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Abstract—Advances in virtualization technologies and edge
computing have inspired a new paradigm for Internet-of-Things
(IoT) application development. By breaking a monolithic ap-
plication into loosely coupled microservices, great gain can be
achieved in performance, flexibility and robustness. In this paper,
we study the important problem of load balancing across IoT
microservice instances. A key difficulty in this problem is the
interdependencies among microservices: the load on a successor
microservice instance directly depends on the load distributed
from its predecessor microservice instances. We propose a
graph-based model for describing the load dependencies among
microservices. Based on the model, we first propose a basic
formulation for load balancing, which can be solved optimally in
polynomial time. The basic model neglects the quality-of-service
(QoS) of the IoT application. We then propose a QoS-aware load
balancing model, based on a novel abstraction that captures a
realization of the application’s internal logic. The QoS-aware load
balancing problem is NP-hard. We propose a fully polynomial-
time approximation scheme for the QoS-aware problem. We show
through simulation experiments that our proposed algorithm
achieves enhanced QoS compared to heuristic solutions.

Keywords—IoT, microservice, application graph, load balanc-
ing, fully polynomial-time approximation scheme

I. INTRODUCTION

The Internet-of-Things (IoT) has drastically grown in size
and capability in the recent years, owing to advances in
broadband access networks, cloud/edge computing, big data
analytics, machine learning, etc. In the near future, the global
IoT can expand to tens of billions of devices, powering up
numerous applications such as smart city, smart home, smart
health, connected vehicles, etc. The global economic impact of
IoT can be more than several trillion dollars in early 2020s [1].

Due to IoT’s rapid development, the traditional monolithic
architecture is no longer suitable for IoT applications. Instead,
the microservice architecture is gaining support from both
industry and academia. The architecture is built upon loosely
coupled microservices, each with compact logic and well-
defined interfaces. An IoT application is built as a collection
of microservices with inter-microservice communications. In
real deployment, an application can employ multiple instances
of each microservice to achieve elasticity and robustness.

A key difficulty in microservice management is the inter-
dependencies among microservices. Specifically, the input data
to one microservice may depend on the output data of other
microservices. To capture this, existing works adopt a graph-
based approach, modeling an application as a directed graph
where vertices represent microservices, and edges represent
data flows between microservices. Fig. 1 shows an example.
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Fig. 1: Graph representation of a smart home application.

In this paper, we study an important problem in mi-
croservice management: load balancing across microservice
instances. Lower load on instances can lead to better robustness
and elasticity when facing instance failures or demand changes.
Yet microservice load balancing is a complex problem due to
the interdependencies. Specifically, changing the load distri-
bution at one microservice instance could cause changes to
the load on many other microservice instances. This situation
is aggravated by the heterogeneous connectivity between mi-
croservice instances, which are distributed in the edge network.

Existing efforts have adopted simplified models to make
the load balancing problem tractable, e.g., by abstracting the
application’s processing logic as a chain of microservices [23].
Such a model, however, is insufficient to capture the rich
interdependencies in modern IoT applications. In this paper,
we aim to provide a general solution to load balancing for
interdependent microservices. We start with a directed acyclic
graph (DAG)-based model for describing microservice interde-
pendencies, which is rich enough to abstract a majority of IoT
applications. We then propose a linear program formulation
for the basic load balancing problem, where the application
aims to minimize the maximum load among all instances.

The basic model neglects the quality-of-service (QoS) goal
of the application, and may result in arbitrarily large end-to-
end delay when answering user requests. This motivates us to
study the more complex QoS-aware load balancing problem,
where the application aims to optimize the end-to-end QoS
while satisfying a desired load balancing goal. We first present
a method to characterize the QoS of a load balancing solution,
by abstracting a realization structure for the application graph.
We show through a decomposition theorem that the realization
structure can precisely represent QoS-aware load balancing
solutions. Unfortunately, the QoS-aware problem is NP-hard.
Hence we propose a fully polynomial-time approximation
scheme (FPTAS) for the problem. We show through simulation
experiments that our proposed algorithm indeed outperforms
heuristic solutions in terms of QoS of the application.

Our main contributions are summarized as follows:

e To our knowledge, we are the first to study microservice
load balancing with DAG-based interdependencies.



e We formulate both a basic and a QoS-aware load balanc-
ing problem. We prove the latter to be NP-hard.

e We show that the basic problem can be solved optimally,
while the QoS-aware problem admits an FPTAS.

e Simulation experiments have shown that our algorithm
can improve application QoS compared to baselines.

The rest of this paper is organized as follows. In Sec. II,
we introduce background and related work. In Sec. III, we
present system model and the basic load balancing model. In
Sec. IV, we describe our QoS-aware model, a formal statement
of the problem, and its complexity. In Sec. V, we propose the
FPTAS for QoS-aware load balancing. In Sec. VI, we show
our simulation results. In Sec. VII, we conclude this paper.

II. BACKGROUND AND RELATED WORK
A. Microservices and Application Graph Models

The microservice architecture, originally proposed for com-
plex business applications in enterprises such as Amazon [2]
and Netflix [3], has rapidly gained attention in the IoT domain,
where it can largely reduce the cost and complexity of building
IoT applications. With the help of distributed edge computing,
a microservice-based application can achieve a number of ben-
efits over a monolithic application, including robustness [17],
elasticity [26], security [21], evolvability [12], and many more.

Graph-based approaches are commonly adopted to model
and manage such decomposed IoT applications. Belli et al. [7]
proposed an application architecture, which uses the processing
graph to characterize QoS and improve infrastructure usage
efficiency. Akkermans et al. [4] built a system for application
orchestration based on application graphs. Erbs et al. [11] built
another graph-based distributed processing system, which,
in addition to orchestration across logical components, also
considers the chronological dependencies among components.
Lee et al. [19] used tenant application graphs to model
cloud applications, and proposed bandwidth-aware application
embedding in tree-like cloud networks.

