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Abstract—Software-based diagnosis analyzes the observed re-
sponse of a failing circuit to pinpoint potential defect locations
and deduce their respective behaviors. It plays a crucial role in
finding the root cause of failure, and subsequently facilitates yield
analysis, learning and optimization. This paper describes a two-
phase, physically-aware diagnosis methodology called LearnX to
improve the quality of diagnosis, and in turn the quality of design,
test and manufacturing. The first phase attempts to diagnose a
defect that manifests as a well-established fault behavior (e.g.,
stuck or bridge fault models). The second phase uses machine
learning to build a model (separate for each defect type) that
learns the characteristics of defect candidates to distinguish
correct candidates from incorrect ones. Results from 30,000
fault injection experiments indicate that LearnX returns an ideal
diagnosis result (i.e., a single candidate correctly representing the
injected fault) for 73.2% of faulty circuits, which is 86.6 % higher
than state-of-the-art commercial diagnosis. Silicon experiments
further demonstrate the value of LearnX.

I. INTRODUCTION

Yield, which is defined as the proportion of working chips
fabricated, can be quite low when a new manufacturing process
or a new chip design is introduced. The process of identifying
and rectifying the sources of yield loss to improve both chip
design and manufacturing is called yield learning. The rate
of yield learning is extremely critical to the success of the
semiconductor industry and must thus be accelerated to meet
the triple objectives of diminishing time-to-volume, time-to-
market and time-to-money requirements.

Various strategies are used to identify and characterize
the sources of yield loss. Inline inspection, for example,
optically examines a wafer to characterize defects. However,
with technology continuing to shrink, its effectiveness to
locate a defect further decreases [1]. Specialized test structures
such as comb drives and ring oscillators are transparent to
failure but do not reflect the diversity of the layout patterns
found in an actual customer chip. More importantly, actual
chips undergo additional fabrication steps that may introduce
defect mechanisms that are simply not possible in simple test
structures. Hence, in recent years, the use of legacy designs
retrofitted for the latest technology node (and logic test chips
[2]) have been gaining traction as yield learning vehicles [1],
(31, [4].

Specifically, the knowledge of how a customer chip fails
manufacturing test is used to improve yield. This process is
called failure analysis (FA). FA typically starts with software-
based diagnosis, which is the process of identifying the
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location and behavior of a defect in a failed chip by analyzing
the observed circuit response. The quality of diagnosis is
generally measured through two metrics; namely, resolution,
which is defined as the number of defect candidates reported,
and accuracy, defined as whether any reported candidate
correspond to an actual defect.

The next step in FA can be volume diagnosis [3], [4],
where diagnosis results for a population of failing chips are
correlated to find yield-limiting design/manufacturing issues,
in hope of determining if a significant percentage of chips are
failing due to a common root cause. Chips with yield-limiting
defects can then be examined using physical failure analysis
(PFA). PFA is the process of visually inspecting a chip for
defects and provides indisputable confirmation of the presence
of a defect. Thus, the feedback obtained from PFA is used to
understand failure mechanisms, and amend the design and/or
the manufacturing process to improve yield.

In addition to guiding PFA, volume diagnosis can provide
useful information to improve test and diagnosis. For example,
it can be used to estimate defect-type distribution, which can
then be used to reduce test escapes via adaptive testing [4]. In
[5], diagnosis data is used to find the efficiency of new and
existing test methods, instead of relying on time-consuming
test-set silicon experiments.

High diagnosis accuracy and resolution are thus extremely
important for improving design, test and manufacturing of a
chip. An inaccurate diagnosis, for example, can direct volume
diagnosis to find incorrect correlations within diagnosis results,
which in turn can steer PFA to inspect incorrect die locations.
The destructive and time-consuming nature of PFA constrains
it to being performed on only a small number of chips and
considerable amount of resources can be wasted if the quality
of diagnosis is poor.

