
Information Sciences 477 (2019) 448–465

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Convolutional neural network learning for generic data

classification

Huimei Han

a , b , ∗, Ying Li a , ∗, Xingquan Zhu

b

a School of Telecommunications Engineering, Xidian University, Xi’an, Shannxi 710071, China
b Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA

a r t i c l e i n f o

Article history:

Received 11 June 2018

Revised 17 October 2018

Accepted 28 October 2018

Available online 30 October 2018

Keywords:

Deep learning

Feature learning

Convolutonal neural networks

Classification

a b s t r a c t

Convolutional Neural Network (CNN) uses convolutional layers to explore spatial/temporal

adjacency to construct new feature representations. So, CNN is commonly used for data

with strong temporal/spatial correlations, but cannot be directly applied to generic learn-

ing tasks. In this paper, we propose to enable CNN for learning from generic data to im-

prove classification accuracy. To take the full advantage of CNN’s feature learning power,

we propose to convert each instance of the original dataset into a synthetic matrix/image

format. To maximize the correlation in the constructed matrix/image, we use 0/1 opti-

mization to reorder features and ensure that the ones with strong correlations are adja-

cent to each other. By using a feature reordering matrix, we are able to create a synthetic

image to represent each instance. Because the constructed synthetic image preserves the

original feature values and correlation, CNN can be applied to learn effective f eatures for

classification. Experiments and comparisons, on 22 benchmark datasets, demonstrate clear

performance gain of applying CNN to generic datasets, compared to conventional machine

learning methods. Furthermore, our method consistently outperforms approaches which

directly apply CNN to generic datasets in naive ways. This research allows deep learning

to be broadly applied to generic datasets.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Deep learning represents a series of multi-layered neural network structures with tuneable weight values learned from

underlying training data [29,39] . Due to its superb accuracy and feature learning capability, deep learning has been success-

fully used in many real-world applications, especially in domains involving image/video/audio recognition or time series and

financial data analysis [16] . For all these domains, the temporal and/or spatial correlation of the data allow deep learning

methods to learn effective features to represent data for better classification. Deep learning models, such as convolution

neural networks (CNN) and long-short term memory units (LSTM), commonly utilize data correlation to learn better feature

representation [14,21,31,43,44] . Take CNN as an example, when applying CNN to an image, the convolution procedure is

equivalent to a spatial filtering process learning meaningful features, such as corners or edges, for image recognition [9,25] .

Similarly, one dimensional CNN has also been used to data with temporal correlations, such as stock index [8,12] , with

convolution being applied to learn meaningful patterns in the data.
∗ Corresponding author.

E-mail addresses: hanh@fau.edu (H. Han), yli@mail.xidian.edu.cn (Y. Li), xzhu3@fau.edu (X. Zhu).

https://doi.org/10.1016/j.ins.2018.10.053

0020-0255/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2018.10.053
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.10.053&domain=pdf
mailto:hanh@fau.edu
mailto:yli@mail.xidian.edu.cn
mailto:xzhu3@fau.edu
https://doi.org/10.1016/j.ins.2018.10.053

H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465 449

Fig. 1. The typical routines of applying convolutional neural networks to image or data with temporal correlations for classification.

Fig. 2. The typical routine of machine learning for generic data classification, where input data are assumed to be identical and independently distributed

(i.i.d), and are represented in instance-feature tabular format.

Indeed, deep learning differs from conventional machine learning in the sense that it can learn good feature represen-

tation from the data. Existing deep learning methods largely benefit from this feature learning power to find meaningful

features capturing temporal/spatial correlations, as shown in Fig. 1 .