Resource allocation for application graphs can be hard
due to the complex structures of such graphs. Many heuristic
solutions exist without performance bound [6], [14]. To address
this, existing approaches used simplified graph models. For
example, Li et al. [20] and Niu et al. [23] used a chain-based
model. Li et al. [20] proposed a heuristic for bandwidth-aware
application chain deployment. Niu et al. [23] proposed a game
theoretical approach to coordinate resources among competing
application chains, in order to minimize their response times.
A related area considers the embedding of service function
chains (SFC), where similarly one or multiple chains of service
functions are to be deployed in the network. Approximation
algorithms exist, e.g., due to Cao et al. [8], Kuo et al. [18], and
Yu et al. [31]. Yu et al. [32] studied a different model where the
application has a star structure, and proposed an FPTAS for
network load balancing. Yet these simplified models greatly
limit the expressiveness of this approach, and hence are not
suitable for general IoT applications.

Outside of the IoT domain, there are problems with similar
abstractions. An early area of research is virtual network
embedding (VNE), where a request is given as a virtual
network graph that is to be embedded on a physical net-
work [10]. A related area is data center virtualization, where

a tenant request is also given as a graph, which is to be
embedded in the physical cloud network [33]. Since these
problems are mainly studied in the network domain, they are
different from resource allocation for application graphs. As an
example, these problems commonly request that a virtual node
is mapped to one and only one physical node, while a vertex
(microservice) in an application graph can be implemented by
a number of distributed instances at the same time.

B. Application-level Load Balancing

The load balancing problem has been studied in many
different contexts, such as parallel computing [27], web ap-
plications [9], cloud applications [24], network load [5], [15],
[25], microservices [23], etc. Due to the large body of work,
we only do a brief review on the methods used.

Many existing works are based on the principle of ran-
domized load balancing, where in-coming load is randomly
assigned to different entities based on load information. For
example, Equal-Cost Multi-Path (ECMP) [25] is one of the
most widely used Layer-3 load balancing technique that has
a lot of variants. In the computing domain, it has also been
shown that using randomized load balancing can reduce the
queueing delay at servers [30]. A drawback of the randomized
approach is that it is difficult to consider the load interdepen-
dencies among entities, hence it may result in skewed load
distributions at entities that significantly depend on others.

Contrary to randomized load balancing, deterministic load
balancing can make decisions based on many different fac-
tors, such as entity interdependencies [6], [14], [23], QoS
information [23], [32], energy consumption [24], failures and
network asymmetry [15], etc. These solutions differ from the
randomized ones in that commonly the former need global
coordination to obtain system-wide information and to enforce
load balancing policies. In network, this either requires a
centralized network controller [15], or complex peer-to-peer
information aggregation and dissemination [5]. In the comput-
ing domain, the task is easier, as most computing platforms
already employ hypervisors to make centrally coordinated
decisions. Among problems with different considerations, load
balancing with complex interdependencies seems to be one of
the most difficult, where only heuristic solutions exist [6], [14].

III. SYSTEM MODEL AND BASIC FORMULATION
A. Application Model

An IoT application is built by selecting a number of
microservices, and establishing proper inter-connections be-
tween their output and input APIs. Specifically, an application
is modeled as a directed acyclic graph (DAG), denoted as
G = (V, E), where V is the set of vertices denoting microser-
vices, and E is the set of edges denoting direct API calls
between microservices. A microservice v is called a successor
of microservice w if there is a directed edge (u,v) € E; v is
a predecessor of u if the opposite edge (v,u) € E exists. A
microservice with no successor is called a sink microservice.
For simplicity, we use Vi,(v) and Vo (v) to denote the subsets
of predecessors and successors of microservice v, respectively.
G is called the application graph (app-graph) hereafter.

The set E defines how IoT data flow across microservices.
For load balancing, it is important to capture how data are



distributed at each microservice. For each edge e = (u,v) €
FE, a data distribution ratio r. is defined, which denotes the
input data volume that microservice v would receive from u
if w is fed with 1 unit of input data. The input data of a
microservice thus depends on both the external data it directly
receives, and the data distributed from its predecessors. r, can
be obtained via analysis of historical measurements. An app-
graph example is shown in Fig. 2(a).

B. Infrastructure Model

The IoT application must be instantiated with microservice
instances in the network. For each microservice v € V, we
define N, as the set of nodes (microservice instances) that
implement v. The physical connectivities between instances
of a pair of microservices (u,v) € F are defined by link set
L,, € N, x N,. Since we only care about connectivities
between microservices that have direct API calls, the set L.,
is only well-defined for (u,v) € E. The infrastructure graph
(inf-graph) is denoted as I' = (N, L), where N = J, o, N,
and L = U(u,u)eE L,,,. For simplicity, we let v, € V be the
microservice that node n belongs to; we then use the same
notation, “predecessor/successor” of node n, to denote the
corresponding predecessor/successor microservice of v,,. We
further let Liy(n) or Loy (n) be the subset of links in-coming
or out-going node n, respectively, and Loy (n,v) be the subset
of out-going links of node n that point to nodes belonging to
microservice v. The inf-graph is also a DAG.

