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Abstract—Neural models enjoy widespread use across a
variety of tasks and have grown to become crucial components
of many industrial systems. Despite their effectiveness and ex-
tensive popularity, they are not without their exploitable flaws.
Initially applied to computer vision systems, the generation of
adversarial examples is a process in which seemingly imper-
ceptible perturbations are made to an image, with the purpose
of inducing a deep learning based classifier to misclassify the
image. Due to recent trends in speech processing, this has
become a noticeable issue in speech recognition models. In late
2017, an attack was shown to be quite effective against the
Speech Commands classification model. Limited-vocabulary
speech classifiers, such as the Speech Commands model, are
used quite frequently in a variety of applications, particularly
in managing automated attendants in telephony contexts. As
such, adversarial examples produced by this attack could have
real-world consequences. While previous work in defending
against these adversarial examples has investigated using
audio preprocessing to reduce or distort adversarial noise,
this work explores the idea of flooding particular frequency
bands of an audio signal with random noise in order to detect
adversarial examples. This technique of flooding, which does
not require retraining or modifying the model, is inspired
by work done in computer vision and builds on the idea
that speech classifiers are relatively robust to natural noise. A
combined defense incorporating 5 different frequency bands
for flooding the signal with noise outperformed other existing
defenses in the audio space, detecting adversarial examples
with 91.8% precision and 93.5% recall.

Index Terms—adversarial example detection, speech recog-
nition, deep learning

I. INTRODUCTION

The growing use of deep learning models necessitates
that those models be accurate, robust, and secure. However,
these models are not without abusable defects. Initially
applied to computer vision systems [1], the generation
of adversarial examples (loosely depicted in Fig. 1) is
a process in which seemingly imperceptible changes are
made to an image, with the purpose of inducing a deep
learning based classifier to misclassify the image. The
effectiveness of such attacks is quite high, often resulting
in misclassification rates of above 90% in image classifiers
[2]. Due to the exploitative nature of these attacks, it can
be difficult to defend against adversarial examples while
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Fig. 1. A graphic depicting a targeted adversarial attack from “yes” (the
source) to “no” (the target). A malicious attacker can add a small amount
of adversarial perturbation to a signal such that it is classified by a model
as some target class while a human still primarily hears the source class.

maintaining general accuracy.
The generation of adversarial examples is not just lim-

ited to image recognition. Although speech recognition
traditionally relied heavily on hidden Markov models and
various signal processing techniques, the gradual growth
of computer hardware capabilities and available data has
enabled end-to-end neural models to become more popular
and even state of the art. As such, speech recognizers
that rely heavily on deep learning models are susceptible
to adversarial attacks. Recent work has been done on
the generation of targeted adversarial examples against a
convolutional neural network trained on the widely used
Speech Commands dataset [3] and against Mozilla’s im-
plementation of the DeepSpeech end-to-end model [4], in
both cases generating highly potent and effective adver-
sarial examples that were able to achieve up to a 100%
misclassification rate. Due to this trend, the reliability of
deep learning models for automatic speech recognition is
compromised; there is an urgent need for adequate defense
against adversarial examples.

II. RELATED WORK

The attack against Speech Commands described by
Alzantot et al. [3] is particularly relevant within the realm
of telephony, as it could be adapted to fool limited-
vocabulary speech classifiers used for automated attendants.
This attack produces adversarial examples using a gradient-
free genetic algorithm, allowing the attack to penetrate the
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non-differentiable layers of preprocessing typically used in
automatic speech recognition.

A. Audio Preprocessing Defenses

As adversarial examples are generated by adding adver-
sarial noise to a natural input, certain methods of prepro-
cessing can serve to remove or distort the adversarial noise
to mitigate the attack.