A typical diagnosis algorithm begins with analyzing the
observed circuit behavior and identifying a failing region
through methods like path tracing [6]. Next, different types
of faults within the found failing region are simulated. The
simulated fault responses are then compared with the observed
response measured by the tester to determine candidates that
best represent the defect. Each candidate may then also be
relatively validated against its physical likelihood of actually
corresponding to a defect based on its layout-level properties.
Lastly, each candidate is ranked and assigned a score, which
corresponds to the confidence the diagnosis algorithm has in



that candidate being correct.

Numerous approaches have been proposed over the years
to improve the quality of diagnosis. The difference in these
approaches primarily lies in the choice of fault models for
simulation and the scoring procedure developed. For example,
techniques such as [7]-[10] are based on logic fault models
that assume an erroneous value of 0 or 1 at the fault location.
However, not all defects (e.g., byzantine opens [11]), even for
a subset of failing patterns, necessarily behave like a stuck-at
fault. Thus, the X -fault model, where an unknown value (X)
is assumed at the candidate location, is employed in [12]-[15]
to avoid eliminating an actual defect location.

Various scoring methods exist in the literature to rank
candidates. Methods described in [8]-[10], [16] are based
on a logic fault model, but it might yield an incorrect set
of candidates to begin with. On the other hand, methods
discussed in [12]—[15] are based on the X -fault model; but due
to its inherent flexibility and generality in deriving candidates,
accuracy is achieved at the cost of resolution. More impor-
tantly, prior scoring methods rank candidates by a simple,
fault-type independent expression that is created by intuition
and domain knowledge. Conversely, a data driven scoring
model (either dependent on or independent of a candidate’s
fault type) can discover (or learn) latent connections between
the correct candidate and the tester response, and achieve
better diagnosis accuracy and resolution.

It is thus not surprising that machine learning (ML) has been
applied in the area of diagnosis. For instance, a random forest
and a neural network are used in [17] and [18], respectively,
to identify the defect type responsible for the observed failure.
However, those approaches do not identify the defect location,
which means they do not improve candidate-level resolution.
In [19], a support vector machine is used on volume diagnosis
data to improve the resolution of each individual diagnosis.
Other applications of machine learning in volume diagnosis
include finding failure-causing layout geometries using clus-
tering [20], identifying Design-for-Manufacturing (DFM) rules
whose violation caused a chip to fail using an expectation-
maximization (EM) algorithm [21], and determining a failure
root-cause distribution using an EM algorithm [3]. It should
however be noted that the work yet-to-be-described can be
used in conjunction with these ML-based volume diagnosis
techniques to further improve resolution.

To address the shortcomings associated with different as-
pects of diagnosis discussed up to this point, this work
describes a single-chip diagnosis methodology that we term
LearnX. Salient features of LearnX include:

1. It is a physically-aware diagnosis approach that utilizes
layout information to identify not only the defect location but
also its physical fault type (e.g., interconnect open, intercon-
nect bridge and cell internal defect) and behavior. It should be
noted that LearnX complements/strengthens approaches like
[22], [23] where physical resolution is improved using layout
neighborhood analysis.

2. Instead of just using a logic fault model where an
erroneous value of either 0 or 1 is assumed, it employs

the X-fault model as well because it is immune to error
masking since it allows an error to propagate from a defect
location to the circuit outputs conservatively, which likely
avoids removing a candidate that corresponds to an actual
defect.

3. It applies machine learning to generate a scoring model
to uncover the hidden correlations between a candidate and the
tester response for identifying the candidate that best correlates
to a defect. Specifically, a supervised learning algorithm is
used to distinguish the correct candidate from incorrect ones.

As mentioned earlier, an enhanced diagnosis procedure is
extremely important for improving design, test and manufac-
turing of a chip. It makes volume diagnosis, and subsequently,
PFA more effective in their ability to pinpoint and verify
the most probable cause of yield loss. The way this is
enhanced by LearnX is described in the remaining sections
of this manuscript. Specifically, Section II provides a detailed
overview of various phases of LearnX. Its effectiveness is
demonstrated via several experiments that are described in
Section III. Finally, Section IV draws conclusions and provides
several directions for future work.