We next define a number of attributes for the inf-graph.
First, each node n € N has a capacity c¢,, which is the
maximum load it can process to avoid congestion. In stream-
analysis applications, ¢, is commonly measured in terms of
input data volume. Second, each node may have a processing
delay d,. The delay values can be obtained, e.g., using the
method outlined in [16]. Each link | € L may also have a
delay d;, denoting the data transmission latency between the
two instances. For a path p, its delay is defined as the sum of
node and link delays on p: d(p) = >_,c,dn + >, di- The
application receives input data from external sources such as
IoT devices, and the data may be fed into a certain node based
on the data source locations, types of data, frontend distribution
policies, etc. We use d5** to denote the volume of external data
fed into node n, also called its external demand. A node with
dXt > 0 is called a source node. Note that node n may also
receive input data from other nodes through API calls, which
is different from its external demand, and is called the internal
demand instead. An inf-graph example is shown in Fig. 2(b),
corresponding to the app-graph in Fig. 2(a).

Note that for clarity of illustration, we use different terms
for different graphs. We use “vertex” and “edge” for entities
in the app-graph. We use “node” and “link” for entities in the
inf-graph. In the next section, we will use “point” and “arc”
for entities in the realization graph, to be explained later.

C. Basic Load Balancing Model

In our scenario, an application is instantiated by allocating
external and internal demands to the microservice instances.
In choosing how to instantiate the application, its owner aims
to balance the load across different microservice instances, in
order to achieve the best performance as well as to leave room

for elastic scaling in the future. As a first step, we establish
a formal model for the basic load balancing problem, which
neglects the QoS requirement of the application.

Let §,, be the total demand into node n € N, which
is the summation of both its external and internal demands:
Op = 0 4 0™, The external demand 05 is regarded as a
constant value, but the internal demand 5;{“ depends on the
demands distributed from predecessor microservice instances
of n, which in turn depends on the input demands of the
predecessor instances, their corresponding data distribution
ratios, and how they allocate their own output demands.
Define f(ni,ns) as the demand allocation from ny to no if
(n1,m2) € L. We then have §i™ = > ieLy(n) f (1), and hence:

__ sext
bp = 05 + ZZGLM) f(l), VneN. (1)

For a demand allocation function f : L — R* (R* is the
non-negative real number set) to be feasible, it must satisfy
the following two constraints:

1) The total demand at each node should not exceed its
desired capacity multiplied by a load factor 1):

Oon <-c,, VnéeN. 2)
2) The demand distributed from a node to all nodes of a

successor microservice should satisfy the data distribution
ratio between the two microservices:

ZlELom(n,w) f(l) = r(vmw)(snu VTL, w e V;)ul(vn)~ (3)

The load factor v essentially specifies the maximum load of
any microservice instance. Commonly, the application would
have a desired bound W, such that the load on any instance does
not exceed this bound. We then define the following problem:

Definition 1. Given app-graph G with inf-graph T, and load
bound VU > 0, the Basic Load Balancing (BLB) problem seeks
for a demand allocation function [ : L — R*, which satisfies
Egs. (1), (2) and (3) while ensuring ¢ < WU. Its optimization
version, instead of giving a load bound W, is to minimize ),

and is named O-BLB hereaffter. O
The following linear program (LP) formulates O-BLB:

i 4

min (0 “4)

st (1),(2) and (3).
Theorem 1. O-BLB can be solved in O(|L|? - L) time. O

Proof: Program (4) is an LP with (|L| + 1) variables.
Based on [29], the LP can be solved optimally in O(|L|? - L)
time (L is the input size). ]

In Fig. 2(b), we also show a feasible solution to the
load balancing problem. Bold links show links with positive
demand allocation, and each bold link’s allocation is equal
to the cumulative load imposed on the link. For example, link
A1 — By has an allocation of §-0.5 = 1.0, while link D; — E;
has an allocation of §-(0.5-1.0+0.5-1.0)- 1.0 = 2.0 with the
first half of demand coming from the path A; — B; — Dy,
and the second half from A; — C; — Dj. A clearer view
of the solution is shown in Fig. 2(c), which will be detailed
using the real-graph abstraction in the next section. This basic
model, however, neglects the QoS of the application, and may
lead to arbitrarily long delay for serving user demands. In the
next section, we propose a novel model for characterizing QoS.



(a) App-graph G = (V, E) (Sec. III). Sym-
bols in circles are microservices. Values on
lines are distribution ratios.

(b) Inf-graph I' = (N, L) (Sec. III). Symbols in
circles are microservice instances. Values beside

circles are (capacity, delay). Links have O delay.
Bold links show a feasible load balancing solution.

(c) Real-graph m = (X, Ax) (Sec. IV). Symbols
in circles are instances mapped from the corre-
sponding points. Values beside circles are (impact
ratio, max cumulative delay).

Fig. 2: App-graph (a), inf-graph (b) and a real-graph (c) of an example application with load bound ¥ = 1. Bold links in (b)
show a feasible load balancing solution with max delay of 13, which is further shown in (c) as a single decomposed real-graph.

IV. QOS-AWARE LOAD BALANCING

The above outlines a basic formulation of the load bal-
ancing problem. The model, however, merely reflects the
numerical relationship between different instances, without de-
scribing the richer structural relationship in the app-graph. It is
therefore intrinsically difficult to incorporate QoS information
into the formulation. In this section, we model the QoS of an
application through a novel realization graph abstraction.

We consider the following QoS goal of the application.
In ToT, users usually ask for a guaranteed response time to
ensure timely reception and handling of IoT events, such as
traffic status or emergency events. We hence assume that the
application’s QoS goal is to bound or minimize the maximum
end-to-end delay that any external demand would experience.
To characterize this, we propose the following abstraction:

Definition 2 (Real-graph). Given app-graph G = (V, E), inf-
graph I' = (N, L) and a source node n € N, a realization
graph (real-graph) is defined as a DAG © = (X, A,),
coupled with a mapping o : X, — N, which satisfies that:
1) x; with o(x,) = n is the only point with 0 in-degree;
2)Vx € Xy and Vv € Vou(Vo(s)), there is exactly one y € X,
such that o(y) € N, (o(x),0(y)) € L, and (x,y) € A,. O

X is the set of points in 7, and A, is the set of arcs. We
call x, the root point of real-graph 7. Real-graphs with roots
mapped to source node n € N are denoted by set 11,,, and real-
graphs of all source nodes are denoted by set IT = | J,, II,,. For
simplicity, we use the same notation o to map entities (nodes,
links, paths or subgraphs) in 7 to the corresponding entities in
I'. We also use a point z to represent the node o(x) € N when
no ambiguity is introduced. N, C N and L, C L denote the
subsets of nodes and links that are mapped from some points
and arcs in 7, respectively.