In reality, traditional machine learning and data classification consider a much different setting where instances are as-

sumed to be independent and identically (i.i.d.) distributed and features used to represent data are assumed to have weak

or no correlation. Because of this assumption, conventional machine learning methods do not consider feature/data corre-

lation in the learning process. Nearly all traditional machine learning methods, including multi-layer neural networks and

randomized learning methods, such as stochastic configuration networks (SCNs) [47] , do not explicitly consider feature in-

teractions for learning, mainly because they refer feature correlations to be handled by a data processing process which

creates independent features before applying machine learning methods. For example, feature extraction, such as principle

component analysis or manifold learning [32,37] , are common approaches to learn a low dimensional feature representa-

tion of the original data. The new orthogonal feature space often produces a better fit for conventional machine learning

algorithms to learn accurate classifiers, compared to the ones learned from the original feature space. However, such feature

extraction process does not consider temporal or spatial correlation of the data, but reply on arithmetic decomposition of

features for learning, as shown in Fig. 2 .

The effectiveness of deep learning methods and the popularity of generic learning tasks raise simple questions on

whether deep learning is still effective for generic data, and how to apply deep learning to generic data for effective learning

and classification. For generic machine learning tasks, data provided for learning are in an instance-feature tabular format,

as shown in Fig. 2 . Applying deep learning, such as CNN to such data is feasible, but would’t be reasonable. For example,

one can consider each instance as a one dimensional vector, and carry out 1-D CNN to the instance to learn a new feature

representation. This simple approach, however, leaves many concerns on what is rationality of applying CNN to the generic

data, what exactly the CNN is learning from the data, what is local field for convolutional feature learning process, and

what are the meaning of features learned from such 1-D CNN. More fundamentally, enabling deep learning to generic data

classification has the following three major challenges:

• Higher order feature correlation and ordering: Given a generic dataset represented in instance-feature format, features

in the data have mutual or higher order correlations. Some features are strongly correlated whereas others are indepen-

dent of each other. Finding correlations between features and use such correlations to create a new representation of the

instance is a critical step allowing deep learning to leverage correlation to learn effective features.

• Deep learning compatible instance representation: Assume features are suitably ordered, we need a new instance

representation to ensure that feature values of the original data are accurately preserved, and the feature correlations

are also maximally presented for deep learning modules to learn effective features for classification.

450 H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465

Fig. 3. The routine of the proposed EDLT framework which enables convolutional neural networks for generic data classification. EDLT takes data repre-

sented in instance-feature tabular format as input, and transforms each instance into a new format suitable for CNN to learn new features for learning and

classification.

• Theoretical modeling: To ensure maximized global correlation for CNN to learn good feature representations, we need

to find a theoretical basis for feature reordering. So each instance in the original dataset is represented by the new

representation with carefully aligned local and global feature correlations for deep learning.

Motivated by the above challenges, in this paper, we study enabling deep learning for generic classification tasks. A typ-

ical routine of the proposed EDLT framework is shown in Fig. 3 , where the learning is not limited to audio/visual data, like

most deep learning methods have been commonly applied to. The contributions of this paper are summarized as follows.

• In order to tackle the first challenge (higher order feature correlation and ordering), we propose to use feature correlation

to determine a new ordering of original features for deep learning. More specifically, we utilize Pearson correlation to

obtain a feature-feature correlation matrix and a feature-label correlation vector. Based on the correlation matrix and

correlation vector, we can reorder features to create local spatial feature correlation.

• To tackle the second challenge (deep learning compatible instance representation), we create a synthetic matrix, where

features with the strongest correlation are adjacent to others, to represent each instance for deep learning. Meanwhile,

in order to preserve feature values of the original data, the synthetic matrix contains all of the original features and their

values (but in different orders). As a result, the deep learning methods can be applied to the synthetic matrix to learn

meaningful features for classification.

• For the third challenge (the theoretical modeling), we propose to use 0/1 optimization to ensure that instance represen-

tation is created to not only maximize local correlation, but also have a maximal global correlation.

The remainder of the paper is organized as follows. Section 2 reviews existing work on data representation. Section 3 in-

troduces the problem definition and overview of the proposed framework. The details of the EDLT algorithm are elaborated

in Section 4 . Section 5 analyzes the computational complexity of the EDLT algorithm. The experiments and conclusion are

reported in Section 6 and Section 7 , respectively.

