameters. Furthermore, one can conclude that the resulting state is
not necessarily separable into the product of two functions due to the
nontrivial vonNeumann entropy S (cf. Sec. II B 2), which gives a use-
ful means of quantifying the entanglement of these states. Schmidt
decomposition of Eq. (28) gives Fig. 2 where we have plotted the
von Neumann entropy with respect to the interaction parameter ξ,
the Gaussian noise σ , and the dephasing factor γ involved in single

photon amplitude S(1). Generally, increasing ξ leads to an increase
in entanglement for a given amount of noise σ , whereas shorter
dephasing time 1/γ leads to disentanglement, as shown in Fig. 2. An
expression for the von Neumann entropy for this case is presented
in Appendix A.

B. Second cumulant model for two-photon
scattering amplitude

We now dig deeper and develop a fully microscopic model for
entropy production in biphoton scattering. In the context of a pre-
vious work,8 we now consider the case of an ensemble of two-level
atoms within a pumped optical microcavity probed by a 2-photon
Fock state scattered forward by the cavity. In the time-domain, the
input state on the left boundary of the cavity can be represented

FIG. 1. Absolute values of two-photon scattering functions S(2) for squeezed
biphotons with Gaussian noise interactions: (a) ξ = 0.1, σ = 0.1; (b) ξ = 0.5,
σ = 0.1; (c) ξ = 0.9, σ = 0.1; and (d) ξ = 0.5, σ = 1.0. In each case, we take
parameters for S(1) in Eq. (18): ωo = π, b = 1, and γ = 2.

as

∣ψ in⟩ = ∫∫ dt1dt2F(t1, t2)b̂†1,in(t1)b̂†2,in(t2)∣0⟩, (30)

where the cavity input photon operator8

b̂†j,in(t) = −∫ dωj√
2π
B̂†(ωj)eiωjt (31)

is the Fourier transform of the external photon mode operator
B̂†

j (ω) entering Eq. (2). It is noteworthy that substitution of Eq. (31)

into Eq. (30) and subsequent integration over the time variables
exactly results in the frequency domain representation given by
Eq. (2) where F(ω1,ω2) is identified as the Fourier transform of
F(t1, t2). Following the input output formalism,25,26 we identify the
boundary condition on the left boundary of the cavity with the

mode leakage rate κj as b̂
†

j,in(t) + b̂†j,r(t) = √κjb̂†j (t). This con-

nects the input photon operator defined above, the reflected pho-

ton operator b̂†j,r(t), and the cavity photon operator b†j (t). The

FIG. 2. Entanglement entropy Sψ [Eq. (57)] vs coupling ξ (left) for the case of Gaussian noise, dephasing factor γ (middle), and noise strength σ (right). Points a–d correspond
to specific biphoton states shown in Figure 1.
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reflected mode is not measured in experiment and will not be con-
sidered below. However, the cavity mode operator contains infor-
mation on the interactions within the cavity and will be determined
below.

Time domain cavity output operators can be expressed in terms
of the photon operators outside the cavity as8

b̂†j,out(t) = ∫ dωj√
2π
B̂†(ωj)eiωj(t−tf ), (32)

representing free photon modes B̂†(ωj) outside the cavity propa-
gated back in time from tf to actual measurement time t. The output
state introduced in the frequency domain as

∣ψout⟩ = ∫∫ dω′1dω′2Fout(ω′1,ω′2)B̂†(ω′1)B̂†(ω′2)∣0⟩ (33)

can be represented in terms of the adopted time-domain operators
using Eq. (32). This gives

∣ψout⟩ = ∫∫ dω1dω2 ∫∫ dt1dt2Fout(t′1, t′2)e−iω1(t1−tf )

× e−iω2(t2−tf )⟨b̂†1,out(t1)b̂†2,out(t2)⟩∣0⟩, (34)

where angle brackets describe the average of the output opera-
tors over the material induced cavity mode fluctuations. Similar
to the input mode, we establish the following boundary condition

on the cavity right boundary: b̂†j,out(t) = √κjb̂†j (t). This condi-

tion assumes the same cavity leakage, κj, and no input photons
on the right. Taking into account this boundary condition, evalu-
ation of the output state using Eq. (34) reduces to the evaluation
of the time domain correlation function of the cavity mode opera-
tors that will directly result in the evaluation of the desired scattering
amplitude.