We now explain the intuition behind Definition 2. A real-
graph can be viewed as a unitary structure that realizes every
possible processing path starting with a source microservice
(a microservice that has source nodes) in the app-graph. Each
path is realized by a sequence of physical instances. To do this,
we start from a source node, and recursively instantiate every
successor microservice of the current node by assigning an
instance to it, until we reach the sinks. Note that in this process,
we may choose different instances of the same microservice,
each as the successor of a different predecessor instance. Hence
there can be multiple points in the real-graph mapped to the
same node. We show an example of a real-graph in Fig. 2(c),
which will be explained later.

We can define a number of attributes for 7. First, each
point/arc inherits the delay of its mapped node/link in I'.
Second, since each point z has exactly one neighbor y for each
successor v € Vou(vz), we can define the distribution ratio
T2y = T(vy (0),00(y) 10T (Z,Y) € Ar. We can further derive the
impact ratio p7 for each point x € X, defined as the demand
on x when one unit of demand is input at root x,. This can
be computed by initially letting p7 = 1, and then traversing
7 from x,, with each point adding its own impact ratio times
the distribution ratio of each out-going arc to the impact ratio
of the corresponding out-going neighbor. Similarly, the impact
ratio p’ for each arc a € A, can be computed. Then, we sum
the impact ratios of all points mapped to a node m € N, to
compute the impact ratio p];, imposed on m by 7, and similarly
the impact ratio p] on each link [ € L,. The unitarity of 7 is
guaranteed by assigning exactly one instance to every point’s
every successor microservice; in other words, each processing
path in the app-graph corresponds to exactly one path in 7.

Based on these, we can define a source demand allocation
function ¢ : II — R*. For 7 € II,,, the value ¢(7) denotes the
external demand at the source node n that is allocated to be
carried on real-graph 7. Each node/link’s demand under 7 can
then be computed by multiplying ¢(7) with the node/link’s
impact ratio. We highlight the importance of this real-graph
abstraction in the following theorem, which is an analogy to
the Flow Decomposition theorem for traditional network flow:

Theorem 2. Any demand allocation f satisfying Egs. (1)
and (3) can be decomposed into at most |N|+ |L| real-graphs
11! with ¢(m) > 0 for Vm € 11, such that the total demand
incurred by ¢ on any link | € L is no more than f(1). O

Proof: We decompose f as follows. We first find an
arbitrary real-graph 7 € II,, for n € N with §&* > 0, such that
f(1) > 0 for VI € L. We then calculate the maximum accept-
able demand of 7 as 0(m) = min{d$™, f(1)/p] for VI € L.},
i.e., the minimum among ¢S, and the total allocated demand
on every link [ that appears in 7 factored by the inverse of its
impact ratio 1/pT. We let ¢(m) = d(m). We then visit every
link [ € L, deducting §(m)-pJ from f(I); we also deduct 5 ()
from 6. After the deduction, the remaining f and demands
still satisfy Egs. (1) and (3), since we deduct the same amount
from the lefthand and righthand sides of Egs. (1) and (3). Due
to our calculation of (), at least one link’s allocated demand
is fully taken away during the deduction, or the total demand
at a source node is deducted. We need at most |N|+ |L| steps
to deduct all allocations from f. Also, we never deduct more
than the demand allocated on any link, hence any capacity
constraint satisfied by f is also satisfied by ¢.



We now prove that we can always find a = with f(I) >
0 for VI € L, if f is feasible and In € N s.t. §& > 0.
Let n be a node with §,, > 0 where J,, comes from either
external or internal demands. By Eq. (3), there exists m € N,
for Vv € Vou(vy,) such that f(n,m) > 0, and hence 4, >
0. Therefore, we can start from any n with positive external
demand, arbitrarily select a node m € N,, with f(n,m) >0
for each successor microservice v of v,,, and then follow this
process at each selected m until no successor to work on. This
clearly generates a real-graph whenever f is feasible and has
positive external demand, which completes our proof. ]

Fig. 2(c) shows a real-graph, which is also a decomposition
of the load balancing solution shown in Fig. 2(b) (in practice, a
solution may be decomposed into multiple real-graphs; in our
example, only one is needed). We compute both the impact
ratio and the cumulative delay for each point as shown in the
figure. For example, the point mapped to D; has impact ratio
(rap-TBptrac-rep) = 1.0. Delay is computed as the maximum
delay from the root, e.g., the delay at the point mapped to Dy
is da, +max{dg, , dc, }+dp, = 9. Note that although the real-
graph realizes the app-graph, it may not be isomorphic to the
app-graph, as it allows instantiating a microservice by multiple
instances, such as microservice D instantiated by D; and Ds.

Theorem 2 is fundamental, as it enables us to use real-
graphs as a basic structure for characterizing a load balanc-
ing solution. In other words, instead of defining a per-link
allocation function f, we can define the allocation ¢ over
the real-graphs from each source node, with the end-to-end
delay of the application defined as the maximum delay from
the source point to the leaf points of any real-graph with
positive allocation. We can then define the QoS-aware load
balancing problem. Let D be the application’s delay bound.
Define d(7) as the maximum path delay from root =, to any
leaf point in 7: d(7) = max{d(p) | p € 7}. For brevity, we let
II"™ = {m € II|m € N} be the subset of all real-graphs that
include points mapped to node m.