II. DIAGNOSIS METHODOLOGY

Fig. 1 shows the overview of LearnX. LearnX is a two-phase
diagnosis methodology. The first phase (detailed in Section
II-A) aims to identify defects that mimic the behavior of clas-
sic fault models such as the stuck-at, the bridge (specifically,
the AND-type, the OR-type and the dominating bridge) and
the open fault model (where a net is assumed to be stuck at the
opposite value of the expected value for each pattern) through
a set of strict rules. These strict rules must ensure that (a) the
actual defect behavior and location are accurately captured by
one of the identified candidates and (b) the minimum number
of candidates are reported.

The defects that do not satisfy these rules are diagnosed us-
ing the steps outlined in the second phase of the methodology
(detailed in Section II-B). Such defects are identified to have
a non-trivial behavior and cannot be modeled using the fault
models employed in Phase 1. The two main steps in Phase 2
are (a) fault simulation using the X -fault model [12], which
aims to capture the complex behavior of a defect with rela-
tively high accuracy, and (b) machine learning classification to
distinguish between the correct and the incorrect candidates.

A. LearnX: Phase 1

The first step in Phase 1 of LearnX is path tracing [6]. For
each failing pattern, path tracing starts from each erroneous
circuit output and traces back through the circuit towards the
inputs, deducing the potential defective (logical) signals along
the way. Physical defect locations corresponding to each impli-
cated logical location are then extracted from layout analysis.
Specifically, the topology and the physical neighborhood of
each net are examined to identify probable open and bridge
defect locations [22]. Next, for each failing pattern, a stuck-at
fault at each candidate location is simulated to find faults that
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Fig. 1. Overview of the proposed diagnosis methodology, LearnX.

explain! that pattern [8]. Sets of stuck-at faults are selected

using the minimum set-cover algorithm such that faults in each
cover explain all the failing patterns.

Each cover is classified into one of the following four
fault types according to its behavior. A set of rules that are
constructed for each fault type to identify the correct candidate
are also explained next.

1. STUCK, when a cover contains only one fault. If the
fault simulation response is identical to the tester response,
the candidate is deemed correct.

2. CELL, when a cell candidate is consistent [24], [25]. That
is, sets of logic values established on the cell inputs for Tester-
Fail-Simulation-Fail (TFSF) and Tester-Pass-Simulation-Fail
(TPSF) patterns are disjoint. Here, a TFSF (TPSF) is a pattern
that fails (passes) on the tester and detects a stuck-at fault
at the candidate location. Any cell candidate that is found
consistent is adjudged correct. (Each consistent cell can further
be inspected to derive intra-cell candidates [23].)

3. BRIDGE, when a cover consists of faults corresponding
to physically adjacent nets. The candidate is deemed correct if
the bridged nets have opposite polarities for each TFSF pattern
and same polarities for each TPSF pattern.

4. OPEN, when a cover contains faults affecting the same
signal. In addition to explaining each failing pattern, the
candidate is deemed correct if at least one of the cover’s
constituent faults passes (but is excited) for each passing
pattern.

If no candidate of a failing chip complies with these rules,
it is passed on to the second phase of the diagnosis flow that
especially deals with defects having complex behavior.

B. LearnX: Phase 2

Phase 2 begins similarly to Phase 1 with path tracing. Next,
each candidate is simulated for each failing pattern using the
X-fault model [12]. The resulting simulation responses are
compared to the tester response to find candidates that explain
that pattern. The X -value simulation of a candidate is said to
explain a failing pattern if the erroneous circuit outputs are
subsumed by the set of simulated outputs that possess an X
value. Then, sets of X faults are selected using the minimum
set-cover algorithm such that faults in each cover collectively
explain all the failing patterns.