We adopt the following stochastic Hamiltonian to describe cav-

ity photon modes b̂†j coupled to the input and output biphoton
states:

Ĥph = h̵ ∑
j=1,2
(ωj + δω̂j)b̂†j b̂j. (35)

Here, δω̂j = δω̂j(t) is the time-dependent photon frequency fluc-
tuations of each mode. Appendix B provides an example connect-
ing such a generic Hamiltonian with a microscopic Hamiltonian
describing photon wave packet scattering by fluctuations of delocal-
ized polariton modes within the cavity. For the sake of generality, we
defined the polariton mode fluctuations as operators, which requires
handling of δω̂j = δω̂j(t) as operators. The c-number stochastic limit
is trivial.

Applying the input-output formalism to the cavity modes
described by the Hamiltonian (35), one obtains the quantum
Langevin equation8,27

∂

∂t
b̂†j (t) = i(ω̃j + δω̂j)b̂†j (t) +√κjb̂†j,in(t), (36)

with ω̃j = ωj + iκj/2. Assuming that the fluctuation dynamics occurs
with the rate much faster than the cavity leakage, one can formally
integrate Eq. (36) resulting in

b̂†j,out(t) = √κj ∫ t

0
dt′eiω̃j(t−t

′) exp+
⎡⎢⎢⎢⎢⎣i

t

∫
t′

dτδω̂j(τ)⎤⎥⎥⎥⎥⎦b̂
†

j,in(t′), (37)

where exp+[. . .] is a positive time ordered exponential. Here, the
cavity right boundary condition is also applied to express the cavity
mode operator in terms of the cavity output mode.

According to Eq. (37), the output single and two-photon oper-
ators averaged over the fluctuations can be represented as

⟨b̂†j,out(t)⟩ = ∫ ∞
0

dt′S(1)j (t, t′)fj(t′)b̂†j,in(t′), (38)

⟨b̂†1,out(t1)b̂†2,out(t2)⟩ = ∫ ∞
0

dt′1 ∫ ∞
0

dt′2S(2)

×(t1t2, t′1t′2)F(t′1, t′2)b̂†1,in(t′1)b̂†2,in(t′2), (39)

where we assume that F(ω1,ω2) = f1(ω1)f2(ω2) for an initially
unentangled photon pair. The single- and two-photon scattering
amplitudes entering Eqs. (38) and (39), respectively, read

S
(1)
j (t, t′) = θ(t − t′)eiω̃j(t−t′)⟨ exp+⎡⎢⎢⎢⎢⎣i t

∫
t′

dτδω̂j(τ)⎤⎥⎥⎥⎥⎦⟩, (40)

S
(2)(t1t2, t′1t′2) = θ(t1 − t′1)θ(t2 − t′2)eiω̃1(t1−t′1)+iω̃2(t2−t′2)

× ⟨exp+⎡⎢⎢⎢⎢⎢⎣i t1∫
t′1

dτδω̂1(τ)
⎤⎥⎥⎥⎥⎥⎦
exp+

⎡⎢⎢⎢⎢⎢⎣
i

t2∫
t′2

dτδω̂2(τ)
⎤⎥⎥⎥⎥⎥⎦⟩.
(41)

Here, θ(t) is theHeaviside theta-function and angle brackets indicate
average over the frequency fluctuations. Substitution of Eqs. (39)
and (41) into Eq. (34) provides an expression for the output bipho-
ton state in terms of the scattering amplitude and biphoton input
states.

Diagrammatic techniques can be developed for single- and
two-photon scattering amplitudes via power series expansion of the
exponentials in Eqs. (40) and (41). Instead, we adopt a second cumu-
lant approximation setting all odd point correlation functions in the
expansion to zero and partitioning the rest into various products of
two-point correlation functions. Summation of the resulting power
series gives rise to the following representation of the single- and
two-photon scattering amplitudes:28,29

S
(1)
j (t, t′) = eiω̃j(t−t′)−gj(t,t′), (42)

S
(2)(t1t2, t′1t′2) = eiω̃1(t1−t′1)+iω̃2(t2−t2)

× e−g1(t1 ,t′1)−g2(t2 ,t′2)−g12(t1t2 ,t′1t′2), (43)

respectively. Accordingly, the two-photon scattering amplitude can
be factorized as

