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Abstract

What learning algorithms can be run directly on

compressively-sensed data? In this work, we con-

sider the question of accurately and efficiently

computing low-rank matrix or tensor factoriza-

tions given data compressed via random projec-

tions. We examine the approach of first perform-

ing factorization in the compressed domain, and

then reconstructing the original high-dimensional

factors from the recovered (compressed) factors.

In both the matrix and tensor settings, we estab-

lish conditions under which this natural approach

will provably recover the original factors. While

it is well-known that random projections preserve

a number of geometric properties of a dataset,

our work can be viewed as showing that they can

also preserve certain solutions of non-convex, NP-

Hard problems like non-negative matrix factor-

ization. We support these theoretical results with

experiments on synthetic data and demonstrate

the practical applicability of compressed factor-

ization on real-world gene expression and EEG

time series datasets.

1 Introduction

We consider the setting where we are given data that has

been compressed via random projections. This setting fre-

quently arises when data is acquired via compressive mea-

surements (Donoho, 2006; Candès & Wakin, 2008), or when

high-dimensional data is projected to lower dimension in

order to reduce storage and bandwidth costs (Haupt et al.,

2008; Abdulghani et al., 2012). In the former case, the use

of compressive measurement enables higher throughput in

signal acquisition, more compact sensors, and reduced data

storage costs (Duarte et al., 2008; Candès & Wakin, 2008).
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In the latter, the use of random projections underlies many

sketching algorithms for stream processing and distributed

data processing applications (Cormode et al., 2012).

Due to the computational benefits of working directly in the

compressed domain, there has been significant interest in

understanding which learning tasks can be performed on

compressed data. For example, consider the problem of

supervised learning on data that is acquired via compressive

measurements. Calderbank et al. (2009) show that it is pos-

sible to learn a linear classifier directly on the compressively

sensed data with small loss in accuracy, hence avoiding the

computational cost of first performing sparse recovery for

each input prior to classification. The problem of learning

from compressed data has also been considered for several

other learning tasks, such as linear discriminant analysis

(Durrant & Kabán, 2010), PCA (Fowler, 2009; Zhou & Tao,

2011; Ha & Barber, 2015), and regression (Zhou et al., 2009;

Maillard & Munos, 2009; Kabán, 2014).

Building off this line of work, we consider the problem of

performing low-rank matrix and tensor factorizations di-

rectly on compressed data, with the goal of recovering the

low-rank factors in the original, uncompressed domain. Our

results are thus relevant to a variety of problems in this set-

ting, including sparse PCA, nonnegative matrix factorization

(NMF), and Candecomp/Parafac (CP) tensor decomposition.

As is standard in compressive sensing, we assume prior

knowledge that the underlying factors are sparse.

For clarity of exposition, we begin with the matrix factor-

ization setting. Consider a high-dimensional data matrix

M ∈ R
n×m that has a rank-r factorization M = WH ,

where W ∈ R
n×r, H ∈ R

r×m, and W is sparse. We are

given the compressed measurements M̃ = PM for a known

measurement matrix P ∈ R
d×n, where d < n. Our goal

is to approximately recover the original factors W and H
given the compressed data M̃ as accurately and efficiently

as possible. This setting of compressed data with sparse

factors arises in a number of important practical domains.

For example, gene expression levels in a collection of tissue

samples can be clustered using NMF to reveal correlations

between particular genes and tissue types (Gao & Church,

2005). Since gene expression levels in each tissue sample

are typically sparse, compressive sensing can be used to
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monly observed to yield sparse factorizations on real-world

data (Lee & Seung, 1999; Hoyer, 2004) and there is sub-

stantial work on explicitly inducing sparsity via regularized

NMF variants (Hoyer, 2004; Li et al., 2001; Kim & Park,

2008; Peharz & Pernkopf, 2012). In light of this empiri-

cally demonstrated ability to compute sparse NMF, Theo-

rem 1 provides theoretical grounding for why FACTORIZE-

RECOVER should yield accurate reconstructions of the orig-

inal factors.