Definition 3. Given app-graph G, inf-graph T, load bound
U > 0, and delay bound D > 0, the QoS-aware Load
Balancing (QLB) problem seeks for a subset of real-graphs
Hifl for each source node n, with Il = Une N Hifl, and a
source demand allocation function ¢ : II'* — R*, s.t.:

1)y <V,

2) for node ¥m € N, Znenm pr - d(m) < e,

3) for source node ¥n € N, 3 i ¢(7) = 63, and

4) for real-graph ¥m € TI*, d(r) < D.

The optimization version, denoted as O-QLB hereafter, is to
minimize the maximum delay of all selected real-graphs. [

Proof of the following theorem is deferred to the appendix.
Theorem 3. Both QLB and O-QLB are NP-hard. ]

V. APPROXIMATION SCHEME DESIGN

Due to the NP-hardness of O-QLB, we seek to develop
an approximation algorithm. Below, we first show that if all
delay values are positive integers, the QLB problem can be
solved in pseudo-polynomial time. Such a problem is defined
as Integral QLB (IQLB), with O-IQLB being its optimization
version to minimize maximum delay. The pseudo-polynomial
time algorithm is then used as a building block in the design of
an approximation scheme for the general non-integral problem.

A. Pseudo-Polynomial Time Optimal Algorithm

Our pseudo-polynomial time algorithm for IQLB is based
on a layered graph technique [22], [28]. Given inf-graph I" and
an integral delay bound D, we define an auxiliary inf-graph

I'P = (NP LP). The node set NP = {n n! ... .nP|n ¢
N}, ie., anode has (D+ 1) copies each belonging to a layer.
For source node n € N, we let 6% = 45'; all other nodes

have 0 external demand. Let d}f, = dy, + d(y ) be the delay
of link (n,m) € L plus the delay of m. The link set LP =
{(n’,m**9um) | (n,m) € L,i =0,1,...,D—d},}, ie., each
original link in L has (D — d;f,, + 1) copies. Each link copy
inherits the distribution ratio of the original link. Due to page
limit, we refer the reader to [22] (p. 4, Fig. 4) for an illustrative
figure of the layered graph technique.

It is easy to see that each path or real-graph in I'P
corresponds to exactly one path or real-graph in I', respectively.
On the opposite direction, each path or real-graph starting with
one source node n in I' also corresponds to exactly one path
or real-graph in I'? (since the external demand of each source
node in I enters at exactly one node in I'”). As our focus is
only on paths or real-graphs starting with source nodes, we
use p or w to denote both a path or real-graph in I', and its
correspondence in I'P, without introducing ambiguity.

The intuition behind this construction is to enforce that
going through a node n or link [ in I" is equivalent to “climb-
ing” d,, or d; layers in the auxiliary inf-graph, respectively.
The processing delay of source node n is encoded such that
its external demand enters in the respective d,,-th layer. Since
only (D+1) layers (from 0 to D) present, any processing path
must reach a sink node within D layers, thus bounding the
maximum delay. Formally, we have the following observation:

Observation 1. Any path p or real-graph 7 in T'P has delay
d(p) < D or d(w) < D in T, respectively. O

Combining Theorem 2 and Observation 1, we are motivated
to study the basic load balancing problem on the auxiliary inf-
graph, which is formulated as the following LP:

gcnzig (0 (5a)
s.t. 5n:Zl€L£(") f(1) + 0%, ¥n e ND; (5b)
ZZO 60 <V - Cpy ¥ € N; (5¢)
> FO) =70, )00, INEND, wEVou(vy).  (5d)

1eLE (n,w)

Program (5) is almost the same as Program (4), except that the
capacity constraint (5¢) now considers the demands entering
all copies of the same node n. We then have the following:

Theorem 4. IQLB can be solved in O(D*|L|’L) time. O

Proof: Program (5) is an LP with at most D|L| variables
and input size of O(DL), and hence it can be solved in
O(D* L]’L) time. By Theorem 2, the feasible solution to
Program (5) can be decomposed into at most D(|N|+|L|) real-
graphs on I'P. By Observation 1, each real-graph has delay
bounded by D, thus the solution is feasible to IQLB if the
optimal value of Program (5) satisfies ¥ < W. Now, assume
IQLB has a feasible solution, by reversing the decomposition,
we can construct a demand allocation f that satisfies all
constraints in Program (5). The theorem follows. |



B. Approximation Scheme for O-QLB

The basic idea of our algorithm is to find a sufficiently fine-
grained discretization of the real-valued delays, such that the
discretized solution is a good approximation of the optimal
solution, and yet the time complexity is polynomial to the
input size (and the inverse of an approximation factor €). For
this reason, we use a factor « to represent the granularity
of discretization. We then define the discretized delay values
given a: df = |a-d,]+1forn € N, and dY = |«-d;] +1 for
[ € L; we use similar symbols d“(p) or d*(m) to denote the
delay of a path or a real-graph after discretization, respectively.
The discretized delays satisfy the following lemma:

Lemma 1. For any path p in T', we have
a-d(p) <d*(p) < a-d(p) +2IN| - L O

Proof: The left inequality is clear. The right one is because
each path has at most | V| nodes and |N| — 1 links. [ |

By selecting a proper factor «, we discretize the O-QLB
problem to have only integral delay values. We want to solve
the resulting O-IQLB problem to obtain an approximation
to the original O-QLB problem. Let A%-QLB be the optimal
value to the original O-QLB problem, and let (UB,LB) be
a pair of bounds such that UB > AOQB > 1B We
define the discretization factor as o = 2|N‘_1, given a small
approximation factor e. Let A%TQLB be the optimal value to
the corresponding O-IQLB instance. We have the following:

Lemma 2. o -LB < A%QB < |o. UB| +2|N| - 1. O
Lemma 3. o - AOQLB < AOIQLE < . (1+e€)- AOCQLE
Proof of Lemmas 2 and 3: Let (II**!, ¢) be an optimal

solution to O-QLB. Since it is also feasible to O-IQLB, with
Lemma 1, we have

AOTAB < max{d*(p) | w € Il p e T}
< a-max{d(p) |7 €I pecn}+2IN| -1
<a-A%B L oIN|—1
<a-UB+2|N|-1.