2. Related work

One major step of machine learning tasks is to find good features to represent the underlying object for learning ac-

curate models. A large number of feature processing methods have been proposed to deal with the data representation

problem. We categorize these approaches into the following two categories: Data representation based on feature selection

and extraction, and data representation based on deep learning.

2.1. Data representation based on feature selection and extraction

Feature selection and extraction aim to transform data from the original feature space into a low dimensional subspace.

This process may require domain expertise information, such as class labels. Feature selection and extraction results are

commonly used to support conventional machine learning methods for a better classification accuracy, compared to classi-

fiers learned from the original feature space.

2.1.1. Feature selection

Feature selection methods select a subset of features from the original features to represent the data. Because the se-

lected features are a subset of the original features, the new data representation does not contain new features. Feature

selection can be categorized into three categories: filter methods, wrapper methods, and embedded methods. The compari-

son of different selection algorithms are given in [26] . In summary, filter methods select highly ranked features to represent

the original data, and wrapped methods warp predictors to a search algorithm to find features with the highest accuracy

[23] . Embedded methods [5,17,27] incorporate the feature selection into the training process to decrease the computation

time consumed in wrapper methods.

2.1.2. Feature extraction

Feature extraction methods are common approaches used to learn a low dimensional new feature representation of the

original data, such that the new feature space produces a better fit to conventional machine learning methods. Depending

H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465 451

on the availability of label information, feature extraction methods can be roughly categorized into three categorizes: su-

pervised methods, unsupervised methods, and semi-supervised methods. Fisher Discriminant Analysis (FDA), a supervised

feature extraction method, extracts discriminant features to represent original data by utilizing the label information [40] .

PCA [37] , a well-known unsupervised method, transforms features into new orthogonal feature space by utilizing covari-

ance structure of data without label information. Independent Component Analysis (ICA), another well-known unsupervised

method, extracts features by minimizing the statistical dependence of the components of the desired representation [28] .

Semi-supervised feature extraction methods employ both labeled and unlabeled data to extract features, where the su-

pervised information includes labels or constraints [18] . Semi-supervised universum, a semi-supervised feature extraction

method, utilizes the labeled data, unlabeled data and the universum data to address semi-supervised classification problem

with high accuracy [48] . For applications such as transfer learning cross-domain learning, feature extractions are also used

to link data from different domains for learning [49] .

2.2. Deep learning for feature representation learning

Deep learning, such as CNN and LSTM, is a series of multi-layered neural network structures relying on spatial/temporal

correlation to learn new feature representation without domain expertise.

CNNs are designed to learn effective features from the original data represented in multiple arrays form, such as 1-D

sequences or 2-D images. CNN has been successfully used in image/video/audio/speech processing by utilizing the char-

acteristics of local connections, shared weights, pooling and multi-layers [30] . Recurrent neural networks (RNNs), another

commonly used deep learning model, is often utilized to deal with sequential data by learning long-term dependencies,

such as speech and language. A previous research [4] has shown that RNNs cannot store the information for a long period

of time, accordingly, LSTM is proposed to address this problem by utilizing the memory cell [20] , which is proved to be

more effective than RNNs [15] .

2.3. Differentiation from the proposed work

In summary, the above two types of data representation methods are used for different data format. More specifically,

data representation based on feature selection and extraction are usually utilized for generic data represented in instance-

feature format, where instances are assumed to be independent and identically (i.i.d.) distributed and features used to rep-

resent data are assumed to have weak or no correlation. Nearly all traditional machine learning methods employ the feature

selection and extraction to represent the data. Data representation based on deep learning are generally used for data with

temporal and/or spatial correlation.

Generally, data representation based on deep learning is more effective than feature selection and extraction methods.

On one hand, feature selection and feature extraction are insufficient for dealing with the case that all features are of same

significance. On the other hand, existing research [3] shows that data representation based on deep learning achieves better

performance than data representation based on feature selection and extraction. Data representation based on deep learning

can learn meaningful features to represent initial data to achieve superb accuracy performance. However, this kind of data

representation does not work for generic data where features may have weak or no correlation.