Each candidate cover is further analyzed using stuck-at
simulation. Specifically, for each failing pattern, stuck-at faults
at the locations corresponding to the X faults in a cover are
simulated. The stuck-at fault responses are then compared to

'A stuck-at fault is said to ‘explain’ a pattern if the circuit response
predicted during its simulation is identical to the tester response.

the observed circuit response to find the fault that best explains
that pattern. Here, the criterion for best explaining a pattern
is that the hamming distance between the fault simulation
response and observed test response is minimum. Thus, each
candidate, up to this point, is characterized by a cover of X
faults and a cover of stuck-at faults.

The next step in Phase 2 of LearnX is assigning a fault
type (STUCK, CELL, BRIDGE, and OPEN) to each candidate,
which is accomplished in exactly the same way as Phase
1. Next, a set of features for each candidate is extracted
using test and manufacturing domain knowledge (Table 1).
The extracted set of features are specific properties of a
candidate that aim to distinguish a correct candidate from an
incorrect one. Each feature value is calculated by comparing
the test outputs/patterns observed by the tester and predicted
by simulation. Unlike other scoring methods in the literature,
the features used here are derived from both the X-fault and
the stuck-at fault simulation of a candidate?, and are thus
believed to capture a more complete picture. In addition, the
features extracted here are more detailed. For example, the
number of TPSF outputs are counted separately for TFSF and
TPSF patterns (rows 5 and 8 in Table 1, respectively), instead
of recording the total number of TPSF outputs over patterns
that fail during simulation.

The next step in Phase 2 is to classify whether a candidate
is correct or not using machine learning. A commonly used
machine learning method called a random forest [26] is
utilized for this purpose. Specifically, four different random
forests are generated — one for each fault type, with the
objective of learning specific attributes pertaining to each fault
behavior. Each random forest is trained using virtual test
responses generated through fault injection and simulation.
Hyperparameters of each trained model are tuned using a
separate validation data set.

Note that the training and the validation data sets are highly
imbalanced. For each injected fault, there is only one correct
candidate. Therefore, it is entirely possible that the default
classification/decision threshold of 0.5 (which corresponds to
majority voting) is not optimum. Thus, a Precision-Recall
(PR) curve [27] is used to find an optimum threshold. A
PR curve shows the trade-off between precision, which is
the proportion of the examples that are truly positive among
the ones classified as positive, and recall, which is defined as
the ratio of positive examples that are correctly classified, for
different thresholds. Fig. 2 illustrates the effect of increasing
threshold on precision and recall. In this work, the optimum

2Twenty-two features listed in Table 1 are extracted for each type of
simulation, resulting in a total of 44 features.



TABLE 1

FEATURES EXTRACTED FOR THE MACHINE LEARNING MODEL USED IN PHASE 2.

Feature

Description

TFSF,/TF, (TFSF,/SF,)

TPSF, /TP, (TPSF,/TP,)

TFSP,/TF, (TFSP,/TF,)

TFSF,_TFSF,/TF, (TFSF,_ TFSF,/SF,)
TPSF,_TFSF,/TP, (TPSF,_TFSF,/SF,)
TFSP,_TFSF,/TF, (TFSP,_ TFSF,/SP,)
TPSP,_TFSF,/TP, (TPSP,_TFSF,/SP,)
TPSF,_TPSF,/TP, (TPSF,_TPSF,/SF,)
TPSP,_TPSF,/TP, (TPSP,_TPSF,/SP,)
TFSP,_TFSP,/TF, (TFSP,_TFSP,/SP,)
TPSP,_TFSP,/TP, (TPSP,_TFSP,/SP,)

The number of TESF patterns divided by the number of TF (SF) patterns.

The number of TPSF patterns divided by the number of TP (SF) patterns.

The number of TFSP patterns divided by the number of TF (SP) patterns.