This implies the right inequality in Lemma 2, as A%TQLE jg
always an integer due to the discretization. From the third
inequality in Eq. (6), we have

AOIQLB < . (AO-QLB )
B e}
=a- (A8 4 ¢ LB) @
<a-(14¢) AU
Based on the left inequality of Lemma 1, we have the left

inequality in Lemma 3, which implies the left inequality in
Lemma 2. This proves Lemmas 2 and 3. ]

(6)

9IN| -1
+7

We now talk about the implications of Lemmas 2 and 3.
Lemma 3 states that A9IQLB divided by o provides a (1 +¢)-
approximation to the value A%Q'B, Lemma 2 further pro-
vides a method to compute the value A%QLB given a pair
of bounds (UB,LB) on A®QLE A bisection method can
be used to search the space [« - LB, |a - UB| + 2|N| —
1] for the delay value ACTLB  each time solving an in-
stance of IQLB by Program (5). The entire search requires

O(log %) = O(log “Z[ngB) runs, each with time
|N|UB )

complexity of O(|L[*(*35~)*L). To summarize, Lemmas 2

Algorithm 1: FPTAS-O-QLB(G,T', ¥)

Solve Program (4) on I to test feasibility;
Ascendingly sort all delay values as d = (do, . . .
lo+ 0,hi + K;
while lo < hi — 1 do
mi < | (hi+1o)/2];
Construct sub-graph I'_4_.;
Solve Program (4) on I'_,, . for optimal load 1);
if v > W then [o < mi;
else hi < mi;
end
doot <= dpi, LB <= dpor, UB <= (2|N| — 1)dpor;
Discretize delays with v = (2| N| — 1)/€LB;
Dyy < |- LB], Dy; + |a- UB| +2|N| — 1;
while D;, < Dy; — 1 do
Dyni < |(Dio + Dpi)/2];

JdK)s

o NN R W N =

P <
N oh W N =D

16 | Construct auxiliary inf-graph T'Pmi;

17 Solve Program (5) on I'Pm¢ for optimal load 1);
18 if ¢ > U then D, < D,,;;

19 else Dy; < D,.;;

20 end

[
[

Do real-graph decomposition on the solution for I'Pri;
return (I, ¢) obtained by decomposition.
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and 3 give us a method for computing a (1+ €)-approximation
of the optimal solution to O-QLB within time polynomial to
the input size, the parameter 1/¢, and the ratio % between
the upper and lower bounds.

To establish a polynomial-time algorithm, our next step is
to find a pair of bounds (UB,LB) that is within a polynomial
factor of each other. This can be done by finding a bottleneck
delay that “determines” the feasibility of the problem instance.
Let I'_; be the sub-graph of I' where all nodes and links with
delays larger than d are pruned. We wish to find the minimum
value dpo such that I'_g,  still admits a feasible BLB solution
satisfying the load bound W. Note that a source node n having
delay d, > d directly eliminates the existence of a feasible
solution in I'_;. Naturally, if the original O-QLB instance is
feasible, which can be checked by solving Program (4) on the
original T', then dp, exists. Since there are at most |[N| + | L]
distinct delay values, dyo can be found also using bisection in
O(log(|N| + |L|)) iterations, each spending O(|L|? - L) time
solving Program (4). We then have the following:

Lemma 4. (2|N| — 1) - dpoy > A%AB > g O

Proof: By the definition of dy, it follows that the QLB
instance is feasible on I'_,  but is infeasible on I'_4,  with all
nodes/links with delay equal to dpy removed. This means that
any feasible solution to QLB includes at least one node/link
with delay no less than dpo, Which means dp is a lower bound
of A® QB O the other hand, since there is a feasible solution
in I'_g,_, and any path in I'_;_ has at most |N| nodes and
(IN] — 1) links, the longest path delay in the feasible solution
cannot exceed (2|N| — 1) - dpor. Hence (2|N| — 1) - dpor is an
upper bound of A®QLB_ This completes the proof. ]

Lemma 4 provides us a pair of bounds UB = (2|N| —
1) - dpot and LB = dpy with UB/LB = 2|N| — 1. Putting
together the bounds with Lemmas 2 and 3, we now have an
approximation scheme for O-QLB, shown in Algorithm 1.



Lemma 5. Given any € > 0, Algorithm 1 outputs a
(1 + €)-approximation of the optimal O-QLB solution, within
O(L|LIB|INBL1og ! 4 |L|3Llog |N|) time. O

Proof: The approximation ratio is due to Lemma 3.
The dominant time complexity comes from the two bisection
searches along with an LP solving per search iteration. The first
search takes O(log(|N|+|L|)) iterations each with O(|L|3-L)
time complexity. The second search takes O(log @) iterations
each with O(%|L|*| N [®L) time complexity. Since |L| < |N|?,
we have the final complexity by adding them together. [ |

C. Efficiency Enhancement

While Algorithm 1 runs in time polynomial to input size
and 1/, it has a time complexity as high as O(|N|*2log |N|)
assuming |L| = Q(|N]|) and € is a constant. Observe that
the high complexity mainly comes from solving LPs with
D|L| variables and input size DL, where D = D,,; is in
the order of UZI“UB and UB/LB is in the order of |N|. If we
can reduce UB/LB to a constant, a reduction of order |N|
can be achieved on the program size, resulting in orders of
reduction in the overall time complexity. We use a technique
called approximate testing to achieve such a reduction [22].

