Session 1A: Reinforcement Learning 1

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Bayesian Reinforcement Learning in Factored POMDPs

Sammie Katt
Northeastern University
Boston, MA, USA
katt.s@husky.neu.edu

ABSTRACT

Model-based Bayesian Reinforcement Learning (BRL) provides a
principled solution to dealing with the exploration-exploitation
trade-off, but such methods typically assume a fully observable
environments. The few Bayesian RL methods that are applicable in
partially observable domains, such as the Bayes-Adaptive POMDP
(BA-POMDP), scale poorly. To address this issue, we introduce the
Factored BA-POMDP model (FBA-POMDP), a framework that is
able to learn a compact model of the dynamics by exploiting the
underlying structure of a POMDP. The FBA-POMDP framework
casts the problem as a planning task, for which we adapt the Monte-
Carlo Tree Search planning algorithm and develop a belief tracking
method to approximate the joint posterior over the state and model
variables. Our empirical results show that this method outperforms
a number of BRL baselines and is able to learn efficiently when the
factorization is known, as well as learn both the factorization and
the model parameters simultaneously.

KEYWORDS

Bayesian reinforcement learning; POMDPs; Monte-Chain Monte-
Carlo; Monte-Carlo Tree Search; Bayes Networks

ACM Reference Format:

Sammie Katt, Frans A. Oliehoek, and Christopher Amato. 2019. Bayesian
Reinforcement Learning in Factored POMDPs. In Proc. of the 18th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2019), Montreal, Canada, May 13-17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION

Robust decision-making agents in any non-trivial system must rea-
son over uncertainty in various dimensions such as action outcomes,
the agent’s current state and the dynamics of the environment. The
outcome and state uncertainty are elegantly captured by Partially
Observable Markov Decision Processes (POMDPs) [21], which enable
reasoning in stochastic, partially observable environments. How-
ever, POMDP solution methods typically assume complete access
to the system dynamics, which unfortunately are often not readily
available. When such a model is not available, the problem turns
into a partially observable RL (PORL) task, where one must trade
off exploration and exploitation of current knowledge While recent
model-free, deep RL approaches [30, 41, 46] have shown impressive
results on complex tasks, this progress has been driven by improve-
ments to function approximation. These methods often require
millions of samples and combining them with effective exploration,
although a topic of some studies [3, 5, 33], generally is difficult.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13-17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Frans A. Oliehoek
Delft University of Technology
Delft, Netherlands
f.a.oliechoek@tudelft.nl

Christopher Amato
Northeastern University
Boston, MA, USA
c.amato@northeastern.edu

A rather different approach is taken by model-based Bayesian
reinforcement learning (BRL) methods [11, 39]. These methods
explicitly maintain distributions over the possible models of the
environment, and use this knowledge to select actions that, theo-
retically, can optimally trade off exploration and exploitation. As a
result, BRL methods can be very sample efficient.

However, the number of BRL methods that are applicable to par-
tial observable settings are few, and those that do exist are limited in
their scalability. For instance, the Bayes-Adaptive POMDP [39] (BA-
POMDP), for which we developed an efficient Monte-Carlo Tree
Search (MCTS) planner, BA-POMCP [22], models the environment
in a tabular fashion. The fact that this approach is based on flat
state representations, however, is a bottleneck for scalability. Here,
we propose a method to overcome this bottleneck by exploiting
structure in the dynamics of factored POMDPs [6, 15].

Specifically, we formalize the Factored Bayes-Adaptive POMDP
(FBA-POMDP), which models the dynamics of partially observable
environments through graphical models that exhibit structure, as
opposed to tables. The FBA-POMDP framework casts the PORL
problem as a planning task, for which we develop FBA-POMCP,
a MCTS algorithm that is able to tackle problems of non-trivial
length and sizes. Lastly, maintaining a distribution over a potentially
large space of factored POMDP models is a challenge. To combat
this issue efficiently, we propose a sample-based mechanism to
reinvigorate the distribution over graphical models. We show the
favorable theoretical guarantees of this approach and demonstrate
empirically that we outperform current state-of-the-art methods
on three domains, one of which causes previous methods based on
the tabular BA-POMDP to fail to learn at all.

2 BACKGROUND

We first provide a summary of the background literature. This
section is divided into an introduction to POMDPs and BA-POMDPs,
typical solution methods, and factored models.

2.1 The POMDP and BA-POMDP

The POMDP [21] is a general model for decision-making in stochas-
tic and partially observable domains, with execution unfolding over
(discrete) time steps. At each step the agent selects an action that
triggers a state transition in the system, which generates a reward
and observation. The observation is perceived by the agent and the
next time step commences. Formally, a POMDP is described by the
tuple (S, A, Q,D, R, y, h), where S is the set of states of the environ-
ment; A is the set of actions; Q is the set of observations; D is the
‘dynamics function’ that describes the behavior of the system in the
form of transition and observation probabilities D(s’, o|s, a); R is
the immediate reward function R(s, a) that describes the reward of

Session 1A: Reinforcement Learning 1

selecting ain s; y € (0, 1) is the discount factor; and h is the horizon
of an episode in the system.

This formulation of the dynamics generalizes the usual formu-
lation with separate transition T and observation functions O:
D(s’,0ls,a) = T(s’|a,s)O(ols, a,s”). We employ this notation for
brevity reasons but used the separation in our implementation.

The agent has no direct access to the system’s state, so it can
only rely on the action-observation history up to the current step t:
h; = (@}, 3;), where a and 66 respectively are the vector of actions
and observations from time step 0 to t. When there is no confusion
possible, we will also omit the super and subscripts. The agent can
use this history to maintain a probability distribution over the state,
also called a belief, b(s). The belief is updated at every step through
the belief update 7 : (b, a,0) — b’. When the dynamics D are given,
the probability of a new state s” after action a and observation o
can be computed with the Bayes’ Rule:

b'(s") = (b, a,0)(s") Z D(s’, 0ls, a)b(s) (1)

The goal of the agent in a POMDP is to find a policy 7 — a mapping
from any belief b to an action a — that maximizes the expectation
over the cumulative (discounted) reward, also called the return.
Such a policy is called an optimal policy 7*.

