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Abstract

How can prior knowledge on the transforma-

tion invariances of a domain be incorporated

into the architecture of a neural network? We

propose Equivariant Transformers (ETs), a fam-

ily of differentiable image-to-image mappings

that improve the robustness of models towards

pre-defined continuous transformation groups.

Through the use of specially-derived canonical co-

ordinate systems, ETs incorporate functions that

are equivariant by construction with respect to

these transformations. We show empirically that

ETs can be flexibly composed to improve model

robustness towards more complicated transforma-

tion groups in several parameters. On a real-world

image classification task, ETs improve the sample

efficiency of ResNet classifiers, achieving rela-

tive improvements in error rate of up to 15% in

the limited data regime while increasing model

parameter count by less than 1%.

1. Introduction

In computer vision, we are often equipped with prior knowl-

edge on the transformation invariances of a domain. Con-

sider, for example, the problem of classifying street signs

in real-world images. In this domain, we know that the

appearance of a sign in an image is subject to various defor-

mations: the sign may be rotated, its scale will depend on its

distance, and it may appear distorted due to perspective in

3D space. Regardless, the identity of the street sign should

remain invariant to these transformations.

With the exception of translation invariance, convolutional

neural network (CNN) architectures typically do not take

advantage of such prior knowledge on the transformation

invariances of the domain. Instead, current standard practice

heuristically incorporates these priors during training via

data augmentation (e.g., by applying a random rotation or
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scaling to each training image). While data augmentation

typically helps reduce the test error of CNN-based models,

there is no guarantee that transformation invariance will be

enforced for data not seen during training.

In contrast to training time approaches like data augmen-

tation, recent work on group equivariant CNNs (Cohen &

Welling, 2016; Dieleman et al., 2016; Marcos et al., 2017;

Worrall et al., 2017; Henriques & Vedaldi, 2017; Cohen

et al., 2018) has explored new CNN architectures that are

guaranteed to respond predictably to particular transforma-

tions of the input. For example, the CNN model family

may be constrained such that a rotation of the input results

in a corresponding rotation of its subsequent representa-

tion, a property known as equivariance. However, these

techniques—most commonly designed for rotations and

translations of the input (e.g., Dieleman et al. (2016); Mar-

cos et al. (2017); Worrall et al. (2017))—fail to generalize

to deeper compositions of continuous transformations. This

limits the applicability of these techniques in more compli-

cated real-world scenarios involving continuous transforma-

tions in several dimensions, such as the above example of

street sign classification.

To address these shortcomings of group equivariant CNNs,

we propose Equivariant Transformer (ET) layers, a flexible

class of functions that improves robustness towards arbitrary

pre-defined groups of continuous transformations. An ET

layer for a transformation group G is an image-to-image

mapping that satisfies the following local invariance prop-

erty: for any input image φ and transformation T ∈ G, the

images φ and Tφ are both mapped to the same output im-

age. ET layers are differentiable with respect to both their

parameters and input, and thus can be easily incorporated

into existing CNN architectures. Additionally, ET layers

can be flexibly combined to achieve improved invariance

towards more complicated compositions of transformations

(e.g., simultaneous rotation, scale, shear, and perspective

transformations).

Importantly, the invariance property of ETs holds by con-

struction, without any dependence on additional heuristics

during training. We achieve this by using the method of

canonical coordinates for Lie groups (Rubinstein et al.,

1991). The key property of canonical coordinates that we

utilize is their ability to reduce arbitrary continuous transfor-
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mations to translation. For example, polar coordinates are

canonical coordinates for the rotation group, since a rotation

reduces to a translation in the angular coordinate. These

specialized coordinates can be analytically derived for a

given transformation and efficiently implemented within a

neural network.

We evaluate the performance of ETs using both synthetic

and real-world image classification tasks. Empirically, ET

layers improve the sample efficiency of image classifiers rel-

ative to standard Spatial Transformer layers (Jaderberg et al.,

2015). In particular, we demonstrate that ET layers improve

the sample efficiency of modern ResNet classifiers on the

Street View House Numbers dataset, with relative improve-

ments in error rate of up to 15% in the limited data regime.

Moreover, we show that a ResNet-10 classifier augmented

with ET layers is able to exceed the accuracy achieved by

a more complicated ResNet-34 classifier without ETs, thus

reducing both memory usage and computational cost.

2. Related Work

Equivariant CNNs. There has been substantial recent in-

terest in CNN architectures that are equivariant with respect

to transformation groups other than translation. Equivari-

ance with respect to discrete transformation groups (e.g., re-

flections and 90o rotations) can be achieved by transforming

CNN filters or feature maps using the group action (Cohen

& Welling, 2016; Dieleman et al., 2016; Laptev et al., 2016;

Marcos et al., 2017; Zhou et al., 2017). Invariance can then

be achieved by pooling over this additional dimension in

the output of each layer. In practice, this technique supports

only relatively small discrete groups since its computational

cost scales linearly with the cardinality of the group.