Our theoretical results assume a noiseless setting, but

real-world data is usually noisy and only approximately

sparse. Thus, we demonstrate the practical applicability of

FACTORIZE-RECOVER through experiments on both syn-

thetic benchmarks as well as several real-world gene expres-

sion datasets. We find that performing NMF on compressed

data achieves reconstruction accuracy comparable to or bet-

ter than factorizing the recovered (uncompressed) data at a

fraction of the computation time.

In addition to our results on matrix factorization, we show

the following analog to Theorem 1 for compressed CP tensor

decomposition. The proof in this case follows in a relatively

straightforward fashion from the techniques developed for

our matrix factorization result.

Proposition 1 (informal). Consider a rank-r tensor T ∈
R

n×m1×m2 with factorization T =
∑r

i=1
Ai ⊗ Bi ⊗ Ci,

where A is sparse with the non-zero entries chosen at ran-

dom. Under suitable conditions on P , the dimensions

of the tensor, the projection dimension and the sparsity,

T̃ =
∑r

i=1
(PAi) ⊗ Bi ⊗ Ci is the unique factorization

of the compressed tensor T̃ with high probability, in which

case performing sparse recovery on the columns of (PA)
will yield the true factors A.

As in the case of sparse PCA, there is an efficient algorithm

for finding this unique tensor factorization, as tensor decom-

position can be computed efficiently when the factors are

linearly independent (see e.g. Kolda & Bader (2009)). We

empirically validate our approach for tensor decomposition

on a real-world EEG dataset, demonstrating that factoriza-

tions from compressed measurements can yield interpretable

factors that are indicative of the onset of seizures.

2 Related Work

There is an enormous body of algorithmic work on com-

puting matrix and tensor decompositions more efficiently

using random projections, usually by speeding up the linear

algebraic routines that arise in the computation of these fac-

torizations. This includes work on randomized SVD (Halko

et al., 2011; Clarkson & Woodruff, 2013), NMF (Wang &

Li, 2010; Tepper & Sapiro, 2016) and CP tensor decomposi-

tion (Battaglino et al., 2017). This work is rather different

in spirit, as it leverages projections to accelerate certain

components of the algorithms, but still requires repeated

accesses to the original uncompressed data. In contrast, our

methods apply in the setting where we are only given access

to the compressed data.

As mentioned in the introduction, learning from compressed

data has been widely studied, yielding strong results for

many learning tasks such as linear classification (Calder-

bank et al., 2009; Durrant & Kabán, 2010), multi-label pre-

diction (Hsu et al., 2009) and regression (Zhou et al., 2009;

Maillard & Munos, 2009). In most of these settings, the

goal is to obtain a good predictive model in the compressed

space itself, instead of recovering the model in the original

space. A notable exception to this is previous work on per-

forming PCA and matrix co-factorization on compressed

data (Fowler, 2009; Ha & Barber, 2015; Yoo & Choi, 2011);

we extend this line of work by considering sparse matrix

decompositions like sparse PCA and NMF. To the best of

our knowledge, ours is the first work to establish conditions

under which sparse matrix factorizations can be recovered

directly from compressed data.

Compressive sensing techniques have been extended to re-

construct higher-order signals from compressed data. For ex-

ample, Kronecker compressed sensing (Duarte & Baraniuk,

2012) can be used to recover a tensor decomposition model

known as Tucker decomposition from compressed data (Ca-

iafa & Cichocki, 2013; 2015). Uniqueness results for re-

constructing the tensor are also known in certain regimes

(Sidiropoulos & Kyrillidis, 2012). Our work extends the

class of models and measurement matrices for which unique-

ness results are known and additionally provides algorithmic

guarantees for efficient recovery under these conditions.