S
(2)(t1t2, t′1t′2) = S(1)1 (t1, t′1)S(1)2 (t2, t′2)K(2)(t1t2, t′1t′2), (44)

where the time-domain scattering kernel

K
(2)(t1t2, t′1t′2) = e−g12(t1t2 ,t′1t′2) (45)

is introduced.
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In Eqs. (42) and (43), the second cumulant function g j depends
on the jth frequency autocorrelation function as

gj(t, t′) = t

∫
t′

dτ1

τ1∫
t′

dτ2⟨δω̂j(τ1)δω̂j(τ2)⟩. (46)

Noteworthy, the integration over dτ1 and dτ2 is time-ordered insur-
ing causality for a single-photon propagation. The second cumulant
function entering the scattering kernel [Eq. (43)] is

g12(t1t2, t′1t′2) =
t1∫

t′1

dτ1

t2∫
t′2

dτ2⟨δω̂1(τ1)δω̂2(τ2)⟩. (47)

This accounts for the cross correlations between different photon
modes and as we show below affects the photon pair entanglement.
In contrast to Eq. (46), here integration over dτ1 and dτ2 lacks time
ordering indicating that the photon cross correlations are not casual.
Notice that the four-point time dependence of the second cumu-
lant indicates that the scattering kernel is responsible for a nonlinear
media response that mixes four electric field amplitudes. If the cross
correlation function is zero, K12 = 1 and the two-photon scattering
amplitude factorizes to a product of two linear, i.e., single-photon,
scattering amplitudes.

1. Stochastic Kubo-Anderson model

For further analysis, we adopt the Kubo-Anderson stochas-
tic model which is often used in spectroscopic line shape analy-
sis.28 This model treats fluctuations as commuting random variables,
whose time evolution is a Gaussian stochastic process, thereby mak-
ing a second cumulant expansion exact. Following this approach, we
set ⟨δωj(τ1)δωj(τ2)⟩ = σ2j e−∣τ1−τ2 ∣/τ̄j , (48)

⟨δω1(τ1)δω2(τ2)⟩ = σ212e−∣τ1−τ2 ∣/τ̄12 , (49)

where σ2j = ⟨δω2
j (0)⟩ and σ212 = ⟨δω1(0)δω2(0)⟩ (τ̄j and τ̄12) being

single-mode and cross-mode variances (correlation times), respec-
tively. The representation of the single photon amplitudes is not
essential for the analysis below, and the details of the derivation
of the second cumulant functions in Eqs. (46) and (47) for the
correlation functions given in Eqs. (48) and (49) are provided in
Appendix C. Next, we discuss the limiting cases.

In the limit of fast modulation where σ12τ̄12 ≪ 1, only the
following four time-ordered contributions (denoted by g+12) survive:

e−g
+
12(t1t2t′1t′1) = e−γ12(t2−t′1), (50)

e−g
+
12(t1t2t′2t′1) = e−γ12(t2−t′2), (51)

e−g
+
12(t2t1t′2t′1) = e−γ12(t1−t′2), (52)

e−g
+
12(t2t1t′1t′2) = e−γ12(t1−t′2). (53)

In the limit of slow modulation for the mode cross correla-
tion, i.e., σ12τ̄12 ≫ 1, only terms that are quadratic in time con-
tribute to the second cumulant function. In this case, the scattering
kernel of the two-photon scattering amplitude acquires a Gaussian
form

K
(2)(t1t2, t′1t′2) = e−σ212(t1−t′1)(t2−t′2) (54)

in which the decay is determined by the cross correlation
σ212 = ⟨δω1(0)δω2(0)⟩magnitude.