In the Partially Observable Reinforcement Learning setting (PORL)
the dynamics are not known and the belief over states cannot be
maintained. The typical Bayesian approach to solving such an RL
problem is to maintain a probability distribution over the unknown
model, p(D), and select actions with respect to the uncertainty
over D. A distribution over D can be represented by a Dirichlet
distribution for each (s, a) pair. More specifically, each transition
(s, 0,5, a) is associated with a count)(SS:Z", and the collection of all
counts, y, describes a probability distribution over the dynamic
function D of the POMDP: p(Dsq) = ¥sa-

Conceptually, if both the visited states and observations were
known, then the agent could ‘count’ the number of occurrences of
each transition by incrementing y. Over time the counts y would
grow and the belief over the dynamics would converge to the true
dynamics. However, the states are hidden to the agent, and thus
there is uncertainty over the true counts. Fortunately, this uncer-
tainty can be captured using regular POMDP formalisms.

The Bayes-Adaptive POMDP (BA-POMDP) [39] is a POMDP
in which the counts y are part of the hidden state space. More
formally, if X denotes the space of count collections y, then the
BA-POMDP is defined as the tuple (S,A,Q,D,R, v, h) with (hyper-)
state space S = S X X. While the observation and action space
remain unchanged, a hyper state in the BA-POMDP consists of a
domain state and a count collection that represents the belief over
the dynamics of the POMDP p(D), § = (s, x). The reward function
depends only on the underlying POMDP state: R(5, a) = R(s, a) and
is typically considered known (although could be learned using sim-
ilar methods). The dynamics function of the BA-POMDP describes
the probability D(s’, ¥’, ols, x, a). This factorizes in the probabil-
ity of the new domain state and observation p(s’, o|s, y, a) and the
update of the counts p(x’|s, x, a,s’,0). The former probability is
defined by the ratio of the counts, which also corresponds to the

AAMAS 2019, May 13-17, 2019, Montréal, Canada

expected categorical according to ysq:

et @
Zso X g;o
Rewarding p(x’[s, x, a,s’, 0), there is only one new possible set of
counts y’, given the previous counts y and transition (s’, 0, s, a):
the one that has y$.° incremented by 1. More formally, we let 55,0
denote a vector of the length of y containing all zeros except for the
position corresponding to (s, a, s’, 0), where it is 1, and we let I5(b)
denote the Kronecker Delta function function that indicates (is 1 iff)
a = b. Then we denote the count update function U(y, s, a,s’,0) =
X+ (535;0 and can rewrite p(x|s, x,a,s’,0) = L/(U(y,s,a,s’,0)). As
a result the dynamics of the BA-POMDP resolves to:

P(5,70|5a X a) = p)((s/’ O|S, (1) =

s'o
B,y ols. 3.0) = 24T (Ups.as’o) ()
Zs’o Xssao

Lastly, the BA-POMDP requires a prior by(s,), the initial joint
belief over the domain state and dynamics. Typically the prior over
D can be described with a single set of counts yp, and the prior
reduces to by(s, y) = I (xo)bo(s), where by(s) is the distribution
over the initial state of the underlying POMDP.

2.2 Learning by Planning in BA-POMDPs

The BA-POMDP casts the PORL problem as a planning task in a
large POMDP where the unknown dynamics are part of the hid-
den state space. An optimal solution to the BA-POMDP solves the
exploration-exploitation trade-off of the underlying RL problem in
a principled way (analogous to the observable case [50]).

Unfortunately, the countably infinite state space poses a chal-
lenge to offline solution methods due to the curse of dimensionality.
As such, previous work has resorted to online solutions. We ex-
tended Partially Observable Monte-Carlo Planning (POMCP) [8, 42],
a Monte-Carlo Tree Search (MCTS) based algorithm, to the BA-
POMDP [22], and will build on this to solve FBA-POMDPs.

At each time step, POMCP incrementally constructs a look-
ahead action-observation tree using Monte-Carlo simulations of
the POMDP. Each simulation starts by sampling a state from the
belief, and traverses the tree by picking actions according to the
Upper Confidence Bound (UCB [2]), and simulating interactions
according to the POMDP model. Upon reaching a leaf-node, the
tree is extended with a node for that particular history and the
algorithm then propagates the accumulated reward back up into
the tree, updating the statistics in each visited node. The action
selection terminates by picking the action at the root of the tree
that has the highest average return.

The modifications to BA-POMCP, the application POMCP to BA-
POMDPs, are two-fold: (1) a simulation starts by sampling a hyper-
state (s,) at the start and (2) the simulated experiences follows
the dynamics of the BA-POMDP: the domain state-observation pair
is generated according to y, which in turn are then used to update
x- Given enough simulations, BA-POMCP converges to the optimal
solution with respect to the belief it is sampling states from [22].

2.3 Belief tracking

While the state space is countably infinite, the number of reachable
states at any given time ¢ is limited by the prior by(s, y) and history

Session 1A: Reinforcement Learning 1

(Zié, 56). As a result, one can update this belief in closed form by

iterating over all possible next states using the dynamics of the BA-
POMDP [39]. This quickly becomes infeasible and is only practical
for small environments and horizons. More common approaches
approximate the belief with particle filters [44]. There are several
methods to update the particle filter, of which rejection sampling has
traditionally been used for (BA-)POMCP. Here we use Importance
sampling [14], however, as it has been shown to be superior in
terms of the chi-squared distance [9].

In importance sampling the belief is a weighted particle filter,
where each particle x is associated with a weight wy that represents
its probability p(x)= 5 2 "W_ . Importance sampling computes the
new belief given an agtlionl a and observation o with respect to
the model’s dynamics, b’ = T(l;, a,0), in three steps. First, each
particle is updated using the transition dynamics §* ~ D(:|3, a),
and then weighted according to the observation dynamics w’ =
w - D(0|5, a,5"). Note that the sum of weights of the belief after
this step £?= Y, w! represents the likelihood of the belief update at
time ¢. The likelihood of the entire belief given the observed history
h? can be seen as the product of the likelihood of each update step
Lyt = L L1 Third and last, the belief is resampled, as is the
norm in sequential importance sampling.

In between episodes, assuming termination is observable, the
agent’s belief over the domain state s is reset. However note that,
in BA-POMDPs, the belief over the model (counts y) is retained. In
practice, using particle filters as a belief, this results in resetting the
domain state in each particle with a sample from by(s).

2.4 TFactored Models

The dynamics of the POMDP can represented more compactly
by exploiting conditional independence between variables. If we
factorize the state space into n features S = {s1,...,S8™}, and the
observation space into m features Q = {Ql,...,Q™} then the
Factored POMDP (F-POMDP) [7] represents the dynamics D as
a collection of Bayes-Nets (BN) G, one for each action G%. A BN
consists of topology over a set of nodes, which describes the directed
edges between the nodes, and a set of Conditional Probability Tables
(CPTs). The CPTs describe the probability distribution over the
values of the nodes given their parent values where we denote
as the parameters of the CPTs of graphs in G, one for each action.
This is illustrated in Figure 1, which shows the topology of the
dynamics of a single action of a POMDP with three state features
and 2 observation features.