The number of TFSF outputs in TFSF patterns divided by the number of TF (SF) outputs.
The number of TPSF outputs in TFSF patterns divided by the number of TP (SF) outputs.
The number of TFSP outputs in TFSF patterns divided by the number of TF (SP) outputs.
The number of TPSP outputs in TFSF patterns divided by the number of TP (SP) outputs.
The number of TPSF outputs in TPSF patterns divided by the number of TP (SF) outputs.
The number of TPSP outputs in TPSF patterns divided by the number of TP (SP) outputs.
The number of TFSP outputs in TFSP patterns divided by the number of TF (SP) outputs.
The number of TPSP outputs in TFSP patterns divided by the number of TP (SP) outputs.

TF: Tester-Fail; TP: Tester-Pass; SF: Simulation-Fail; SP: Simulation-Pass

TFSF: Tester-Fail-Simulation-Fail; TPSF: Tester-Pass-Simulation-Fail; TFSP: Tester-Fail-Simulation-Pass; TPSP: Tester-Pass-Simulation-Pass
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Fig. 2. Selecting the optimum decision threshold that maximizes the harmonic
average between precision and recall (known as the Fl-score [27]).

threshold for each trained forest is found by maximizing the
Fl-score (plotted with a black dotted line in Fig. 2), which is
defined as the harmonic mean of precision and recall [27].

Each trained model inherently acts like a scoring frame-
work, and assigns a probability (or a “score”) to each defect
candidate. Any candidate whose score is more than the deci-
sion threshold is deemed a correct candidate.

To summarize, LearnX is a two-phase diagnosis methodol-
ogy that characterizes a defect with respect to its physical
location and behavior. The first phase diagnoses a defect
through a set of rules that are aimed towards identifying a
defect that mimics known fault behaviors. Undiagnosed de-
fects are then analyzed using the second phase, where machine
learning (along with the X-fault model that propagates error
conservatively to avoid eliminating a correct candidate) is
applied to learn characteristics that would differentiate correct
candidates from incorrect ones.

III. EXPERIMENT

Two experiments are described to validate LearnX: one is a
fault injection and simulation experiment using three different
designs (Section III-A) and another that uses silicon failure
data (Section III-B).

A. Simulation

A simulation-based experiment using three designs is per-
formed — one is a sub-circuit of the L2 cache write-back
buffer (called L2B) of the OpenSPARC T2 processor [28],
the second design is a logic characterization vehicle (LCV)
[2] and the third design is an ITC99 benchmark circuit called
B15, which is a subset of the Intel 80386 microprocessor [29].
For each design, the following fault types are considered to
model realistic defect behaviors.

1. Two-line bridge defects are modeled using a variety
of fault models such as the wired-bridge model (AND-type,
OR-type and the dominating bridge) and the biased voting
model (which includes the byzantine bridges, where error can
manifest from both the nets for a pattern) [30]. Potential bridge
net pairs are extracted from the design layout [22].

2. Open defects are modeled in two ways; by creating
a composite fault signature from the stuck-at faults of both
the polarities (at each defect location), and by assuming
that a (possibly different) subset of the fan-out branches are
erroneous at an open defect location for each sensitizing
pattern [11]. Open defect locations are extracted from the
layout [22].

3. Cell defects: Open, bridge and transistor defects are
injected into the layout of each cell. Each resulting cell-level
defect response is then simulated at the logic level to produce
a “fail log”.

For each design, a total of 15,000 virtual fail logs are
created, of which 3,000 are used to create the training dataset
and another 2,000 are used to generate the validation dataset.
Thus, 10,000 fail logs are used for the test dataset.