In order to address the above issues, our work proposes a new representation of generic data, such that CNN can also be

applied to generic datasets to achieve better accuracy for classification. To the best of our knowledge, there is no existing

work available for enabling deep learning for generic data classification. In this paper, we limit our experiments to CNN

only, but the principle of the underlying data transformation and the overall EDLT framework are valid for other types of

deep learning methods.

3. Problem definition and overview framework

3.1. Problem definition

Given a generic dataset D , which contains n instances and m features represented in tabular format, we represent the t th

instance as x t = { x t, 1 , ..., x t,m

; y t } , where x t, i and y t denote the i th feature and label of the instance x t , respectively. The aim

of EDLT is to find a new representation of instance x t , denoted by F (x t) , such that deep learning methods can be directly

applied to F(x t) to learn features and train a better classifier, compared to the ones trained from the original feature space.

When carrying out conventional machine learning from generic data for classification, two types of learning ap-

proaches are commonly used: deterministic-heuristic based learning approaches, and randomization based learning ap-

proaches [35,38,47] . The former uses deterministic heuristics to search for best parameters describing the underlying train-

ing data. Methods such as k -NN, support vector machines (SVM), decision trees (DT), and multi-layer feed-forward neural

networks (NN), all fall into this category. Alternative, randomization based learning approaches, such as stochastic configu-

ration networks (SCNs) [47] , use randomized weight values to create a random projection of the original data, followed by

a mathematical optimization approaches to separate randomly projected data. While SCNs and multi-layer neural networks

share resemblance in networked neurons and tunable weight values as learning model structures, the randomized learning

452 H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465

Fig. 4. A conceptual view of the proposed EDLT framework for enabling CNN for generic data classification. Given a generic dataset represented in instance-

feature tabular format in 1 ©, EDLT first calculates a feature-feature correlation matrix and a feature-label correlation vector 2 ©. After that, EDLT constructs

a feature reordering matrix 3 © and converts each instance into a synthetic matrix 4 © which is fed into deep learning module, such as CNN, for learning

features for classification.

mechanism of SCNs have the characteristics of simplicity in implementation, fast learning and sound performance, which

makes them attractive to the tasks than the deterministic-heuristic based learning approaches [38] .

In this paper, we use CNN as the deep learning methods, and will compare CNN with both deterministic-heuristic based

learning and randomization based learning methods for generic data classification. Our goal is to validate whether CNN

based deep learning can deliver a more accurate classifier for generic datasets, compared to deterministic-heuristic based

learning and randomization based learning algorithms.

3.2. Overall framework of EDLT

To enable deep learning for generic dataset classification, we propose an EDLT method to convert each instance x t in the

original tabular instance-feature format to a synthetic matrix where features with strong correlations are adjacent to each

other to create “artificial correlation” in the data. The rationale behind our motivation is that deep learning mainly leverages

temporal and/or spatial correlation of the data to learn effective f eatures for classification, if we can create a synthetic matrix

as a “synthetic image” where rows and columns have strong correlations, deep learning module, such as CNN model, will

utilize such correlations to learn effective features for classification.

Fig. 4 shows the overall framework of the proposed EDLT method which includes three major steps:

• Building feature-feature correlation matrix and feature-label correlation vector: In order to explore feature correla-

tions, we use Pearson correlation to build a pairwise feature-feature correlation matrix M . In addition, we also create a

feature-label correlation vector L , using Pearson correlation, to evaluate the relevance of each feature to the class label.

• Constructing a feature reordering matrix: In order to obtain deep learning compatible instance representation and

preserve original feature values of each instance, we construct a feature reordering matrix O ∈ R

m ×m by utilizing M
and L , where R denotes spaces of real-valued numbers.

• Generating new presentation of instances: By using feature reordering matrix O , EDLT reorders original feature values

of instance x t and converts instance x t into a synthetic matrix format F (x t) .

After converting each instance of the original dataset into a synthetic matrix, where feature values in adjacent rows and

adjacent columns share spatial correlation resembling to the spatial adjacent areas in an image, EDLT applies deep learning

methods to the matrix representation of each instance x t to learn new features for classification.