Recent work in computer vision has shown that some
preprocessing, such as JPEG and JPEG2000 image com-
pression [5] or cropping and resizing [6], can be employed
with a certain degree of success in defending against adver-
sarial attacks. In a similar vein, preprocessing defenses have
also been used for defending against adversarial attacks on
speech recognition. Yang et al. [7] were able to achieve
some success using local smoothing, down-sampling, and
quantization for disrupting adversarial examples produced
by the attack of Alzantot et al. While quantizing with
q = 256, Yang et al. were able to achieve their best
result of correctly recovering the original label of 63.8%
of the adversarial examples, with a low cost to general
model accuracy. As quantization causes the amplitudes of
sampled data to be rounded to the closest integer multiple
of q, adversarial perturbations with small amplitudes can
be disrupted.

Work has also been done in employing audio compres-
sion, band-pass filtering, audio panning, and speech coding
to detect the examples of Alzantot et al. Rajaratnam et
al. [8] explored using these forms of preprocessing as a
part of both isolated and ensemble methods for detecting
adversarial examples. The discussed isolated preprocessing
methods are quite simple; they merely check to see if the
prediction yielded by the model is changed by applying
preprocessing to the input. Despite this simplicity, Rajarat-
nam et al. achieved their best result of detecting adversarial
examples with 93.5% precision and 91.2% recall using a
“Learned Threshold Voting” (LTV) ensemble: a discrete
voting ensemble composed of all of the isolated preprocess-
ing methods that learns an optimal threshold for the number
of votes needed to declare an audio sample as adversarial.
They achieved a higher F1 score for detecting adversarial
examples using this voting ensemble when compared to
more sophisticated techniques for combining the methods
of preprocessing into an ensemble.

B. Pixel Deflection

While the aforementioned defenses focus on removing
or distorting adversarial noise, one could also defend
against an adversarial example by adding noise to the
signal. Neural-based classifiers are relatively robust to
natural noise, whereas adversarial examples are less so.
Prakash et al. [9] used this observation and proposed a
procedure for defending against adversarial images that
involves corrupting localized regions of the image through
the redistribution of pixel values. This procedure, which
they refer to as “pixel deflection,” was shown to be very

effective for retrieving the true class of an adversarial
attack. The strategy of defense proposed by Prakash et al.
is more sophisticated than merely corrupting images by
indiscriminately redistributing pixels; they target specific
pixels of the image to deflect and also perform a subsequent
wavelet-based denoising procedure for softening the cor-
ruption’s impact on benign inputs. Regardless of the many
aspects of the pixel deflection defense that seem to only
be directly applicable to defenses within computer vision,
the fundamental motivating idea behind this strategy—that
neural-based classifiers are robust to natural noise on benign
inputs relative to adversarial inputs—is an observation that
should also hold true for audio classification.

III. METHODS AND EVALUATION

Based off the observation of model robustness to natural
noise, it should generally take less noise to change the
model’s prediction class of an adversarial example than
it would to change that of a benign example. One could
detect adversarial examples by observing how much noise
needs to be added to the signal before the prediction that
the model yields changes. Additionally, adversarial noise
in audio is not localized to any particular frequency band,
whereas much of the information associated with human
speech is concentrated along the lower frequencies. As
such, flooding particular frequency bands with random
noise can be useful for detecting adversarial examples.

The aim of this research can be divided into two parts:
testing the effectiveness of simple noise flooding (i.e.
flooding the signal with randomly generated noise dis-
tributed along a particular band of frequency) for detecting
audio adversarial examples, and combining multiple simple
noise flooders that target different frequency bands together
into an ensemble defense. The adversarial examples are
produced using the gradient-free attack of Alzantot et al.,
against the same pre-trained Speech Commands model [3].

A. Speech Commands Dataset and Model

The Speech Commands dataset was first released in 2017
and contains 105,829 labeled utterances of 32 words from
2,618 speakers [10]. This audio is stored in the Waveform
Audio File Format (WAV) and was recorded with a sample
rate of 16 kHz. The Speech Commands model is a light-
weight model based on a keyword spotting convolutional
neural network (CNN) [11] that achieves a 90% classifi-
cation accuracy on this dataset. For the purposes of this
research, a subset1 of only 30,799 labeled utterances of
10 words are used, for consistency with previous work
regarding the adversarial examples of Alzantot et al. From
this subset, 20 adversarial examples are generated for each
nontrivial source-target word pair, for a total of 1,800
examples. Each example is generated by implementing

1The training and test datasets of adversarial and benign examples used
in this research are available at http://github.com/LincLabUCCS/Noise-
Flooding, along with the code used for implementing and testing the noise
flooding defense.



the attack with a maximum of 500 iterations through the
genetic algorithm. Of these 1,800 generated examples, 128
are classified correctly (i.e. with the original source class)
by the model. As such, only the remaining 1,672 examples
(that are successful in fooling the model on some level) are
used in this research.