We adopt the notation that given some state s, the probability of
the value v(x) of some feature x is given by 6(v(x)|PV*4(s)), where
PV*4(s) returns the parent values of feature x given action a. The
dynamics of the F-POMDP, is then the joint of all features:

D' sols,a)= [0@EIPV*(s) (4)

x€eSUQ

The literature contains methods that attempt to exploit the fac-
torization in F-POMDPs [7, 13, 15, 16, 28, 31, 43, 47, 49]. These

Note that this utilizes the assumed factorization of the dynamics into a transition and
observation function

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Figure 1: A graph that represents the dynamics associated
with a particular action

methods, however, operate under the assumption that the dynam-
ics are known a priori and hence cannot be applied to applications
where this is not the case.

3 BAYESIAN RL IN FACTORED POMDPS

The BA-POMDP provides a Bayesian framework for RL in POMDPs,
but is unable to describe (or exploit) structure that many real world
applications exhibit. The representation scales poorly and learns
slowly, as the number of parameters grows quadratically in the state
space (O(]S]?|A]|Q[)) and only one (count) is updated after each
observation. Here we introduce the Factored BA-POMDP (FBA-
POMDP), the Bayes-Adaptive framework for the factored POMDP,
that is able to learn and exploit structure in the environment.

3.1 The Factored BA-POMDP

If the structure G of a F-POMDP is known a priori, but its parameters
0 are not, then one could consider a Bayes-Adaptive model with
counts y to describe Dirichlet distributions over the CPTs.

Known structure: We refer the count associated with value v
of a feature x given action a and input state s as y(v|PV*%(s)). The
dynamics of this framework is a function of the state, action and
counts collection p(s’, ¥’, ols, ¥, a), which factorizes into the proba-
bility of a state-observation pair p; (s, ols, a), and the counts update
p(¥’1x,s’, 0,5, a). The probability of the new state and observation
corresponds to the joint expectation of all features:

pisolsa) = [] pre@)IPV*e(s) 5)
xeSUQ
POV =5 eipvra(s) ©

p(X’| x5, 0,5, a) corresponds to updating the counts as is the
case in the BA-POMDP, denoted (U(, s, a, s’, 0)). Here, as opposed
to affecting just a single parameter, it increments a count per node.

Unknown structure: It is unrealistic to assume that the topol-
ogy G of the dynamics is known. Instead, the Factored BA-POMDP
(FBA-POMDP) also considers G as part of the hidden state. First we
define G = {G'...G 41} as the set of possible graph topologies for
all actions. Then the FBA-POMDP is a POMDP with the state space
S =5x @G x X, with S as the domain state space of the underlying
POMDP and X as the space of all possible count collections y.

Session 1A: Reinforcement Learning 1

A (hyper-) state in the FBA-POMDP thus contains a domain state,
|A| graph topologies and counts to describe a Dirichlet distribution
over all CPTs, § = (s, G, y). The dynamics function must then have
the form of D(5/,0l3,a) = p({(s’,G’, ¥'),0l(s,G, ¥), a). This joint
distribution can be factored into the state-observation pair transi-
tion p(s’, o|(s, G, x), a), the counts update p(y’|(s, G,), a,s’,G’, 0)
and the topologies update term p(G’|(s, G, y),a,s’, 0). The first two
terms have already been discussed above (eq. (5) and U). The latter
term, under the common assumption that the (structure of the) un-
derlying POMDP dynamics does not change over time, reduces to
the Kronecker Delta function I (G). This results in the following
formal definition of the FBA-POMDP as tuple (S, A, Q,D, R, y, h):

e A, y, h:Identical to the underlying POMDP.

e R(5,a) = R(s, a) ignores the counts and reduces to the reward
function of the POMDP similar to the BA-POMDP.

o O: {Q0x---x Q™}; the set of possible observations defined
by their features.

e 5:{8¥x..-xS"} x G x X; the cross product of the domain’s
factored state space and the set of possible topologies, one
for each action g, and their respective Dirichlet distribution
counts.

e D; The dynamics function over that describes the probabil-
ities of transitioning from one hyper state § = (s, G, y) to
another while generating observation o

D(5',0l5,a) = py(s’, ols,)Ly (U}, s, a, 5", 0)) g (G)

as described above

™)

Lastly we require a prior, a joint distribution, over the FBA-
POMDP state space by({s, G,). In many applications the depen-
dence relationships between features is known a priori for large
parts of the domain. For the unknown parts, one could consider a
uniform distribution, or distributions that favor few edges.

3.2 Solving FBA-POMDPs

The FBA-POMDP itself is a large POMDP. A solution to this task
consists of a method for maintaining the belief b and a policy that
picks actions with respect to this belief. An optimal solution to the
FBA-POMDP is guaranteed to be as sample efficient as possible,
maximizing the expected return V*(b) with respect to the uncertainty
over the dynamics of the F-POMDP. For now we assume the belief is
given, and focus on developing a planner to generate the policy.

While the representation of the dynamics has changed from ta-
bles to graphs, solution methods for the FBA-POMDP, with its large
state space, face similar challenges as those for BA-POMDPs: There-
fore we draw inspiration from the successful BA-POMDP planning
algorithm, BA-POMCP. Recall that the extension of POMCP to BA-
POMCP (section 2.2) was summarized by two key parts: sampling
both counts y and a domain state from the belief at the start of
each iteration, and simulating interactions with the environment
according to the sampled y. We propose a similar extension for the
factored case, and call it Factored BA-POMCP (FBA-POMCP).

A simulation in the FBA-POMCP begins with sampling a FBA-
POMDP hyper-state § = (s, G, y). The algorithm then traverses
through the tree picking actions according to UCB, and simulating
interactions according to y (illustrated in algorithm 1). A simulated
step first samples a state-observation pair given the current state

10

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Algorithm 1 FBA-POMCP-sTEP

Input 5 = (s, G, y): hyper-state, a: simulated action

Output §': new FBA-POMDP state, o: simulated observation
8’0" ~py(ls,a)
. // increment the associated CPT counts, skip if root-sampling
¥ — Uy, s, a,8,0)
G' <G
: return (s’,G’, ¥'),0

G W N =

and action according to p (-|s, a) (line 1), then updates the counts
(line 3). Modifications developed specifically for the BA-POMCP,
such as root-sampling and expected-transitions, can be applied to
FBA-POMCP too. We refer to the original paper for details [22].