The main procedures of the proposed EDLT algorithm are detailed in Algorithm 1 which includes the three major steps

from building feature correlations matrix/vector, constructing feature reordering matrix, and converting instance into the

new matrix representation for deep learning.

4. EDLT: Enabling deep learning for generic classification tasks

In this section, we first discuss technical details about feature-feature correlation matrix M , feature-label correlation

vector L , and feature reordering matrix O construction. At the end of the section, we will use an example to demonstrate

the conversion of an instance in the original dataset into synthetic matrix format, by utilizing the proposed EDLT method.

H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465 453

Algorithm 1 EDLT: Enabling deep learning for generic classification tasks.

Input:

D : A generic dataset;

k × k : The size of convolution filter;

Output:

The synthetic matrix format of the original dataset F (D) ;
1: M ← Feature-feature correlation matrix using (1);

2: L ← Feature-label correlation vector;

3: Constructing feature reordering matrix O :

1. O = ∅ ;
2. V ← Sorting features in a descending order according to their correlation to class label L ;

3. O 1 ,l = V l , l = 1 , 2 , . . . , m : Determine the first row in O ;

4. for each i ∈ [1 , 2 , · · · , (m − k + 1)] do

(a) for each j ∈ [1 , 2 , · · · , (m − k + 1)] do

i. I
j
i

← Find the set of known feature indexes in � j
i
;

ii. α j
i
(α0

i
= ∅) ← Find the set of coordinates of unknown elements in � j

i
;

iii. M

j
i

← Set the s th row and column in M to 0 { s ∈ [O α1
i
, . . . , O

α j−1
i

] & s / ∈ I
j
i
} ;

iv. u = [u 1 , . . . , u m

] ← Apply M

j
i

and I
j
i

to obtain the elements in � j
i

using (11).

v. U = ∅ ;
vi. for each u r ∈ u do

U = U ∪ r (u r = 1& r / ∈ I
j
i
);

vii. end

viii. O

α j
i

= U ;

(b) end

5. end

4: for all x t ∈ D do

5: F (x t) ← Algorithm 2 (x t , O)

6: end for

7: return F (D)

4.1. Feature-feature correlation matrix M and feature-label correlation vector L

To handle high-order feature correlation, EDLT first constructs a feature-feature correlation matrix M ∈ R

m ×m and a

feature-label vector L ∈ R

1 ×m . The feature correlation matrix and feature-label correlation vector will serve as a basis for

EDLT to build a feature reordering matrix and ensure that for any adjacent area of the new constructed matrix the correla-

tion of the reordered feature values is maximized.

To capture pair-wise correlation between features, we utilize Pearson correlation coefficient, a common metric used to

measure the correlation between two random variables [19] , to compute the matrix M and vector L as follows.

M i, j =

N ∑

c=1

(x c,i − f̄ i)(x c, j − f̄ j) √

N ∑

c=1

(x c,i − f̄ i)
2

√

N ∑

c=1

(x c, j − f̄ j)
2

, (1)

where f̄ i and f̄ j are the sample means of feature i and j respectively, which can be written as

f̄ i =

N ∑

c=1

x c,i , f̄ j =

N ∑

c=1

x c, j . (2)

Similarity, we can use Pearson correlation or other measures, such as Chi-Square or Information Gain, to calculate corre-

lation between each feature and the class label as a correlation vector L .

L 1 ,i =

N ∑

c=1

(x c,i − f̄ i)(y c − ȳ)

√

N ∑

c=1

(x c,i − f̄ i)
2

√

N ∑

c=1

(y c − ȳ)
2

, (3)

454 H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465

Fig. 5. A conceptual view of the feature reordering matrix O for EDLT. The left panel shows the m × m feature reordering matrix O (where m denotes the

number of features of the original dataset), and the right panel shows an adjacent area covering a k × k area of O . Each row of the matrix O contains

m − k + 1 such k × k adjacent areas. EDLT aims to not only maximize the feature correlations in each adjacent area (i.e. features used in the adjacent areas

have the maximum correlation), but also maximizes the sum of correlations of all feature pairs used in O .

where ȳ is the sample mean of label, which can be computed as

ȳ =

N ∑

c=1

y c . (4)

The absolute values in M and L range from 0 to 1. The larger the value, the stronger the correlation is. Because we only

focus on the magnitude of the correlation, we use absolute values of M and L throughout the paper.