B. Simple Noise Flooding

This method for detecting adversarial examples involves
calculating a score (that we term “flooding score”) from
an audio signal that represents how much random noise
needs to “flood” the signal in order to change the model’s
prediction class of the audio signal. By calculating the
flooding scores of the adversarial and benign examples in
the training dataset, an ideal threshold score of maximum
information gain can be found; test examples that have a
flooding score less than the threshold are declared adver-
sarial.

1) Flooding Score Calculation: Every audio signal can
be represented as an array of n audio samples along with a
sample rate. A straightforward method of noising an audio
signal with a noise limit ε is by generating an array of n
random integers between −ε and ε and adding this array
to the original array of n audio samples. The simple noise
flooding defense noises audio in a similar manner, except n
random integers are passed through a band-pass filter before
being added to the original array so that the added noise
will be concentrated along a particular frequency band. The
smallest ε found that induces a model prediction change
between the noised signal and the original audio signal
is used as a flooding score for determining whether the
original signal is an adversarial example. The procedure for
calculating the flooding score of an audio signal is detailed
in Algorithm 1.

Algorithm 1 Flooding Score Calculation Algorithm
1: Input: Audio signal x, model m, step size s, maximum

noise level εmax, frequency band b
2: Output: Noise Flooding Score ε
3: n← number of samples in x
4: predorig ← classification of x using m
5: pred← predorig
6: ε← 0
7: while pred = predorig and ε < εmax do
8: ε← ε+ s
9: noise ← n uniform random integers taken from

[−ε, ε]
10: apply band pass filter on noise using b
11: pred← classification of x+ noise using m
12: return ε

This procedure will make no more than dεmax/se calls to
the model when calculating the flooding score of an audio
signal. As such, there is an inherent trade-off that comes
with the choice of the step size parameter s; a large step size
would generally cause the algorithm to terminate quickly

with a less precise score, whereas a small step size would
result in a more precise score but at a higher computational
cost. In this research, a step size of 50 was used, though
in practice this parameter could be tuned to suit particular
scenarios. A similar trade-off is implicit with the choice of
the εmax parameter.

2) Frequency Bands for Testing: The simple noise flood-
ing procedure can be tested using various bands of fre-
quency for concentrating noise. Considering that the sample
rate of files within the Speech Commands dataset is 16
kHz, the Nyquist frequency [12] of this system is 8000 Hz.
Considering that the 0-8000 Hz frequency range can be
divided into 4 bands of equal width, we are left with the
following 5 variations of simple noise flooding for testing:

• Unfiltered Noise Flooding,
• 0-2000 Hz Noise Flooding,
• 2000-4000 Hz Noise Flooding,
• 4000-6000 Hz Noise Flooding, and
• 6000-8000 Hz Noise Flooding.
It is worth noting that for unfiltered noise flooding, the

noise array is not passed through any band pass filter. As
such, the frequency band parameter b (and, along with
it, line 10 of Algorithm 1) is unused for calculating an
unfiltered noise flooding score.

C. Ensemble Defense

While the above variations of the simple noise flooding
defense may be somewhat effective for detecting adversar-
ial examples in isolation, a more robust defense would be to
combine the variations into an ensemble. As flooding scores
calculated for each band may contain unique information
that could be valuable for detecting adversarial examples,
a defense that incorporates different varieties of flooding
scores should be more effective. The flooding scores can
be combined in a variety of configurations.