Each fail log is diagnosed using LearnX and two state-
of-the-art commercial diagnosis tools. All three diagnosis
techniques are evaluated on two criteria - diagnostic resolution
and accuracy. Resolution is defined as the number of candidate
covers returned by each approach. (It should be noted that
only the top-scoring candidates are considered for commercial
diagnosis.) A defect is said to be diagnosed accurately if the
location of the injected fault matches with a candidate. For a
bridge fault, the degree of accuracy (whether one or both the
bridged nets are reported) is also noted. An ideal diagnosis
result would thus have resolution equal to one and 100%
diagnostic accuracy.

Figures 3 and 4 show histograms of the resolution achieved
by Phase 1 and Phase 2, respectively, from diagnosing virtual
fail logs that correspond to the L2B design. The x-axis shows
the resolution and the y-axis shows the number of fail logs.
The percentage of fail logs accurately (i.e., 100% accuracy)
diagnosed for a particular resolution is shown at the top of
its corresponding plot-bar. The top half of each figure (i.e.,
above y = 0) shows the distribution of the number of fail
logs that are accurately diagnosed while the bottom half shows
the distribution of the inaccurately diagnosed fail logs. The
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Fig. 4. Resolution distribution attained by Phase 2 for 3,965 virtual fail logs.

percentage of fail logs diagnosed accurately by each diagnosis
technique is shown above the plot in each figure.

Fig. 3 reveals that LearnX achieves 100% accuracy for
99.1% fail logs, which is 4.5% (35%) more than Tool 1 (Tool
2). In addition, 79.6% of fail logs attain perfect resolution, an
improvement of 19.7% over Tool 1 and 2.2X times Tool 2.

It is observed from Fig. 4 that LearnX attains 100% accu-
racy for 90.7% fail logs, which is 62.8% and 44.2% more than
Tool 1 and Tool 2, respectively. In addition, 94.6% fail logs
achieve a resolution of one, an enhancement of 52.1% over
Tool 1 and 3.6X times Tool 2. Among the fail logs diagnosed
with perfect resolution, LearnX diagnoses 92.6% fail logs with
ideal accuracy, while Tool 1 and Tool 2 correctly diagnose only
50% and 32.6% of fail logs, respectively.

A summary of the improvement in diagnostic resolution
and accuracy attained by LearnX over commercial diagnosis
for three designs is shown in Table 2. Table 2 clearly shows
that LearnX performs significantly better. On average, LearnX
diagnoses 27.2% (64%) more fail logs with ideal accuracy
and 39.0% (74%) more fail logs with ideal resolution when
compared with Tool 1 (Tool 2). More importantly, LearnX re-
turns an ideal diagnosis outcome (i.e., when a single candidate
returned is correct) for 86.6% (2.2X) more fail logs than Tool
1 (Tool 2), on average.

B. Silicon

LearnX is evaluated on silicon failure data that is obtained
for a test chip fabricated in a leading technology node.
Unlike the simulation-based experiment described in Section
III-A, the ground truth (i.e., the location and the nature of a
defect) is not available, and hence only diagnostic resolution
is compared between LearnX and commercial diagnosis.

Figures 5 and 6 show the resolution distribution for Phase
1 and Phase 2, respectively. It is seen from Fig. 5 that LearnX
achieves perfect resolution for 53.4% fail logs, which is 0.7%
and 4.4% less than Tool 1 and Tool 2, respectively. However,

TABLE 2
DIAGNOSTIC RESOLUTION AND ACCURACY IMPROVEMENT OVER TWO
COMMERCIAL DIAGNOSIS TOOLS FOR DIFFERENT DESIGNS.