2. Entanglement entropy analysis

Using the scattering kernel of two-photon scattering amplitude
introduced in Eq. (45), we can compute the von Neumann entropy
for the scattered biphoton state, whereas above, we computed this
in the frequency domain, and the scattering matrix S is invari-
ant under unitary transformations, including the Fourier transform.
This implies that we are free to evaluate the entropy directly from the
time-correlation functions. This can be accomplished by performing
a Schmidt decomposition of the scattering amplitude in Eq. (44) into
separable components. Since this is a product of separable and non-
separable terms, we only need to decompose the scattering kernel
[Eq. (45)] involving g12,

e−g12(t1 ,t2 ,t
′
1 ,t
′
2) =∑

k

rk�k(t1 − t′1)ψk(t2 − t′2), (55)

where the function sets {�k(t1 − t′1)} and {ψk(t2 − t′2)} form an
orthonormal basis of Schmidt modes and {rk} is a set of the mode
weights. The mode weights provide a useful way to quantify the

entanglement between photons. If we write λk = rk/√Ω as the set
of normalized Schmidt coefficients such that

∑
k

λ2k = 1, (56)

we can write the von Neumann entropy as

S = −∑
k

λ2k ln(λ2k). (57)

If the state is separable, then the entropy is exactly zero and one and
only one of the λ2k = 1, and the rest are exactly equal to zero. More-
over, S = ln N, where N is the dimensionality of the Hilbert-space
spanned by the basis functions. In other words, increasing S implies
that more and more pairs of Schmidt basis functions are needed to
reconstruct the original function.

In the limit of fast modulation, where σ12τ̄12 ≪ 1, the expo-
nent of the cross correlation function is separable in terms of the
times [Eqs. (50)–(53)], and consequently, the entropy of the out-
going state is exactly equal to 0. This makes sense since in this limit
the cross correlation function depends only upon the intermediate
two times in the time-ordering. In other words, the only way for
photon 1 to interact with photon 2 is if the polarization created by
the first persists long enough to influence the second photon. Else,
no entanglement can be produced.

In the limit of slow modulation, the cross correlation depends
upon all 4 times [Eq. (54)] and cannot be separable into a pair of
functions involving only t1 − t′1 and t2 − t′2. Here, we first expand
Eq. (54) as a sum product of Laguerre polynomials taking x = t1 − t′1
and y = t2 − t′2,

e−σ
2
12xy =∑

nm

cnmw
1/2(x)w1/2(y)Ln(x)Lm(y), (58)

where w(x) are the Gaussian quadrature weights and then deter-
mined the Schmidt vectors and coefficients by diagonalizing the
matrix cnm.

30 Figure 3(a) shows the resulting entropy for this limit as
a function of the fluctuation strength σ212. Interestingly, this shows
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FIG. 3. (a) Entropy vs cross correlation
magnitude σ12 in the case of slow mod-
ulation. (b) Schmidt modes for a maxi-
mally entangled state (σ212 = 1.33).

a maximum in the entanglement for σ212 ≈ 1.33. This can be under-
stood in the following way. In the limit that σ212 is small, fluctuations
are simply too weak to generate entanglement. On the other hand,
large fluctuations also appear to prevent the formation of entangled
states. The maximum then falls in the limit of being neither too soft
nor too hard.31 Figure 3(b) shows the Schmidt basis functions for the
maximal entropy case where σ212.

An interesting case arises when

K
(2) = aδ(t − t′). (59)

Since one can write the delta-function as a resolution of the identity
in terms of orthogonal polynomials On(x),

30

δ(t − t′) = lim
N→∞

N∑
k=0

Ok(t)Ok(t′), (60)

its normalized Schmidt coefficients are all equal to 1/√N. This gives
rise to the case of maximal entanglement entropy since

S = − lim
N→∞

N∑
k=0

1

N
ln(1/N)→∞. (61)

III. DISCUSSION

To put into context the theoretical notions developed in this
work, Fig. 4 sketches an envisioned experimental scheme that would
quantify quantum entropy in analogy to that determined by Eq. (57).
Time-frequency entangled photon pairs can be readily produced
by spontaneous parametric downconversion of a continuous-wave
laser source, and these are directed to an optical microcavity con-
taining an absorber—either molecular materials or a semiconduc-
tor. Strong exciton-photon coupling leads to entangled polariton
pairs. By this scheme, and depending on the photon-exciton detun-
ing designed into the microcavity, the entangled photon pair will
mix with the exciton to generate entangled polaritons that are either
predominantly photonlike (negative detuning), excitonlike (positive
detuning), or an equal mixture of photon/exciton (zero detuning).
This specific character will guide the many-body response func-