Specifically, we define a test procedure TEST,, (D). Given
w > 0 and D > 0, we define a new discretization factor
a = % and discretize all delay values in I'. We then
define an instance of IQLB as (G,T',¥,D’) where D' =
Lglﬁﬁj +2|N| —1 and all delay values in I' are discretized
by «a. Let TEST,, (D) = True if the discretized IQLB instance
(G,T', ¥, D’) has a feasible solution, and TEST,, (D) = False

otherwise. We then have the following lemma:

Lemma 6. Given any w > 0 and D > 0, we have
TEST, (D) = True = A< (14w)-D;
TEST, (D) = False = A%UB > O

Proof: Assume TEST,, (D) = True, then we have a feasi-
ble solution (II*¢!, ¢) for discretized IQLB(G, T', ¥, D'), which
also translates to a feasible solution for O-QLB(G,T", ¥). Let
p be any processing path in any 7 € II*¢!, we have d*(p) < D'.
Based on Lemma 1, we then have

d(p) < d*(p)/a < D'/a
< <2|N1 +oIN| - 1)
w
=D(l+w)
Since A% < max, e {d(p)} (as the solution is
feasible to O-QLB), we have A%E < (1 +w) - D.

D -w

"2IN[—1 ®

To prove the second statement, we can prove its contrapo-
sition, i.e., if A%QB < D then TEST,, (D) must output True.
Let m be any real-graph in the optimal O-QLB solution, and
let p be any path in 7. Based on Lemma 1, we then have

d*(p) < a-d(p) +2[N| -1

2IN[ =1 \oque
2|N| -1
< ANEL -
w

This implies that d*(p) < L%j + 2|N| —1 since again
the delays are discretized to be integers. Therefore the optimal

Algorithm 2: RefineBound(G,T', ¥, LB, UB)

// Between Lines 11 and 12 in Algo. 1
1 while UB > 4-1LB do

2 D «— UB2-LB :

3 if TEST;(D) = True then UB « 2-D;
4 else LB + D;

5 end

¢ return (LB, UB).

solution to O-QLB also translates to a feasible solution to the
discretized IQLB instance, and hence TEST,, (D) must output
True based on Theorem 4. This completes the proof. ]

Based on Lemma 6, we can use TEST,, with w =1 as a
test procedure for carrying out a bisection search on the pair
(UB,LB). Given an initial pair with UB/LB = 2|N|—1 (after
Line 11 of Algorithm 1), we insert the procedure described in
Algorithm 2, to obtain a pair of bounds within a constant factor
of each other, before proceeding to Line 12 of Algorithm 1.

Theorem 5. Given any € > 0, Algorithm I plus Algorithm 2
outputs a (1 + €)-approximation for O-QLB within time
O(L|LI*|N|*Llog X1 + |LPP| N|*Llog log |N|). O

Proof: First, observe that in Lines 3—4 of Algorithm 2,
if TEST1(D) outputs True, then 2 - D is still a valid upper
bound; if TEST; (D) outputs False, then D is still a valid lower
bound; both due to Lemma 6. By the choice of D, it satisfies

UB _ 2D _ /[2UB ; : : _ UB
that =35+ = §§5 = —g in each iteration. Let 8 = 3, and

let 3[i] be the value of 3 after the i-th iteration. It is clear
that 6[71] — Qﬂ[z — 1} e 21/2+1/4+-~~+1/2’ﬂ[0}1/2" <

2 - 3[0]*/%". Therefore Algorithm 2 needs O(loglog3[0]) =
O(loglog | N|) iterations, each solving an IQLB instance with
D = LI—Y'J + |N| = 2|N|. It follows that Algorithm 2
has a time complexity of O(|N|*|L|*Lloglog|N|). Since
we reduce UB/LB to be within 4 after Algorithm 2, the
complexity of the second bisection search in Algorithm 1 now
becomes O(Zr|L[*|N|*Llog I—Ijl) Combining these with the
time complexity of the first bisection search in Algorithm 1,
we have the claimed time complexity. ]

VI. PERFORMANCE EVALUATION

In this section, we present performance evaluation of our
proposed algorithm with simulation experiments. Our algo-
rithm is denoted as QLB. We implemented two heuristic
algorithms. In the first algorithm denoted as BLB, the BLB
formulation in Program (4) is solved, followed by a simple
decomposition as in Theorem 2. In the second algorithm
denoted as QHU (QoS-aware Heuristic), we solve a modified

o—e QLB
u-m BLB
oo QHU
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Fig. 3: Running time vs. app-graph size
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Fig. 4: Objective value vs. app-graph size

version of Program (4) where the objective is changed to
minimizing the demand-weighted sum of delays of all nodes
and links, meanwhile the load factor 1) has to be bounded by
U; we then use the same decomposition method. Therefore the
first heuristic corresponds to load balancing that neglects QoS
at all, and the second corresponds to a heuristic formulation
where the total delay instead of the maximum delay of the
solution is minimized in the modified LP.