From a technical perspective, the most relevant work is

Spielman et al. (2012), which considers the sparse coding

problem. Although their setting differs from ours, the techni-

cal cores of both analyses involve characterizing the sparsity

patterns of linear combinations of random sparse vectors.

3 Compressed Factorization

In this section, we first establish preliminaries on compres-

sive sensing, followed by a description of the measurement

matrices used to compress the input data. Then, we specify

the algorithms for compressed matrix and tensor factoriza-

tion that we study in the remainder of the paper.

Notation. Let [n] denote the set {1, 2, . . . , n}. For any

matrix A, we denote its ith column as Ai. For a matrix

P ∈ R
d×n such that d < n, define:

RP (w) = argmin
x:Px=w

‖x‖1 (1)

as the sparse recovery operator on w ∈ R
n. We omit the

subscript P when it is clear from context.

Background on Compressive Sensing. In the compres-
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sive sensing framework, there is a sparse signal x ∈ R
n for

which we are given d� n linear measurements Px, where

P ∈ R
d×n is a known measurement matrix. The goal is

to recover x using the measurements Px, given the prior

knowledge that x is sparse. Seminal results in compres-

sive sensing (Donoho, 2006; Candes & Tao, 2006; Candes,

2008) show that if the original solution is k-sparse, then

it can be exactly recovered from d = O(k log n) measure-

ments by solving a linear program (LP) of the form (1).

More efficient recovery algorithms than the LP for solving

the problem are also known (Berinde et al., 2008b; Indyk

& Ruzic, 2008; Berinde & Indyk, 2009). However, these

algorithms typically require more measurements in the com-

pressed domain to achieve the same reconstruction accuracy

as the LP formulation (Berinde & Indyk, 2009).

Measurement Matrices. In this work, we consider sparse,

binary measurement (or projection) matrices P ∈ {0, 1}d×n

where each column of P has p non-zero entries chosen uni-

formly and independently at random. For our theoretical

results, we set p = O(log n). Although the first results on

compressive sensing only held for dense matrices (Donoho,

2006; Candes, 2008; Candes & Tao, 2006), subsequent work

has shown that sparse, binary matrices can also be used for

compressive sensing (Berinde et al., 2008a). In particular,

Theorem 3 of Berinde et al. (2008a) shows that the recov-

ery procedure in (1) succeeds with high probability for the

class of P we consider if the original signal is k-sparse and

d = Ω(k log n). In practice, sparse binary projection ma-

trices can arise due to physical limitations in sensor design

(e.g., where measurements are sparse and can only be per-

formed additively) or in applications of non-adaptive group

testing (Indyk et al., 2010).

Low-Rank Matrix Factorization. We assume that each

sample is an n-dimensional column vector in uncompressed

form. Hence, the uncompressed matrix M ∈ R
n×m has

m columns corresponding to m samples, and we assume

that it has some rank-r factorization: M = WH , where

W ∈ R
n×r, H ∈ R

r×m, and the columns of W are k-

sparse. We are given the compressed matrix M̃ = PM
corresponding to the d-dimensional projection Pv for each

sample v ∈ R
n. We then compute a low-rank factorization

using the following algorithm:

Algorithm 1 Compressed Matrix Factorization

Input: Compressed matrix M̃ = PM , projection matrix P
Algorithm: Outputs estimates (Ŵ , Ĥ) of (W,H)

Compute rank-r factorization of M̃ to obtain W̃ , H̃
Set Ĥ ← H̃
for 1 ≤ i ≤ r do

// Solve (1) to recover Ŵi from W̃i

Set Ŵi ← R(W̃i)
end

CP Tensor Decomposition. As above, we assume that

each sample is n-dimensional and k-sparse. The sam-

ples are now indexed by two coordinates y ∈ [m1] and

z ∈ [m2], and hence can be represented by a tensor

T ∈ R
n×m1×m2 . We assume that T has some rank-r fac-

torization T =
∑r

i=1
Ai ⊗ Bi ⊗ Ci, where the columns

of A are k-sparse. Here ⊗ denotes the outer product: if

a ∈ R
n, b ∈ R

m1 , c ∈ R
m2 then a ⊗ b ⊗ c ∈ R

n×m1×m2

and (a ⊗ b ⊗ b)ijk = aibjck. This model, CP decomposi-

tion, is the most commonly used model of tensor decompo-

sition. For a measurement matrix P ∈ R
d×n, we are given

a projected tensor T̃ ∈ R
d×m1×m2 corresponding to a d

dimensional projection Pv for each sample v. Algorithm 2

computes a low-rank factorization of T from T̃ .