1) Majority Voting: A somewhat naive, yet direct, ap-
proach for combining the simple noise flooding variations
is to use a discrete voting ensemble: for every audio signal
passed, perform each of the 5 variations of simple noise
flooding and tally up the adversarial “votes” each of the
methods yield. If there are 3 or more (i.e. a majority)
adversarial votes, the signal is declared adversarial.

2) Learned Threshold Voting: This ensemble technique
is identical to the homonymous method described in [8]. Al-
though the majority voting technique requires 3 adversarial
votes (i.e. a majority) for an adversarial declaration, this
voting threshold is arbitrary. The learned threshold voting
technique assesses the performance of voting ensembles
using all possible voting thresholds on a training dataset,
and chooses the threshold that yielded the best performance.
For quantifying performance, F1 scores are used, though
one could adjust this F -measure to accommodate one’s
outlook on the relative importances of recall and precision.

3) Tree-Based Classification Algorithms: The previous
ensemble techniques do not discriminate between voters in
the ensemble; every vote is considered equal. Considering



that human speech information is not distributed evenly
among the frequency bands used in the noise flooding
ensemble (most human speech information would be dis-
tributed along the 0-2000 Hz band), it may be somewhat
callow to treat each member of the ensemble equally.

Decision tree-based classification algorithms generally
perform well in classifying vectors of features into discrete
classes. To avoid discarding information, one could cal-
culate the simple flooding score yielded by each member
of the ensemble and concatenate these scores into a 5-
dimensional flooding score vector and train a tree-based
classification algorithm to detect adversarial examples from
its flooding score vector. In this work, 3 tree-based classi-
fication algorithms will be used, due to their high perfor-
mance on a variety of discrete classification tasks:

• Adaptive Boosting (AdaBoost) [13],
• Random Forest Classification [14], and
• Extreme Gradient Boosting (XGBoost) [15].

D. Evaluation
All of the previously mentioned detection methods are

evaluated based off their precisions and recalls in detecting
adversarial examples from a test set of 856 adversarial
examples and 900 benign examples—the remaining 816 ad-
versarial examples and an additional 900 benign examples
are used to calculate flooding scores for training.

When applying defenses against adversarial examples, an
implied tradeoff between the general usability and security
of the model seems to arise. From a security standpoint, it
is extremely important to have a high recall in detecting
adversarial examples, whereas for the sake of general
usability, there should be a high precision when declaring
a potentially benign input as adversarial. This research
takes the stance that both general usability and security
are equally important. As such, F1 scores are used when
evaluating the defenses in order to equally balance precision
and recall.

IV. RESULTS

The precisions, recalls, and F1 scores are evaluated for
each of the simple noise flooding defenses in addition to
the two best isolated preprocessing defenses from [8] (i.e.
the two isolated defenses with the highest F1 scores) and
are shown in Table I. From the results, one can see that the

TABLE I
PERFORMANCE OF SIMPLE NOISE FLOODING DEFENSES

Detection Method Precision Recall F1

Score
Unfiltered Noise Flooding 89.8% 93.1% 0.914
0-2000 Hz Noise Flooding 88.3% 94.5% 0.913
2000-4000 Hz Noise Flooding 88.3% 92.5% 0.905
4000-6000 Hz Noise Flooding 86.3% 92.5% 0.893
6000-8000 Hz Noise Flooding 82.0% 91.5% 0.865
Isolated Speex Compressiona 93.7% 88.5% 0.910
Isolated Panning & Lengtheninga 95.8% 82.4% 0.886
aTaken from Rajaratnam et al.

Fig. 2. A heat map depicting recall values (as percentages) for detecting
audio adversarial examples using the noise flooding extreme gradient
boosting ensemble. The diagonal of zeroes correspond to trivial source-
target pairs for which there were no adversarial examples generated.

simple noise flooding defenses are all able to achieve higher
recalls than the isolated preprocessing detection methods
proposed by Rajaratnam et al. in [8].

Additionally, the simple noise flooding methods that
target lower frequency bands performed better than those
that targeted higher frequency bands. This frequency-based
disparity in performance follows reasonably from the fact
that human speech information is concentrated in the lower
frequencies. While the unfiltered noise flooding method
achieved the highest F1 score, the 0-2000 Hz Noise Flood-
ing defense achieved a higher recall in detecting adversarial
examples.