3.3 Belief tracking & Particle Reinvigoration

The previous two sections introduced the FBA-POMDP, a large
POMDP with Bayes-Nets as part of the state space, and the planning
method FBA-POMCP to solve it. Here, we discuss how to maintain
the belief. Recall that this belief b(5) is a probability distribution
over the FBA-POMDP state, which contains the underlying POMDP
state s € S, a set of graph topologies to describe its structure G €
@G, and a collection of counts to describe the Dirichlets over the
CPTs y € X. It is not practical to maintain a distribution over all
possible topologies G, so closed-form approaches are infeasible.
Instead, we adopt the particle filter approach that is successful for
BA-POMDPs, where now each particle contains (s, G, y). Given
an action a and observation o, the belief update, b’ = TD(E, a,o),
is fully specified by the FBA-POMDP dynamics D. However, D
assumes that the topology of the underlying POMDP does not
change (p(G’[5,a,s’,0) = I/(G) from eq. (7)) and, as a result, it
would never modify the topologies in the particles.

Because of this and particle degeneracy, traditional particle fil-
ter belief update schemes tend to converge to a single structure,
leading to poor performance. To tackle this issue, we propose a
Markov-Chain Monte-Carlo (MCMC) [17] based sampling scheme
to occasionally reinvigorate the belief with new particles according
to the (observed) history § ~ p((s, G, ¥}|(@, 0), b).

First we re-introduce the notation ¥/ which describes the se-
quence of values of x (a state, action or observation) from time step
r to t, with the special case x;, which corresponds to the value at
time step t. For brevity we also use ‘model’ and the tuple (G, y) in-
terchangeably here, as they both describe the dynamics of a POMDP.
Lastly, we refer to T as the last time step in our history, and add
that X without subscripts is short for the complete sequence 550T .

The distribution p({s, G, ¥)|(d,), by) is complex for multiple
reasons. First, computing it typically involves integrating out the
hidden state sequence. Second, it contains graphs, over which dis-
tributions are hard to represent. We propose to sample from this
distribution through Gibbs sampling [32, 40], which approximates
a joint distribution by sampling variables from their conditional dis-
tributions with the remaining variables fixed: we can sample from
p(x,y) by picking some initial x, and then continuously sample
y ~ p(y|x) and x ~ p(x|y). Here x=5 and y=(G, y), and we sample:

i. 5~ p(-|G, x,(d, 0y, bp), a state sequence
ii. G, y ~ p(-|(5, @, 0), bp), a model

Session 1A: Reinforcement Learning 1

State sequence sampling i.: We approach this task as sampling
from a Hidden Markov Model, where the dynamics are determined
by the model (G, y) and action history 4. Due to the Markov prop-
erty, p(S|G, ¥, (@, 0, by) decomposes into

plsolbo, @500, 6. 1) [] plselsi—r.(@f.50).G.0 (8)
t=0...T

from which we aim to sample s¢...st hierarchically. For this
we require to know p(s¢|s;—1, (E{, BtT),G, x), which we compute
through message passing [35]. The forward message pass a;(s;) =
p(s¢lse—1,ar, 01, G, y) for t > 0 can directly be inferred using the
Bayes’ Rule (with g = by(s)). The backward-message f;(sy) is
computed recursively fromt =T —1...0:

Br-1(s) = D\ py(s"sorls,ar) - Bi(s") ©)

where fr is initiated with ones.
Model sampling ii.: Sampling a model from the conditional dis-
tribution p(G, ¥|(5, a, 8), by) is split into two steps. We first (a) sam-
ple topologies G ~ p(:|(s, @, 6), by) using Metropolis-Hastings [32].
The second step (b) computes the collection of counts given the
topologies, prior and history: ¥ ~ p(:|(s, @, 0), G, by). This is a de-
terministic function that takes the prior yy of G and counts the
transitions in the history (5, @, 0). For the former sample step, (ii.
a) G ~ p(-|(5, @,0), by), we adopt a Metropolis-Hastings scheme.
Metropolis-Hastings samples some distribution p(x) using a pro-
posal distribution g(¥|x) and a acceptance test operation. The ac-
Pp(F)q(x|x)

p(x)q(x|%)’
given some initial value x, Metropolis-Hastings consists of:

ceptance probability of X is defined as More specifically,
(1) sample X ~ q(x|x)

(2) with probability MH-Accept =
(3) store x and go to (1)

p(X)q(x]x)

P E) we set x «— x

Let us take p(x) = p(G|(5,d,0),by) and q to be domain spe-
cific but symmetrical?, then we derive the following Metropolis-
Hastings step for (ii. a):

P(GI(5. . 3). bo) gty

P(GI(5..). bo) gloelT

P((5.3,3),Gy) .
Sao p((5.@3), Glbo)

= = (10)
p((3,4,6),.Glbo) p({5, a,0),G|bo)
PpUS4TITDo)

MH-Accept =

Where g cancel out due to symmetry assumptions and the first
p((5,4,6),Glbo)
p((5,d,6)|bo)
Equation (10) is the likelihood ratio between the two graph
structures. It has been shown that the likelihood p({3, @, 3), G|bo),
given some mild assumptions (such as that the prior is a Dirichlet),
is given by the Bayesian-Dirichlet (BD) score metric [19]. Given
some initial set of prior counts for G, yo, and a (5, @,) dataset, we

denote N™¢? as the number of occurrences of v of node n given

step applies the Bayes-rule: p(G|(3, @, 0), by) =

2We followed the common approach where proposal method q(G) either adds or
removes an edge in G. The prior over the domain specifies the set of edges that are
considered by q.

1

AAMAS 2019, May 13-17, 2019, Montréal, Canada

parent values e and compute the score as follows: p({, 4, 3), G|bg) =

F(X F(Xnev +Nnev)
l_[1_[F(Xne _(:_Nne) l—[:

nev)
Where we abuse notation and denote the total number of counts,
Z x"Y, as ¥ (and similarly N¢ = Y N"€?). This formula is
v

(11)

- = -

also used to compute p((s, @, 0), G|bg).

Given this acceptance probability, Metropolis-Hastings can sam-
ple a new set of graph structures G with corresponding counts
for the CPTs y. This particular combination of MCMC methods —
Metropolis-Hastings in one of Gibbs’s conditional sampling steps
— is also referred to as MH-within-Gibbs and, has been known to
converge to the true distribution even if the Metropolis-Hastings
part only consist of one sample per step [23, 24, 27, 36, 45].

Particle Reinvigoration procedure: The overall particle rein-
vigoration procedure, assuming some initial (G, y), is summarized
as follows:

1. sample from HMM: § ~ p(-|{d, 0, G, ¥, bo) (i.)