tion S
(2)(t1, t2, t′1, t′2), which will determine the nature of the output

photon state. The photon output is split by a beam splitter, and

each stage is directed to a spectrometer containing a single-photon
avalanche diode, which permits measurement of coincidence count
rates (rate of both detectors measuring a photon count within a
short time window with respect to the detector response time). This
count rate quantifies the biphoton scattering amplitudes. By this
scheme, one can measure the coincidence rate as a function of the
incidence angle and thus k⃗ of the polariton dispersion. Spectrally
resolved coincidence count rates can be used to characterize the joint
spectral properties of the biphoton state, which is a measurement
of its purity.32 Performing such a measurement with and without
the microcavity sample will permit estimation of changes in the
entangled biphoton quantum state induced by matter-matter corre-
lations. Slow (Gaussian) correlations between polariton modes facil-
itating the entanglement can be achieved by introducing an energy
disorder for the quantum emitters. For example, one can use sol-
vated chromophores or semiconductor quantum dots in polymer
matrices.

FIG. 4. Proposed experimental implementation of an entanglement entropy mea-
surement (spectrally resolved Hanbury Brown and Twiss experimental setup).
BS = beam splitter; SP1, SP2 = spectrometers; and D1, D2 = single-photon detec-
tors. Spectrally resolved coincidence count rates are measured to construct a
photon spectral correlation coincidence map, from which the photon-photon scat-
tering function S(2)(ω1,ω2,ω′1,ω

′
2) is reconstructed, thereby the entanglement

entropy [in analogy to Eq. (57)] can be quantified.
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We have presented here a model for the generation of entan-
glement entropy for a biphoton Fock state interacting with a mate-
rial sample. We assume that the two-photon scattering matrix can
be decomposed into a series of single photon/photon interactions
mediated by coupling to a medium with coupling strength ξ. In the
limit that the scattering produces a random phase shift, the entangle-
ment collapses and the outgoing state is a single Fock state. However,
in the case of Gaussian noise, the entanglement entropy increases
with increasing coupling producing squeezed states. We also present
a microscopic model for the photon-photon coupling for the case of
two photons passing through an optical cavity. Here, we again show
that in the limit of fast fluctuations and motional narrowing, the
entanglement entropy vanishes, whereas in the case of slowmodula-
tion (homogeneous broadening), the entanglement entropy reaches
a maximum value depending on the magnitude of the fluctuations.
Our analysis shows that two-photon entanglement scattering pro-
vides a direct and sensitive probe of correlated fluctuations within
the sample system.
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APPENDIX A: SCHMIDT DECOMPOSITION OF EQ. (29)

Equation (29) is in the form of a Schmidt decomposition with
coefficients

rn = ξne−n2σ2/2 = en ln ξ−n2σ2 . (A1)

From this, one can readily compute its von Neumann entropy

S = − 1

Ω
∑
n

r2n(lnr2n − lnΩ)) (A2)

= lnΩ − 2m1 ln ξ + σ
2m2, (A3)

where Ω provides the normalization

∑
n

r2n = Ω.
The sums can be evaluated as Gaussian integrals giving

Ω =
√
πe

ln2(ξ)
4σ2 (erf( ln(ξ)

2
√
σ2
) + 1)

2
√
σ2

, (A4)

m1 = e−
ln2(ξ)
4σ2√

π
√
σ2(erf( ln(ξ)

2
√
σ2
) + 1) +

ln(ξ)
2σ2

, (A5)

m2 =
√
σ2e−

ln2(ξ)
4σ2

⎛⎜⎝
√
π ln(ξ)e ln

2(ξ)
4σ2 (erf( ln(ξ)

2
√
σ2
)+1)

(σ2)3/2 + 2
σ2

⎞⎟⎠
2
√
π(erf( ln(ξ)

2
√
σ2
) + 1) (A6)

assuming that ln ξ < 0 and Re[σ2] > 0.
APPENDIX B: PHOTON MODE SCATTERING VIA
CAVITY POLARITON FLUCTUATIONS

In this appendix, we derive a stochastic Hamiltonian (35) based
on a simple model describing light scattering by the fluctuations of
delocalized polariton modes confined in an optical cavity. For this
situation, the photon Hamiltonian can be represented as a sum of
two components

Ĥph = Ĥo + Ĥs. (B1)

Assuming that the biphoton wavepacket is spatially confined within
a cross section of area A and propagates in the z-direction, the inter-
action free photon Hamiltonian in the continues mode representa-
tion reads24