Methods for achieving equivariance with respect to con-

tinuous transformation groups fall into one of two classes:

those that expand the input in a steerable basis (Amari,

1978; Freeman & Adelson, 1991; Teo, 1998; Worrall et al.,

2017; Jacobsen et al., 2017; Weiler et al., 2018; Cohen

et al., 2018), and those that compute convolutions under

a specialized coordinate system (Rubinstein et al., 1991;

Segman et al., 1992; Henriques & Vedaldi, 2017; Esteves

et al., 2018). The relationship between these two categories

of methods is analogous to the duality between frequency

domain and time domain methods of signal analysis. Our

work falls under the latter category that uses coordinate

systems specialized to the transformation groups of interest.

Equivariance via Canonical Coordinates. Henriques &

Vedaldi (2017) apply CNNs to images represented using

coordinate grids computed using a given pair of continuous,

commutative transformations. Closely related to this tech-

nique are Polar Transformer Networks (Esteves et al., 2018),

a method that handles images deformed by translation, rota-

tion, and dilation by first predicting an origin for each image

before applying a CNN over log-polar coordinates. Unlike

these methods, we handle higher-dimensional transforma-

tion groups by passing an input image through a sequence

of ET layers in series. In contrast to Henriques & Vedaldi

(2017), where a pair of commutative transformations is

assumed to be given as input, we show how canonical co-

ordinate systems can be analytically derived given only a

single one-parameter transformation group using technical

tools described by Rubinstein et al. (1991).

Spatial Transformer Networks. As with Spatial Trans-

former (ST) layers (Jaderberg et al., 2015), our ET layers

aim to factor out nuisance modes of variation in images due

to various geometric transformations. Unlike STs, ETs in-

corporate additional structure in the functions used to predict

transformations. We expand on the relationship between

ETs and STs in the following sections.

Locally-Linear Approximations. Gens & Domingos

(2014) use local search to approximately align filters to

image patches, in contrast to our use of a global change

of coordinates. The sequential pose prediction process in

a stack of ET layers is also reminiscent of the iterative

nature of the Lucas-Kanade (LK) algorithm and its descen-

dants (Lucas & Kanade, 1981; Lin & Lucey, 2017).

Image Registration and Canonicalization. ETs are re-

lated to classic “phase correlation” techniques for image

registration that compare the Fourier or Fourier-Mellin trans-

forms of an image pair (De Castro & Morandi, 1987; Reddy

& Chatterji, 1996); these methods can be interpreted as

Fourier basis expansions under canonical coordinate sys-

tems for the relevant transformations. Additionally, the

notion of image canonicalization relates to work on de-

formable templates, where object instances are generated

via deformations of a prototypical object (Amit et al., 1991;

Yuille, 1991; Shu et al., 2018).

3. Problem Statement

In this section, we begin by reviewing influential prior

work on image canonicalization with Spatial Transform-

ers (Jaderberg et al., 2015). We then argue that the lack of

self-consistency in pose prediction is a key weakness with

the standard ST that results in poor sample efficiency.

3.1. Image Canonicalization with Spatial Transformers

Suppose that we observed a collection of images φ(x), each

of which is a mapping from image coordinates x ∈ R
2 to

pixel intensities in each channel. Each image is a trans-

formed version of some latent canonical image φ∗: φ =
Tθφ∗

:= φ∗(Tθx), where the transformation Tθ : R2 → R
2

is modulated by pose parameters θ ∈ R
k.
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Local Invariance. Unlike ST layers, ET layers are en-

dowed with a form of local transformation invariance: for

any input image φ, we have that LG,ρ(φ) = LG,ρ(Tθφ)
for all Tθ ∈ G. In other words, an ET layer collapses the

orbit generated by the group action on an image to a single,

“canonical” point. This property follows directly from the

self-consistency of the pose predictor with respect to the

group G. Importantly, local invariance holds for any setting

of the parameters of the ET layer; thus, ETs are equipped

with a strong inductive bias towards invariance with respect

to the transformation group G.

Implementing Self-Consistency. We implement transla-

tion self-consistency in f by first predicting a spatial distri-

bution by passing a 2D CNN feature map through a softmax

function, and then outputting the coordinates of the centroid

of this distribution. By the translation equivariance of CNNs,

a shift in the CNN input results in a corresponding shift in

the predicted spatial distribution, and hence the location of

the centroid. We rescale the centroid coordinates to match

the scale of the input coordinate grid.

4.3. Constructing Canonical Coordinates (Algorithm 1)

In order to construct an ET layer, we derive a canonical coor-

dinate system for the target transformation. Canonical coor-

dinate systems exist for all one-parameter Lie groups (Seg-

man et al., 1992; Theorem 1). For Lie groups with more

than one parameter, canonical coordinates exist for Abelian

groups of dimension k ≤ d: that is, groups whose transfor-

mations are commutative.