2. sample from MH: G ~ p(-|(5, &, 0), bp) (using BD-score) (ii.a)

3. compute counts: y ~ p(-|(5,d,0), G, by) (ii.b)

4. add (s, G, y) to belief and go to 1

It is not necessary to do this operation at every time step. In-

stead, the log-likelihood £ of the current belief is a useful metric
to determine when to resample, which fortunately is a by-product
of importance sampling during the belief update. The total accumu-
lated weight, denoted as n; =), wi (the normalization constant) is
the likelihood of the belief update at time step ¢. Starting with £=0
at t=0, we maintain the likelihood over time £; = £;—1 + logn;
and reinvigorate the posterior b({s, G, ¥)|(@, 9), bo) whenever the
L drops below some threshold.

3.4 Theoretical guarantees

Here we consider two theoretical aspects of our proposed solution
method. The first part shows guarantees on the planning method
given a particular belief, whereas the second part is concerned with
guarantees on the belief itself.

We first note that FBA-POMCP converges to the optimal solution
with respect to the belief:

THEOREM 1. Given a beliefb(s, G, y), FBA-POMCP converges to
an e-optimal value function of a FBA-POMDP: V (b, a) LR V*(b, a),
precision

where € = =y

PROOF (SKETCH). Analysis from [42] prove that the value func-
tion constructed by POMCP, given some suitable exploration con-
stant, converges to the optimal value function with respect to the
initial belief. Work on BA-POMCP [22] extends the proofs to the
BA-POMDP. Their proof relies on the fact that the BA-POMDP is
a POMDP (that ultimately can be seen as a belief MDP), and that
BA-POMCP simulates experiences with respect to the dynamics D.
These notions are analogue to our construction of the FBA-POMDP
and we can directly apply the proofs to our solution method. O

In the second result we make a claim about the quality of the
belief. Previous work on importance sampling and particle filters
have shown the consistency of sequential importance sampling

Session 1A: Reinforcement Learning 1

that is used as the belief update [40]. Here we show that the novel
particle reinvigoration method is consistent too.

THEOREM 2. Given the observed history hy = (56,66) and the
prior beliefby(s, G, y) in the FBA-POMDP constructed from a POMDP,
the samples taken from the MH-within-Gibbs-reinvigoration method
converge to the true distribution p(s, G, y|h:, bo) in the limit.

Proor. This follows directly from the convergence properties
of the MCMC sampling methods. The method is an instance of
MH-within-Gibbs, where Gibbs is applied on the level to repeatedly
sample a model and state history conditioned on the other. The
state sequence is sampled directly from the conditional distribution
(given the model), and the model is sampled using Metropolis-
Hastings. As MH-within-Gibbs is shown to be consistent [1, 36], our
reinvigoration scheme converges to the true posterior distribution.

]

First note that the consistency claims on Metropolis-Hastings
only hold if the proposal distribution gives a non-zero probability
of moving to instances (here graph topologies) that have non-zero
probability in the target [32]. By proposing to either add or re-
move any edge of interest, this condition is easily satisfied. Second,
Metropolis-Hastings notoriously comes with an initial burn-in phase
where one should ignore samples that were collected before the
stationary distribution is reached. In practice, we avoid this phase
but minimize the loss of accuracy by exploiting the fact that our
initially sampled topology is taken from the current belief, assum-
ing it is close to a local mode [32]. Lastly, these results hold only in
the limit of infinite samples and therefore, under finite samples, the
results may still be far for optimal. In the next section we provide
an empirical evaluation and show that even with relatively few
samples this approach significantly outperforms other methods.

4 EXPERIMENTS

Here we provide an empirical evaluation of our approach on three
domains. Factored Tiger, an extension of the well-known Tiger
problem [21], demonstrates the need to identify and exploit irrele-
vant features. Second a Gridworlddomain, inspired by navigational
tasks, which has an additional planning challenge of long trajec-
tories without feedback. Lastly, arguably the hardest out of three
learning problems is Collision Avoidance taken from [26], where
the agent must infer the dynamics of an object of which the location
is never observed with high confidence.

4.1 Domains

The Tiger domain describes a scenario where the agent is faced
with the task of opening one out of two doors. Behind one door
lurks a tiger, a danger and reward of —100 that must be avoided,
while the other door opens up to a bag of gold for a reward of 10.
The agent can choose to open either doors (which ends the episode)
or to listen for a signal: a noisy observation for a reward of —1.
This observation informs the agent of the location of the tiger with
85% accuracy. In the Factored Tiger domain we increase the state
space artificially by adding seven uninformative and stationary
binary state features. The challenge for a learning agent is to infer
the underlying dynamics in the significantly large domain.

12

AAMAS 2019, May 13-17, 2019, Montréal, Canada

In this particular case, the agent is unsure about the observation
function. In particular, the prior belief of the agent assigns 60%
expected probability to hearing the tiger correctly, as opposed to
the true 85% probability. The prior belief over the structure of the
observation model is uniform: each edge from any of the eight
state features to the observation feature has a 50% chance of being
present in a particle in the initial belief.

Gridworld is a two-dimensional grid in which the agent starts
in the bottom left corner and must navigate to a goal cell. The goal
cell is chosen from a set of candidates at the start of an episode, and
can be fully observed by the agent. The agent additionally observes
its own location with a noisy sensor. The agent can move in all
four directions, which are generally successful 95% of the attempts.
There are, however, specific cells that significantly decrease the
chance of success to 15%, essentially trapping the agent. The target
of the agent is to reach the goal as fast as possible.

In this domain we assume no prior knowledge of the location
or the number of ‘trap’ cells and the prior assigns 95% probability
of transition success on all cells. The observation model in this
domain is considered known. Here we factor the state space into
the index of the goal state and the (x,y) position of the agent
(s = (x,y,goal-index)) and assume the agent knows that its next
location is dependent on the previous. However, half of the graph
structures in the prior also include the value of the goal cell as
feature to model the agent’s transition function.

In Collision Avoidance the agent pilots a plane that flies from
right to left (one cell at a time) in a 5 by 5 grid. The agent can
choose to stay level for no cost, or move either one cell diagonally
with a reward of —1. The episode ends when the plane reaches the
last column, where it must avoid collision with a vertically moving
obstacle (or face a reward of —1000). The obstacle movement is
stochastic, and the agent observes its coordinate with some noise.

While we assume the agent knows the observation and transition
model of the plane, the agent initially underestimates the movement
strategy of the obstacle: it believes it will stay put 90% of the time
and move either direction with 5% probability each, while the actual
probabilities are respectively 50% and 25%. The agent knows that
the location of the obstacle in the next state depends on its previous
location, but otherwise assigns a uniform prior distribution over
the topology of the obstacle feature.