We used randomly generated app-graphs and inf-graphs.
The app-graph was organized as a random 5-layer DAG, with
the lowest layer having 10% of the vertices and the other layers
sharing the rest. Edges were generated from lower layers to all
upper layers, with each vertex in the upper four layers having 4
in-coming edges on average. Distribution ratios of edges were
also randomly generated, such that all out-going edges of a
vertex had their ratios sum to 1. The inf-graph was generated
such that each lowest-layer microservice had only one instance,
as a source node, while each microservice in other layers
had [5,15] instances. Links were built between instances of
interconnected microservices with a base probability of 0.3,
while additional links were added to ensure that each instance
could find at least one out-going neighbor for every successor
microservice. Each source node had a random demand in
[100,900] and a large capacity such that it would not be a
load balancing bottleneck. For all other nodes, capacities were
generated in [10,90]. Node and link delays were generated in
[0,1000] ms and [0, 500] ms respectively. Finally, we assigned
the load bound ¥ to be one of the two values: it was either
the optimal value ¥* to BLB (Program (4)) or 2-v*. We used
them to test the delay performance in heavy- or moderate-load
scenarios respectively.

We set the accuracy parameter € = 0.5. Experiments were
run on a Ubuntu PC with i7-2600 CPU and 16GB memory.
To average-out random noise, we conducted 20 random exper-
iments under each setting and took their average.

Fig. 3 shows the running time of the implemented algo-
rithms with growth in the app-graph size. The running time of
QLB is longer than the heuristics as expected. The growth in
the running time is nevertheless polynomial to the growth in
app-graph size (and hence the inf-graph size).

Fig. 4 shows the comparison of the delay values achieved
by all three algorithms. We show the comparisons under two
settings: heavy load (U = ¢*) and moderate load (¥ = 2¢*).
We note that QLB achieves the lowest delay in all scenarios,
regardless of load. The QoS-aware heuristic QHU can improve
delay performance over QoS-agnostic load balancing BLB,

but cannot achieve an improvement as significant as QLB.
Comparing Figs. 4(a) and 4(b), QLB has a larger advantage
in terms of delay when the load is less (Fig. 4(b)). This is
partly because when the load is moderate, QLB has more room
for selecting nodes and links with lower delays, and thus it
can further improve QoS. On the other hand, the results for
BLB and QHU are almost the same with different loads, since
their formulations commonly generate the same solutions.
Differences may result from the decomposition process, which,
as shown in the results, has little impact on the QoS of the
final solutions.

To summarize, our algorithm always achieves advantageous
QoS performance over the heuristics, with a polynomially
bounded complexity. This supports our theoretical analysis that
QLB has guaranteed performance while both heuristics do not.

VII. CONCLUSIONS

In this paper, we studied basic and QoS-aware load balanc-
ing across interdependent IoT microservices. A DAG-based
model was used to abstract microservice interdependencies.
We proposed an LP formulation for the basic problem, which
can be solved in polynomial time. For the QoS-aware problem,
we proposed a decomposition-based model where a realization
of the application is expressed as a realization graph. Since the
QoS-aware problem is NP-hard, we proposed an FPTAS, along
with an efficiency enhancement technique that achieves several
orders of speed-up. Simulations showed that our algorithm
achieves enhanced QoS compared to heuristic solutions. We
believe that the proposed method, aside from making theo-
retical contribution to the problem studied, more importantly
provides insight in extending chain- or star-based application
models to the more general DAG-based model, which is much
more expressive and flexible in real-world scenarios.
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APPENDIX

Proof of Theorem 3: We derive a reduction from the Parti-
tion problem to QLB, the former of which is a well-known NP-
hard problem [13]. Given a set of objects X = {x1,...,2,}
and a positive integer a, for Vo € X, the Partition problem
seeks for a subset Y C X such that }° oy s =3, c x\y @o-
Given an instance X of Partition, we construct an instance
(G,T,%,D) of QLB as follows. G = (V, E) has the ver-
tex set V. = {wg,u1,v1,us,va,..., U, Vs}, and edge set
E = {(vi—1,u;), (uj,v;) |t = 1,...,k}. T = (N, L) has the
node set N = {n;|Vv; € V} U {ml m!|Vu; € V}, and
link set L = {(ni—la m?)v (ni—h m21)7 (m?a ni)? (mzla nl) | L=
1,...,k}. In summary, the app-graph is a line graph with
(2k+1) vertices and 2« edges, and the inf-graph has (3x+1)
nodes and 4k links. For the attributes, all edges in E have
distribution ratio of 1. Node ng has external demand of 2,
while all other nodes have no external demand. All n; nodes
have capacity of 2, while all m; nodes have capacity of 1. All
links, all n; nodes and all m? nodes have delay of 0, while
each m} node has delay 1 = ag,, for i = 1,..., k. Finally,
we set the application delay bound D = % Zle ag,, and the
load bound ¥ = 1. An example is shown in Fig. 5.

App-graph: @ 1.0 @ 1.0 @ 1.0 1.0 @ .

Fig. 5: App-graph values are distribution ratios. Delays of m}
nodes are shown beside them. Double lined nodes and all links
have 0 delay. All n; nodes have capacity of 2. All m] nodes
have capacity of 1. U =1. D =137 a,..

Since the app-graph G is a line graph, every real-graph of
no is also a line graph from ng to n,, and hence its delay is
precisely the sum of delays of m. nodes included in the path.
Now, suppose instance X of Partition has feasible solution
Y. Then instance (G,I',¥, D) of QLB also has a feasible
solution, which has two paths, one taking m} for z; € Y and
mY for z; € X\Y, and the other taking the opposite m? nodes,
both having a demand allocation of 1. On the reverse direction,
suppose instance (G,I', ¥, D) has a feasible solution. The
solution must also contain two paths since each m; node can
only accept half of the demands coming from the predecessor
n;_1 node. A feasible solution to Partition instance X is then
constructed by picking z; corresponding to all m} nodes taken
by one of the paths. This proves the NP-hardness of QLB, and
the NP-hardness of O-QLB follows. [ |