The results of the ensemble noise flooding defenses in
addition to the two best ensemble preprocessing defenses
from [8] are summarized in Table II. Most of the ensem-
ble techniques achieve higher F1 scores than any of the
individual simple flooding defenses. Understandably, the
somewhat naive noise flooding majority voting ensemble
yielded the lowest F1 score of all the ensemble techniques.
The noise flooding learned threshold voting ensemble

TABLE II
PERFORMANCE OF ENSEMBLE DEFENSES

Detection Method Precision Recall F1

Score
Noise Flooding Majority Voting 88.0% 93.6% 0.907
Noise Flooding LTVa 90.8% 92.2% 0.915
Noise Flooding Random Forest 90.9% 93.1% 0.920
Noise Flooding AdaBoost 90.3% 94.2% 0.922
Noise Flooding XGBoost 91.8% 93.5% 0.926
Preprocessing Majority Votingb 96.1% 88.1% 0.919
Preprocessing LTVa b 93.5% 91.2% 0.924
aLTV is short for the discrete Learned Threshold Voting ensemble.
bTaken from Rajaratnam et al.



improves from the majority voting ensemble by learning a
new voting threshold of 4 (as opposed to 3, which is used in
the majority voting ensemble). This higher threshold results
in a lower recall in detecting adversarial examples, but
results in a markedly higher precision in order to achieve
an overall higher F1 score.

As expected, the tree-based classification algorithms
were the most effective for combining the simple noise
flooding methods together, as they were able to learn an
optimal method for discriminating between the members
of the ensemble while the voting ensembles implicitly
treated each voter equally. The adaptive boosting ensemble
achieved a higher recall than any of the other ensemble
noise flooding defenses, whereas the extreme gradient
boosting ensemble achieved the highest F1 score of any
detection method. The recall measurements for detecting
adversarial examples using the noise flooding extreme
gradient boosting ensemble are detailed in Fig. 2.

V. CONCLUSION AND FUTURE WORK

Although the results suggest that an ensemble noise
flooding defense is effective in defending against adver-
sarial examples produced by the unmodified algorithm of
Alzantot et al., it does not necessarily show that this defense
is secure against more complex attacks. While an ensemble
defense may provide marginal security over the simple
noise flooding methods in isolation, recent work has shown
adaptive attacks on image classifiers are able to bypass en-
sembles of weak defenses [16]; this work could be applied
to attack speech recognition models. Future work can be
done to adapt noise flooding into a stronger defense that
can withstand these types of adaptive adversarial examples,
or at least cause the attacks to become more perceptible.

Additionally, this paper only discusses flooding signals
with random noise that is effectively sampled from a
uniform distribution. Future work can be done in exploring
other techniques for producing the noise, perhaps by sam-
pling from a more sophisticated probability distribution or
deflecting individual samples.

While the noise flooding techniques were able to yield
high recalls and overall F1 scores for detecting adversarial
examples, many of the preprocessing-based defenses de-
scribed in [8] yielded higher precisions. This suggests that a
defense that combines aspects of those defenses with noise
flooding may be quite effective in detecting adversarial
examples.

Prakash et al. [9] softened the effect that their pixel
deflection defense had on benign inputs by applying a
denoising technique after locally corrupting the images.
Perhaps a denoising technique could be applied after noise
flooding to produce a more sophisticated defense that would
yield a higher precision.

Future work could also be done in adapting noise flood-
ing into a defense that can restore the original label of ad-
versarial examples, rather than simply detecting adversarial
examples.

This paper proposed the idea of noise flooding for
defending against audio adversarial examples and showed
that fairly simple flooding defenses are quite effective in
detecting the single-word targeted adversarial examples of
Alzantot et al. This paper also showed that simple noise
flooding defenses can be effectively combined together into
an ensemble for a stronger defense. While these defenses
may not be extremely secure against more adaptive attacks,
this research aimed ultimately to further discussion of
defenses against adversarial examples within the audio
domain: a field in desperate need of more literature.
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