4.2 Experimental Setup

The analysis provides an ablation study that includes a comparison
with BA-POMCP, a current state-of-the-art method. We study the
choice of model, type of belief update and planner (table 1). We
consider the BA-POMDP and FBA-POMDP models, importance
sampling with and without reinvigoration belief tracking methods,
and POMCP variants plus a baseline planners.

While a simple look-ahead method is the most common solution
for these frameworks, it performs poorly on the relatively lengthy
problems in our experiments. For an interesting comparison, we
propose a more sophisticated Thompson-Sampling-inspired plan-
ner (TSI) instead. TSI runs POMCP on a single hyper-state from
the belief, assuming the sampled domain state is the true current
state and that the sampled model defines the true POMDP.

Session 1A: Reinforcement Learning 1

7 feature factored-Tiger

7x7 gridworld

AAMAS 2019, May 13-17, 2019, Montréal, Canada

collision avoidance

'S
3

'S
=

'S
=

[T AR A"

—@— known structure
V- BA-POMCP
—@- FBA-POMCP + reinvigoration

—e— FBA-POMCP

return per episode

'S
(<)

—@— known structure

V- BA-POMCP

—@- FBA-POMCP + reinvigoration
—e— FBA-POMCP

L
o

't

A

i
—®— known structure

V- BA-POMCP

—@— FBA-POMCP + reinvigoration
—e— FBA-POMCP

100 0

0 50

100 150 200 250

number of episodes

300 350

75

number of episodes

100 125 150 175 200 0 100 200 300

number of episodes

400 500

Figure 2: Return of flat vs factored models on Factored Tiger (left), Gridworld (middle) and Collision Avoidance (right)

7 feature factored-Tiger

7x7 gridworld

collision avoidance

3

5

—104

=
3

|
IS
&

0.44

return per episode
return per episode

—9— BA-TSI

V- BA-POMCP
—@- FBA-POMCP + reinvigoration
8~ FBA-TSI + reinvigoration ‘

—@- FBA-POMCP + reinvigoration

V- BA-POMCP
—@- FBA-POMCP + reinvigoration

FBA-TSI + reinvigoration FBA-TSI + reinvigoration

100 150 200 250

number of episodes

300 350

75

number of episodes

100 125 150 175 200 0 100 200 300

number of episodes

400 500

Figure 3: Return of POMCP versus TSI on Factored Tiger (left), Gridworld (middle) and Collision Avoidance (right)

Table 1: Design choices for the solution method

model: BA-POMDP FBA-POMDP
belief update: | importance sampling | i.s. + reinvigoration
planner: TSI POMCP

Our method uses POMCP with importance sampling and rein-
vigoration applied to the Factored BA-POMDP. Methods that we
compare against are FBA-POMCP, which excludes reinvigoration,
and the agent known-structure with the same configurations as
FBA-POMCP, but with complete knowledge on the structure of the
dynamics a priori. We also consider the tabular BA-POMCP and
the methods BA-TSI and FBA-TSI which apply the TSI planner on
respectively the BA-POMDP and FBA-POMDP models. FBA-TSI
includes reinvigoration to ensure fair comparison.

Due to the wide range of the reward functions, we ran the experi-
ments up to 100000 times in order to produce statistically significant
results. The shades in the figures indicate the 95% confidence bound
on the reported returns. In these experiments, the parameters of
the planning and belief update methods per domain are consistent
across methods and described in table 2. The parameters were cho-
sen to keep run time acceptable, and a complete real-time step (both
planning and updating the belief) takes less than 2 seconds on aver-
age in all our experiments. All methods employ the (F)BA-POMCP
modifications root-sampling and expected-transitions [22].

13

Table 2: Parameters per domain (sim refers to simulations)

domain ‘ #sims # particles L threshold UCB const

f-tiger | 4096 1024 =50 100
gridworld | 2048 512 —500 1
collision 256 128 —500 1000

4.3 Results

We present the results in two sets of figures, one with the focus on
model comparison and the effect of reinvigoration (Figure 2), and
the other with a focus on the planning method (Figure 3).

Model comparison: The Factored representation is able to cap-
ture the dynamics with fewer parameters and, as a result, our
method and the known-structure agent consistently outperforms
the tabular BA-POMCP method (Figure 2). While none of the meth-
ods have converged on the Gridworld problem (center image) yet,
BA-POMCEP is clearly the slowest learner. This is also shown in the
Collision Avoidance domain (right), where the learning rate of our
method is the highest, and BA-POMCP’s is the lowest. Specifically
chosen to represent a problem with relatively compact underly-
ing dynamics, the BA-POMCP is unable to learn in the Factored
Tiger problem (left), whereas the known-structure agent and our
method are able to distinguish the important features and the belief
approaches the real model within 100 episodes.

Reinvigoration: A practical issue of particle filters is quality de-
generacy. This is particularly obvious in the Factored Tiger problem,

Session 1A: Reinforcement Learning 1

as FBA-POMCP (red line) plummets after 50 episodes. Qualitative
analysis shows that in the most likely scenarios FBA-POMCP per-
forms on par with the other two factored approaches. However,
occasionally due to poor luck, the belief converges to a posterior
that concentrates on a topology where there is no edge between
tiger-location-feature and the observation feature, and as a result
the agent is unable to represent the true model. In those runs, the
agent can only open a door randomly, leading to an average re-
turn of —45, which causes the decline in performance. While this
phenomenon also happens in the other domains, the result is less
dramatic, and thus less obvious. One interesting observation is that
reinvigoration not only outperforms no-reinvigoration, but can also
be superior to an agent that knows the correct structure a priori
(the blue line known-structure for the Collision Avoidance domain).
Closer inspection revealed that while reinvigoration is meant to
tackle structure degeneracy, it also produces a good approximation
of the counts. Given the small number of particles (128), the distri-
bution after reinvigoration represents the belief more closely than
regular importance sampling does in this domain.

Planner comparison: Figure 3 compares the performance of
the POMCP planner (our method and BA-POMCP) with the base-
line TSI planner (FBA-TSI and BA-TSI). The gap in performance (in
favor of POMCP) indicates the importance of considering the joint
uncertainty over the state and model parameters during planning,
as opposed to picking an action optimal with respect to a sample
of the belief. In Gridworld (center image) this uncertainty is ar-
guably the least important, as similar states (agent coordinates) and
models lead to similar policies, and thus the difference (although
significant) are less pronounced. The results on Collision Avoid-
ance, however, demonstrates the need to consider the full posterior
more clearly: FBA-TSI performs as poorly as BA-POMCP, while we
know the quality of its belief is on par with our method. Lastly,
the Factored Tiger problem reveals the true nature of the TSI, as
both approaches fail horribly. Since the TSI samples a single hyper-
state and completely ignores the uncertainty over the current state,
the optimal policy is to simply open a specific door, leading to an
expected return of —45.