Resolution = 1 &

Design ‘

100% accuracy (%) Resolution = 1 (%) 100% accuracy (%)
| Tool 1 Tool 2 | Tool 1 Tool 2 | Tool 1 Tool 2
L2B 20.8 384 32.1 167.1 62.4 388.0
LCV 42.0 98.7 37.8 -31.1 115.9 443
BI5 18.9 55.0 47.0 86.1 81.6 233.8
Average \ 272 64.0 \ 39.0 74.0 \ 86.6 222.0

Note: For the LCV design, although LearnX returns a single candidate for 31.1%
fewer fail logs when compared to Tool 2, it finds a single correct candidate for
56.6% fail logs, which is 44.3% more than Tool 2. In other words, the likelihood
of a candidate being correct when a single candidate is returned is 46.3% when
Tool 2 is used, and is 97.0% when LearnX is used.

it can be deduced from Table 2 that only 72.9% (51.2%) of
the injected faults that are diagnosed with perfect resolution
are accurately diagnosed when Tool 1 (Tool 2) is used. On
the other hand, LearnX returns a single candidate accurately
for 96.9% of the injected faults. Thus, even if it may appear
from Fig. 5 that LearnX attains a slightly lower resolution than
a commercial tool, LearnX would yield a candidate set that
includes the correct candidate more often.

It is observed from Fig. 6 that Phase 2 attains a resolution of
one for 70.7% fail logs, an improvement of 17.4% and 20.7%
over Tool 1 and Tool 2, respectively. Although the accuracy
cannot be compared here due to the lack of PFA results, it can
be extrapolated from Fig. 4 and Table 2 that Phase 2 would
find the correct candidate significantly more often than any of
the two commercial diagnosis tools.

The improved performance of LearnX over commercial
tools comes at the expense of 12% increase in diagnosis
runtime. In addition, there is a one-time cost involved in
training the ML model, which is up to two hours in the
experiments we conducted. However, as evident from Figures
3-6 and Table 2, the additional steps involved in LearnX (i.e.,
X-fault simulation, and ML training and inference) enhance
the quality of diagnosis (in terms of diagnosis resolution and
accuracy) significantly, which consequently, would improve
the effectiveness of PFA, and likely facilitate yield learning.
Tool 1
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IV. CONCLUSIONS

A single-chip diagnosis methodology called LearnX is de-
scribed that characterizes a defect with respect to its physical
location and behavior. LearnX is a two-phase methodology.
In the first phase, defects that mimic traditional fault models
are identified using a set of rules derived from test data. In
the second phase, a machine learning classifier is created that
differentiates correct and incorrect candidates by learning from
the candidate features extracted from the test data. The features
are derived by comparing the tester response with the fault
simulation response of a candidate. In contrast to a traditional
diagnosis approach, the X-fault model, in addition to the
stuck-at fault model, is employed to capture a comprehensive
depiction of the impact of a defect on the circuit outputs.

Several experiments are conducted to evaluate the perfor-
mance of LearnX. Simulation-based experiments carried out
for three different designs with 10,000 faulty circuits each
(that are created using a variety of realistic defect behaviors)
reveal that LearnX achieves a resolution of one for 75.6% of
the injected faults, showing an improvement of at least 39.0%
over state-of-the-art commercial diagnosis. Additionally, the
average ideal accuracy of LearnX is 95.7%, which is 27.2%
and 64.0% higher than two commercial diagnosis tools utilized
here. Moreover, LearnX returns an ideal diagnosis outcome
(i.e., a single candidate that correctly represents the injected
fault) for 73.2% of the injected faults, an improvement of
86.6% over the better-of-the-two commercial diagnosis tools.

Significance of LearnX is further substantiated by diagnos-
ing 1,375 silicon fail logs from a design fabricated in an ad-
vanced process technology. LearnX and commercial diagnosis
appear to produce a similar resolution histogram; however,
given the superior diagnosis quality attained by LearnX in the
aforementioned simulation experiments, it can be said with
confidence that LearnX would identify the correct candidate
for more fail logs than commercial diagnosis when PFA results
are available for these failures.

High diagnosis resolution and accuracy mean that a sub-
sequently applied volume diagnosis approach will generate a
more precise pareto of probable yield loss failure mechanisms,
thus likely enabling rapid yield learning. Future work focuses
on extending LearnX to incorporate sequence- and timing-
dependent defects, and extracting design-specific features [17],
[19] in the second phase to further improve its performance.
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