Here, we summarize the procedure described in Segman

et al. (1992). For clarity of exposition, we will focus on

Lie groups representing transformations on R
2 with one

parameter θ ∈ R. This corresponds to the practically useful

case of one-parameter deformations of 2D images. In this

setting, condition (1) reduces to:

ρ(Tθx) = ρ(x) + θe1.

Taking the derivative with respect to θ, we can see that it

suffices for ρ to satisfy the following first-order PDEs:

(

∂(Tθx)1
∂θ

∣

∣

∣

∣

θ=0

∂

∂x1

+
∂(Tθx)2

∂θ

∣

∣

∣

∣

θ=0

∂

∂x2

)

ρ1(x) = 1,

(3)
(

∂(Tθx)1
∂θ

∣

∣

∣

∣

θ=0

∂

∂x1

+
∂(Tθx)2

∂θ

∣

∣

∣

∣

θ=0

∂

∂x2

)

ρ2(x) = 0.

(4)

We can solve these first-order PDEs using the method of

characteristics (e.g., Strauss, 2007). Observe that the homo-

geneous equation (4) admits an infinite set of solutions ρ2;

each solution is a different coordinate function that is invari-

ant to the transformation Tθ. Thus, there exists a degree of

Algorithm 1 Constructing a canonical coordinate system

Input: Transformation group {Tθ}
Output: Canonical coordinates ρ(x)
vi(x)← (∂(Tθx)i/∂θ)|θ=0, i = 1, 2
Dx ← (v1(x)∂/∂x1 + v2(x)∂/∂x2)
ρ1(x)← a solution of Dxρ1(x) = 1
ρ2(x)← a solution of Dxρ2(x) = 0
Return ρ(x) = (ρ1(x), ρ2(x))

freedom in choosing invariant coordinate functions; due to

the finite resolution of images in practice, we recommend

choosing coordinates that minimally distort the input image

to mitigate the introduction of resampling artifacts.

Example 3 (Hyperbolic Rotation). As a concrete exam-

ple, we will derive a set of canonical coordinates for hyper-

bolic rotation, Tθx = (x1e
θ, x2e

−θ). This is a “squeeze”

distortion that dilates an image along one axis and com-

presses it along the other. We obtain the following PDEs:

(x1∂/∂x1 − x2∂/∂x2)ρ1(x) = 1,

(x1∂/∂x1 − x2∂/∂x2)ρ2(x) = 0.

In the first quadrant, the solution to the inhomogeneous

equation is ρ1(x) = log
√

x1/x2 + c1, where c1 is an arbi-

trary constant, and the solution to the homogeneous equation

is ρ2(x) = h(x1x2), where h is an arbitrary differentiable

function in one variable (the choice h(z) =
√
z is known as

the hyperbolic coordinate system). These coordinates can

be defined analogously for the remaining quadrants to yield

a representation of the entire image plane, excluding the

lines x1 = 0 and x2 = 0.

4.4. Compositions of Transformations

A single transformation group with one parameter is typ-

ically insufficient to capture the full range of variation in

object pose in natural images. For example, an important

transformation group in practice is the 8-parameter pro-

jective linear group PGL(3,R) that represents perspective

transformations in 3D space.

In the special case of two-parameter Abelian Lie groups,

we can construct canonical coordinates that yield self-

consistency simultaneously for both parameters (Segman

et al., 1992; Theorem 1). For example, log-polar coordi-

nates are canonical for both rotation and dilation. How-

ever, for transformations on R
d, a canonical coordinate

system can only satisfy condition (1) for up to d parameters.

Thus, a single canonical coordinate system is insufficient

for higher-dimensional transformation groups on R
2 such

as PGL(3,R).

Stacked ETs. Since we cannot always achieve simulta-

neous self-consistency with respect to all the parameters









Equivariant Transformer Networks

Acknowledgements

We thank Pratiksha Thaker, Kexin Rong, and our anony-

mous reviewers for their valuable feedback on earlier ver-

sions of this manuscript. This research was supported in part

by affiliate members and other supporters of the Stanford

DAWN project—Ant Financial, Facebook, Google, Intel,

Microsoft, NEC, SAP, Teradata, and VMware—as well as

Toyota Research Institute, Keysight Technologies, Northrop

Grumman, Hitachi, NSF awards AF-1813049 and CCF-

1704417, an ONR Young Investigator Award N00014-18-1-

2295, and Department of Energy award DE-SC0019205.

References

Amari, S. Feature Spaces which Admit and Detect Invariant

Signal Transformations. In International Joint Confer-

ence on Pattern Recognition, 1978.

Amit, Y., Grenander, U., and Piccioni, M. Structural image

restoration through deformable templates. Journal of the

American Statistical Association, 1991.

Cohen, T. S. and Welling, M. Group Equivariant Convolu-

tional Networks. In International Conference on Machine

Learning, 2016.
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