Ĥo = ∑
j=1,2∫ dωjωjb̂

†
ωj b̂ωj , (B2)

with index j distinguishing the modes.
The photon scattering is described by the interaction Hamilto-

nian29

Ĥs = −∫∫
A

dxdy

L/2
∫
−L/2

dz ∑
j=1,2

α̂jj(r)Ê2j (z), (B3)

where the integration dS over the photon wave packet cross section
(x, y-plane) is partitioned from the spatial integral in the propagation
direction z. The operator α̂ij(r) gives the sample polarizability. The
cavity cross section is assumed to be larger than A and the length
is denoted by L. The electric field operator for the photon modes of
interest represented in terms of the mode creation and annihilation
operators reads24

Êj(z) = i∫ dωj

¿ÁÁÀ h̵ωj

4πεocA
(b̂ωjeiωjz/c − b̂†ωje−iωjz/c), (B4)

where c is speed of light and εo is the vacuum permittivity.
Evaluation of the integrals in the scattering Hamiltonian (B3)

requires a model for the sample polarizability operator α̂(r). Let us
consider delocalized cavity polariton modes which we described by
operator

ζ̂kl = ζ̄kl + δζ̂kl(t), (B5)

where kl denotes sth polariton mode wave vector. ζ̄kl is a cavity
polariton steady state prepared by a resonant external pumping and

δζ̂kl(t) is the time-dependent mode fluctuation operator. Accord-
ingly, the polarizability can be expanded up to the first order in the
fluctuations

α̂jj = αjj(ζ̄kl) +∑
l

∑
kl

∂αjj(ζ̄kl)
∂ ζ̄kl

δζ̂kl(t). (B6)
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For further analysis, the fluctuation operator is expanded in terms of
polariton spatial Fourier components

δζ̂kl(t) = δζ̂+kl(t)eiklr + δζ̂−kl(t)e−iklr . (B7)

Making substitution of the second term in Eq. (B6) along
with Eq. (B7) into the scattering Hamiltonian (B3) where the elec-
tric field is introduced by Eq. (B4), performing integration over
the cavity volume, and further neglecting the terms describing
simultaneous two-photon creation and annihilation processes, we
obtain

Ĥs = −h̵∑
l

∑
kl

∑
j=1,2∫ dωjκkl(ω′)(b̂†ωj+ckl b̂ωjδζ̂+kl + b̂†ωj b̂ωj+cklδζ̂−kl),

(B8)

with the coupling parameter

κkl(ωj) = 1

εoL

∂αjj(ζ̄kl)
∂ ζ̄kl

∣
k
�
l
=0
[(ωj − ckl)ωj]1/2. (B9)

Since the photons propagate in the z-direction, the total momentum
conservation requires that the scattered photonmomentum changes
for the amount of kj which is the z-component of the total momen-
tum kj. Accordingly, the transverse (xy-plane) component of the
momentum k

�
j does not change resulting in the photon coupling

to the Γ-point of transverse polariton band as indicated above by
setting k�j = 0.

Taking into account that polariton modes have continuous dis-
persion relations kl = k(ωl), we replace sum over kl in Eq. (B8) by the
integral over dωl. This results in

Ĥs = −h̵ ∑
j=1,2
∑
l
∫∫ dωjdωl κ(ωjωl)(b̂†ωj+ωl b̂ωjδζ̂+ωl + b̂†ωj b̂ωj+ωlδζ̂−ωl),

(B10)

with the coupling parameter

κ(ωjωl) = 1

2πεo

∂αjj(ζ̄k(ωl))
∂ ζ̄k(ωl)

RRRRRRRRRRRk�(ωl)=0
∂k(ωl)
∂ωl

[(ωj − ωl)ωj]1/2.
(B11)

The scattering Hamiltonian (B10) can be further simplified,
provided the interaction occurs near the bottom of polariton modes,
i.e., ωl ∼ 0. In this case, one can set

∂αjj(ζ̄k(ωl))
∂ ζ̄k(ωl)

RRRRRRRRRRRk�(ωl)=0
= ᾱjjδ(ωl) (B12)

with ᾱjj being a coupling constant. Substitution of Eq. (B11) with
Eq. (B12) into Eq. (B10) recasts the latter to the form of stochastic
Hamiltonian (35) with the frequency fluctuation operator defined
as

δω̂j = ᾱjjωj
2πεo

∑
l

∂k(ωl)
∂ωl

δζ̂ l, (B13)

where a shorthand notation δζ̂ l = δζ̂ωl=0 is used.