Algorithm 2 Compressed CP Tensor Decomposition

Input: Compressed tensor T̃ , projection matrix P
Algorithm: Outputs estimates (Â, B̂, Ĉ) of (A,B,C)

Compute rank-r TD of T̃ : T̃ =
∑r

i=1
Ãi ⊗ B̃i ⊗ C̃i

Set B̂ ← B̃, Ĉ ← C̃
for 1 ≤ i ≤ r do

// Solve (1) to recover Âi from Ãi

Set Âi ← R(Ãi)
end

We now describe our formal results for matrix and tensor

factorization.

4 Theoretical Guarantees

In this section, we establish conditions under which

FACTORIZE-RECOVER will provably succeed for matrix

and tensor decomposition on compressed data.

4.1 Sparse Matrix Factorization

The main idea is to show that with high probability, M̃ =
(PW )H is the sparsest factorization of M̃ in the following

sense: for any other factorization M̃ = W ′H ′, W ′ has

strictly more non-zero entries than (PW ). It follows that

the factorization (PW )H is the optimal solution for a sparse

matrix factorization of M̃ that penalizes non-zero entries

of W̃ . To show this uniqueness property, we show that the

projection matrices satisfy certain structural conditions with

high probability, namely that they correspond to adjacency

matrices of bipartite expander graphs (Hoory et al., 2006),

which we define shortly. We first formally state our theorem:

Theorem 1. Consider a rank-r matrix M ∈ R
n×m which

has factorization M = WH, for H ∈ R
r×m and W ∈

R
n×r. Assume H has full row rank and W = B�Y , where

B ∈ {0, 1}n×r, Y ∈ R
n×r and � denotes the elementwise

product. Let each column of B have k non-zero entries

chosen uniformly and independently at random, and each

entry of Y be an independent random variable drawn from
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any continuous distribution.1 Assume k > C, where C
is a fixed constant. Consider the projection matrix P ∈
{0, 1}d×n where each column of P has p = O(log n) non-

zero entries chosen independently and uniformly at random.

Assume d = Ω((r+ k) log n). Let M̃ = PM . Note that M̃
has one possible factorization M̃ = W̃H where W̃ = PW .

For some fixed β > 0, with failure probability at most

(r/n)e−βk + (1/n5), M̃ = W̃H is the sparsest possible

factorization in terms of the left factors: for any other rank-r
factorization M̃ = W ′H ′, ‖W̃‖0 < ‖W ′‖0.

Theorem 1 shows that if the columns of W are k-sparse,

then projecting into Ω((r + k) log n) dimensions preserves

uniqueness, with failure probability at most (r/n)e−βk +
(1/n)5, for some constant β > 0. As real-world matrices

have been empirically observed to be typically close to low

rank, the (r/n) term is usually small for practical applica-

tions. Note that the requirement for the projection dimension

being at least Ω((r + k) log n) is close to optimal, as even

being able to uniquely recover a k-sparse n-dimensional

vector x from its projection Px requires the projection di-

mension to be at least Ω(k log n); we also cannot hope for

uniqueness for projections to dimensions below the rank r.

We also remark that the distributional assumptions on P and

W are quite mild, as any continuous distribution suffices for

the non-zero entries of W , and the condition on the set of

non-zero coordinates for P and W being chosen uniformly

and independently for each column can be replaced by a

deterministic condition that P and W are adjacency matri-

ces of bipartite expander graphs. We provide a proof sketch

below, with the full proof deferred to the Appendix.