5 RELATED WORK

Much of the recent work in Reinforcement Learning in partially
observable environments has been in applications of Deep Rein-
forcement Learning to POMDPs. To tackle the issue of remem-
bering past observations, researchers have employed Recurrent
networks [18, 51]. Others have introduced inductive biases into
the network in order to learn a generative model to imitate belief
updates [20]. While Deep Reinforcement Learning approaches are
able to tackle large-scale problems, these approaches often require
millions of interactions with the real world. Another of their main
drawbacks is that they do not address the fundamental challenge
of the exploration-exploitation trade-off in POMDPs.

More traditional approaches including the U-Tree algorithm [29]
(and its modifications), EM-based algorithms such as [25] and policy
gradient methods [4], typically do not suffer from the same lack of
sample efficiency. They too, however, have similar issues solving
the exploration-exploitation trade-off.

14

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Bayesian methods are a good fit for domain where solutions must
be learned quickly, as they both address exploration-exploitation
in a principled fashion, and allow the user to utilize domain knowl-
edge in the form of a prior distribution. The Infinite-POMDP [12]
(iPOMDP), for example, models the probability distribution over the
dynamics as a posterior over the space of HMMs. In doing so, the
iPOMDP additionally relaxes the assumption that the state space is
known, tackling an even more general setting. This complicates the
specification of a prior, making it more difficult to encode knowl-
edge. Other BRL methods solve the case of continuous state space,
taking on Gaussian assumptions over the dynamics [10, 37].

Work on generalization in model-based BRL methods include [34],
which introduces ‘tied” parameters, hard-coded sets of states to
share transition probabilities. This idea is extended [48] to main-
taining a weighted mixture of increasingly ‘tied’ models. The FBA-
MDP [38] learns the transition model as a set of BNs and has been
the inspiration of the MH part of our reinvigoration method.

6 CONCLUSION

This paper pushes the state of the art in model-based Bayesian
reinforcement learning for partially observable settings. As we
demonstrated, such methods can exploit prior information to allow
for learning in hundreds rather than millions of episodes. Despite
their advantage, previous model-based BRL methods for partially
observable settings, such as the BA-POMDP, faced a scalability
bottleneck due to their tabular nature.

To overcome this bottleneck we introduced the FBA-POMDP
framework, which exploits factored representations to compactly
describe the belief over the dynamics of the underlying POMDP.
And in order to effectively solve the FBA-POMDP, we introduced
a novel particle reinvigorating algorithm to track the complicated
belief and paired it with FBA-POMCP, a new Monte-Carlo Tree
Search-based planning algorithm. We proved that this method,
in the limit of infinite samples, is guaranteed to converge to the
optimal policy with respect to the initial belief. In an empirical eval-
uation we demonstrated that our structure-learning approach is
roughly as effective as learning with given structure in two domain,
and, surprisingly, even more effective on the collision avoidance
domain. The results also show the significance of representing and
recognizing independent features, as our method either outper-
forms BA-POMDP based agents or is able to learn in scenarios
where tabular methods are not feasible at all.

In order to further scale these methods up future work can take
several interesting directions. For domains too large to represent
with Bayes Networks one could investigate other models to cap-
ture the dynamics. For domains that require learning over long
sequences, reinvigoration methods that scale more gracefully with
history length would be desirable

ACKNOWLEDGEMENTS

Christopher Amato and Sammie Katt are funded by NSF Grant
#1734497, F.A.O. is funded by EPSRC First Grant EP/R001227/1. This
project received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 re-
search and innovation programme (grant agree-
ment No. 758824 —INFLUENCE).

Session 1A: Reinforcement Learning 1

REFERENCES

(1]

(2]
(3]

[4

flaa

[10]

(11

[12]

[13

[14]

[15]

[16]

[17]

(18]

[19]

[20

[21]

[22

[23

[24]

[25]

Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan.
2003. An introduction to MCMC for machine learning. Machine learning 50, 1-2
(2003), 5-43.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. In Machine Learning, Vol. 47. 235-256.

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. 2018.
Efficient exploration through Bayesian deep Q-networks. In Information Theory
and Applications Workshop. 1-9.

Jonathan Baxter and Peter L Bartlett. 2000. Direct gradient-based Reinforcement
Learning. In IEEE International Symposium on Circuits and Systems, Vol. 3. 271-
274.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Sax-
ton, and Remi Munos. 2016. Unifying count-based exploration and intrinsic
motivation. In Advances in Neural Information Processing Systems. 1471-1479.
Craig Boutilier, Thomas Dean, and Steve Hanks. 1999. Decision-theoretic plan-
ning: Structural assumptions and computational leverage. In Journal of Artificial
Intelligence Research, Vol. 11. 1-94.

Craig Boutilier and David Poole. 1996. Computing optimal policies for partially
observable decision processes using compact representations. In AAAI Conference
on Artificial Intelligence. 1168-1175.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods. In
IEEE Transactions on Computational Intelligence and Al in games, Vol. 4. 1-43.
Yuguo Chen. 2005. Another look at rejection sampling through importance
sampling. In Statistics & probability letters, Vol. 72. 277-283.

Patrick Dallaire, Camille Besse, Stephane Ross, and Brahim Chaib-draa. 2009.
Bayesian reinforcement learning in continuous POMDPs with Gaussian processes.
In International Conference on Intelligent Robots and Systems. 2604-2609.

Finale Doshi-Velez. 2009. The infinite partially observable Markov Decision
Process. In Advances in Neural Information Processing Systems. 477-485.

Finale Doshi-Velez, David Pfau, Frank Wood, and Nicholas Roy. 2015. Bayesian
nonparametric methods for partially-observable Reinforcement Learning. In IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 37. 394-407.
Zhengzhu Feng and Eric A Hansen. 2014. Approximate planning for factored
POMDPs. In European Conference on Planning.

Neil J Gordon, David J Salmond, and Adrian FM Smith. 1993. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F, Vol. 140.
107-113.

Carlos Guestrin, Daphne Koller, and Ronald Parr. 2001. Solving factored POMDPs
with linear value functions. In Workshop on Planning under Uncertainty and
Incomplete Information.