APPENDIX C: EVALUATION OF SECOND CUMULANTS
FOR GAUSSIAN STOCHASTIC PROCESS

In this appendix, we derive an explicit form of the single-mode
and cross-mode cumulant functions using the correlation func-
tions for stochastic Gaussian processes given in Eqs. (48) and (49),
respectively.

Evaluation of time ordered integral in Eq. (46) with the corre-
lation function given by Eq. (48) results in a well known form of the
second cumulant28

gj(t − t′) = (σ jτ̄j)2{(t − t′)/τ̄j + e−(t−t′)/τ̄j + 1}. (C1)

In the case of fast modulation στ̄j ≪ 1, one gets

gj(t − t′) = γj(t − t′), (C2)

with γj = σ2τ̄j. In the case of fast modulation στ̄j ≫ 1, one gets

gj(t − t′) = σ2j (t − t′)2. (C3)

Evaluation of the integrals in Eq. (47) with the cross correlation
function in Eq. (49) is not so straightforward and one needs to take
into account various ordering of t′1, t1, t′2, and t2 as sketched in Fig. 5
with three more corresponding to swapping indices 1 and 2 (but not
the primes)

g+12(t1t′1t2t′2) = (σ12τ̄12)2{e−(t1−t2)/τ̄12 − e−(t1−t′2)/τ̄12
× e−(t′1−t2)/τ̄12 − e−(t′1−t′2)/τ̄12}, (C4)

g+12(t1t2t′1t′2) = (σ12τ̄12)2{2(t2 − t′1)/τ̄12e−(t1−t2)/τ̄12
+ e−(t1−t

′
2)/τ̄12e−(t

′
1−t′2)/τ̄12 + e−(t2−t

′
1)/τ̄12}, (C5)

g+12(t1t2t′2t′1) = (σ12τ̄12)2{2(t2 − t′2)/τ̄12e−(t′2−t′1)/τ̄12
+ e−(t2−t

′
1)/τ̄12e−(t1−t2)/τ̄12 + e−(t1−t

′
2)/τ̄12} (C6)

FIG. 5. (A)–(C): Time ordered interactions corresponding to Eqs. (C4)–(C6).
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and three more

g+12(t2t1t′1t′2) = (σ12τ̄12)2{2(t1 − t′1)/τ̄12e−(t′1−t′2)/τ̄12
+ e−(t1−t

′
2)/τ̄12e−(t2−t1)/τ̄12 + e−(t2−t

′
1)/τ̄12}, (C7)

g+12(t2t1t′2t′1) = (σ12τ̄12)2{2(t1 − t′2)/τ̄12e−(t2−t1)/τ̄12
+ e−(t2−t

′
1)/τ̄12e−(t

′
2−t′1)/τ̄12 + e−(t1−t

′
2)/τ̄12}, (C8)

g+12(t2t′2t1t′1) = (σ12τ̄12)2{e−(t2−t1)/τ̄12 − e−(t2−t′1)/τ̄12
× e−(t′2−t1)/τ̄12 − e−(t′2−t′1)/τ̄12}, (C9)

with time indices 1 and 2 swapped. Note, our notation is such that
in g+12(tatbtctd), ta > tb > tc > td.

In the case of fast modulation σ12τ̄12 ≪ 1, g+12(t1t′1t2t′2) = 0,
g+12(t2t′2t1t′1) = 0, and the rest of time-ordered cumulants simplify to
the form

g+12(t1t2t′1t′2) = γ12(t2 − t′1), (C10)

g+12(t1t2t′2t′1) = γ12(t2 − t′2), (C11)

g+12(t2t1t′2t′1) = γ12(t1 − t′2), (C12)

g+12(t2t1t′1t′2) = γ12(t1 − t′1), (C13)

with γ12 = σ212τ̄12.
In the case of slow modulation σ12τ̄12 ≫ 1, Eqs. (C4)–(C9)

simplify to the following expression:

g12(t − t′) = σ212(t1 − t′1)(t2 − t′2), (C14)

which holds for all initial time permutations used in
Eqs. (C4)–(C9).
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