Proof sketch. We first show a simple Lemma that for any

other factorization M̃ = W ′H ′, the column space of W ′

and W̃ must be the same (Lemma 5 in the Appendix). Using

this, for any other factorization M̃ = W ′H ′, the columns

of W ′ must lie in the column space of W̃ , and hence our

goal will be to prove that the columns of W̃ are the sparsest

vectors in the column space of W̃ , which implies that for

any other factorization M̃ = W ′H ′, ‖W̃‖0 < ‖W ′‖0.

The outline of the proof is as follows. It is helpful to think

of the matrix W̃ ∈ R
d×r as corresponding to the adjacency

matrix of an unweighted bipartite graph G with r nodes

on the left part U1 and d nodes on the right part U2, and

an edge from a node u ∈ U1 to a node v ∈ U2 if the

corresponding entry of W̃ is non-zero. For any subset S
of the columns of W̃ , define N(S) to be the subset of the

rows of W̃ which have a non-zero entry in at least one of

the columns in S. In the graph representation G, N(S) is

simply the neighborhood of a subset S of vertices in the left

part U1. In part (a) we argue that the if we take any subset

S of the columns of W̃ , |N(S)| will be large. This implies

1For example, a Gaussian distribution, or absolute value of
Gaussian in the NMF setting.

that taking a linear combination of all the S columns will

result in a vector with a large number of non-zero entries—

unless the non-zero entries cancel in many of the columns.

In part (b), by using the properties of the projection matrix

P and the fact that the non-zero entries of the original matrix

W are drawn from a continuous distribution, we show this

happens with zero probability.

The property of the projection matrix that is key to our proof

is that it is the adjacency matrix of a bipartite expander

graph, defined below.

Definition 1. Consider a bipartite graph R with n nodes

on the left part and d nodes on the right part such that every

node in the left part has degree p. We call R a (γn, α)
expander if every subset of at most t ≤ γn nodes in the left

part has at least αtp neighbors in the right part.

It is well-known that adjacency matrices of random bipartite

graphs have good expansion properties under suitable con-

ditions (Vadhan et al., 2012). For completeness, we show in

Lemma 6 in the Appendix that a randomly chosen matrix

P with p non-zero entries per column is the adjacency ma-

trix of a (γn, 4/5) expander for γn = d/(pe5) with failure

probability (1/n5), if p = O(log n). Note that part (a) is

a requirement on the graph G for the matrix W̃ being a

bipartite expander. In order to show that G is a bipartite

expander, we show that with high probability P is a bipartite

expander, and the matrix B corresponding to the non-zero

entries of W is also a bipartite expander. G is a cascade

of these bipartite expanders, and hence is also a bipartite

expander.

For part (b), we need to deal with the fact that the entries

of W̃ are no longer independent because the projection

step leads to each entry of W̃ being the sum of multiple

entries of W . However, the structure of P lets us control

the dependencies, as each entry of W appears at most p
times in W̃ . Note that for a linear combination of any

subset of S columns, |N(S)| rows have non-zero entries

in at least one of the S columns, and |N(S)| is large by

part (a). Since each entry of W appears at most p times

in W̃ , we can show that with high probability at most |S|p
out of the |N(S)| rows with non-zero entries are zeroed out

in any linear combination of the S columns. Therefore, if

|N(S)| − |S|p is large enough, then any linear combination

of S columns has a large number of non-zero entries and

is not sparse. This implies that the columns of W̃ are the

sparsest columns in its column space. �

A natural direction of future work is to relax some of the

assumptions of Theorem 1, such as requiring independence

between the entries of the B and Y matrices, and among

the entries of the matrices themselves. It would also be

interesting to show a similar uniqueness result under weaker,

deterministic conditions on the left factor matrix W and the

projection matrix P . Our result is a step in this direction
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