Eric A Hansen and Zhengzhu Feng. 2000. Dynamic Programming for POMDPs
Using a Factored State Representation. In Artificial Intelligence Planning Systems.
130-139.

W Keith Hastings. 1970. Monte Carlo sampling methods using Markov chains
and their applications. In Biometrika, Vol. 57. 97-109.

Matthew Hausknecht and Peter Stone. 2015. Deep recurrent g-learning for
partially observable MDPS. In AAAI Conference on Artificial Intelligence Fall
Symposium Series.

David Heckerman, Dan Geiger, and David M Chickering. 1995. Learning Bayesian
networks: The combination of knowledge and statistical data. In Machine Learn-
ing, Vol. 20. 197-243.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson.
2018. Deep Variational Reinforcement Learning for POMDPs. In International
Conference on Machine Learning. 2117-2126.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. 1998. Plan-
ning and acting in partially observable stochastic domains. In Artificial intelli-
gence, Vol. 101. 99-134.

Sammie Katt, Frans A Oliehoek, and Christopher Amato. 2017. Learning in
POMDPs with Monte Carlo Tree Search. In International Conference on Machine
Learning. 1819-1827.

Dominic S Lee and Nicholas KK Chia. 2002. A particle algorithm for sequential
Bayesian parameter estimation and model selection. In IEEE Transactions on
Signal Processing, Vol. 50. 326—336.

Faming Liang, Chuanhai Liu, and Raymond Carroll. 2011. Advanced Markov
chain Monte Carlo methods: learning from past samples. John Wiley & Sons.
Miao Liu, Xuejun Liao, and Lawrence Carin. 2013. Online Expectation Maximiza-
tion for Reinforcement Learning in POMDPs. In International Joint Conference

15

[26

[27

[28

[29

[30

'S
S

@
=

'w
&

W
20,

[40

(41

=
)

[43

[44

[45]

[46]

[49]

[50]

[51

AAMAS 2019, May 13-17, 2019, Montréal, Canada

on Artificial Intelligence. 1501-1507.

Yuanfu Luo, Haoyu Bai, David Hsu, and Wee Sun Lee. 2018. Importance sampling
for online planning under uncertainty. The International Journal of Robotics
Research 38, 2-3 (2018), 162-81.

Luca Martino, Jesse Read, and David Luengo. 2015. Independent Doubly Adaptive
Rejection Metropolis Sampling Within Gibbs Sampling. In IEEE Transactions on

Signal Processing, Vol. 63. 3123-3138.
David A McAllester and Satinder Singh. 1999. Approximate planning for factored

POMDPs using belief state simplification. In Uncertainty in Artificial Intelligence.
409-416.

Andrew Kachites McCallum and Dana Ballard. 1996. Reinforcement Learning with
selective perception and hidden state. Ph.D. Dissertation. University of Rochester.
Dept. of Computer Science.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. Deep Learning Workshop (2013).

Felix Miiller, Christian Spéth, Thomas Geier, and Susanne Biundo. 2012. Exploit-
ing expert knowledge in factored POMDPs. In European Conference on Artificial
Intelligence. 606-611.

Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
Ian Osband, Daniel Russo, Zheng Wen, and Benjamin Van Roy. 2017. Deep
exploration via randomized value functions. arXiv preprint arXiv:1703.07608
(2017).

Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. 2006. An analytic
solution to discrete Bayesian reinforcement learning. In International Conference
on Machine Learning. 697-704.

Lawrence R Rabiner and Biing-Hwang Juang. 1986. An introduction to hidden
Markov models. In IEEE ASSP magazine, Vol. 3. 4-16.

Christian Robert and George Casella. 2013. Monte Carlo statistical methods.
Springer Science & Business Media.

Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. 2008. Bayesian reinforce-
ment learning in continuous POMDPs with application to robot navigation. In
IEEE International Conference on Robotics and Automation. 2845-2851.

Stéphane Ross and Joelle Pineau. 2008. Model-based Bayesian reinforcement
learning in large structured domains. In Uncertainty in Artificial Intelligence. 476.
Stéphane Ross, Joelle Pineau, Brahim Chaib-draa, and Pierre Kreitmann. 2011.
A Bayesian approach for Learning and planning in partially observable Markov
Decision Processes. In The Journal of Machine Learning Research, Vol. 12. 1729—
1770.

Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,.

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. In Nature, Vol. 529. 484.

David Silver and Joel Veness. 2010. Monte-Carlo planning in large POMDPs. In
Advances in Neural Information Processing Systems. 2164-2172.

Hyeong Seop Sim, Kee-Eung Kim, JinHyung Kim, D-S Chang, and M-W Koo.
2008. Symbolic heuristic search value iteration for factored POMDPs. In AAAT
Conference on Artificial Intelligence. 1088-1093.

Sebastian Thrun. 1999. Monte Carlo POMDPs. In Advances in Neural Information
Processing Systems. 1064-1070.

Luke Tierney. 1994. Markov chains for exploring posterior distributions. In The
Annals of Statistics, Vol. 22. 1701-1728.

Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning. In AAAI Conference on Artificial Intelligence.
2094-2100.

Tiago Veiga, Matthijs Spaan, and Pedro Lima. 2014. Point-based POMDP solving
with factored value function approximation. In AAAI Conference on Artificial
Intelligence. 2513-2519.

Ngo Anh Vien, Wolfgang Ertel, Viet-Hung Dang, and TaeChoong Chung. 2013.
Monte-Carlo tree search for Bayesian reinforcement learning. Applied intelligence
39, 2 (2013), 345-353.

Jason D Williams, Pascal Poupart, and Steve Young. 2005. Factored partially
observable Markov Decision Processes for dialogue management. In Workshop
on Knowledge and Reasoning in Practical Dialogue Systems. 76-82.

Jeremy L Wyatt. 2001. Exploration control in Reinforcement Learning using
optimistic model selection. In International Conference on Machine Learning.
593-600.

Pengfei Zhu, Xin Li, Pascal Poupart, and Guanghui Miao. 2018. On improving
deep reinforcement learning for pomdps. arXiv preprint arXiv:1804.06309 (2018).

	Abstract
	1 Introduction
	2 Background
	2.1 The POMDP and BA-POMDP
	2.2 Learning by Planning in BA-POMDPs
	2.3 Belief tracking
	2.4 Factored Models

	3 Bayesian RL in Factored POMDPs
	3.1 The Factored BA-POMDP
	3.2 Solving FBA-POMDPs
	3.3 Belief tracking & Particle Reinvigoration
	3.4 Theoretical guarantees

	4 Experiments
	4.1 Domains
	4.2 Experimental Setup
	4.3 Results

	5 Related work
	6 Conclusion
	References