4.2. Feature reordering matrix O construction

Given the feature-feature correlation matrix M and the feature-label correlation vector L , we construct a feature re-

ordering matrix O to create areas with strongly correlated adjacent features for deep learning methods.

Each element in the feature reordering matrix O denotes index of feature used to convert each instance from its initial

tabular feature format into a synthetic matrix, according to Algorithm 2 . Because deep learning methods, such as CNN, aim

Algorithm 2 Generating synthetic matrix F (x t) for instance x t .

Input:

O : The feature reordering matrix;

x t : The t th instance in the original dataset;

Output:

The synthetic image format F (x t) ;
1: i = 1 , j = 1 ;

2: while i � = m do

3: while j � = m do

4: F(x t) i, j = x t, O i, j

5: i = i + 1

6: end while

7: j = j + 1

8: end while

to explore spatial/tempral correlation within small areas, we can create reordering matrix O such that each adjacent area

of O will have maximized feature value correlations. Therefore, we define the area in synthetic matrix F (x t) that will

be multiplied by the entries of the convolution filter as an adjacent area. Based on Algorithm 2 , the adjacent area in F (x t)
corresponds to the same area in O . In other words, each adjacent area F (x t) is determined by the feature reordering matrix

O .

Considering a k × k convolution filter and setting the convolution stride to 1, as shown in Fig. 5 , each row of the matrix

O contains m − k + 1 adjacent areas, and the total number of adjacent areas in matrix O is (m − k + 1) 2 . We use � j
i

to

denote the j th adjacent area in the i th row of O , which is shown in Fig. 5 . Our aim is to maximize the sum of the features

correlation in each adjacent area, which can be formulated as

arg max
O

m −k +1 ∑

i =1

m −k +1 ∑

j=1

C(� j
i
) , (5)

H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465 455

where C(� j
i
) is the sum of features correlation in adjacent area � j

i
, can be written as

C(� j
i
) =

j+ k −1 ∑

s = j

i + k −1 ∑

t= i

j+ k −1 ∑

r= j

i + k −1 ∑

q = i
M O s,t , O r,q . (6)

(6) can be represented by the matrix format as follows

C(� j
i
) = (u

i j) T M u

i j .

s . t . u

i j
r = d r , r ∈ I j

i
, u

i j
r ∈ { 0 , 1 , . . . , k 2 } . (7)

where (·) T stands for the transposition, u

i j = [u
i j
1
, . . . , u

i j
m

] is an m -dimensional column vector, I
j
i

denotes the set of known

feature indexes in the adjacent area � j
i

when starting to compute the elements in � j
i
, and d r is the number of times

a feature index r appearing in the set � j
i
. Because each adjacent area of a k × k convolution filter covers k 2 number of

features, a feature can appear zero time to up to k 2 times in the adjacent area. As a result, the range of the d r value varies

from 0 to k 2 .

Substituting (7) into (5) , we have

arg max
[u 11 ,u 12 , ... ,u (m −k+1)(m −k+1)]

m −k +1 ∑

i =1

m −k +1 ∑

j=1

(u

i j) T M u

i j

s . t . u

i j
r = d r , r ∈ I j

i
, u

i j
r ∈ { 0 , 1 , . . . , k 2 } .

(8)

Finding feature reordering matrix O satisfying (8) is equal to finding feature indexes in each � j
i

such that

arg max
u

u

T M u

s . t . u r = d r , r ∈ I j
i
, u r ∈ { 0 , 1 , . . . , k 2 } .

(9)

For simplify, we omit the superscript of u in (9) . The optimal solutions of feature-selection problem in (9) can only be

solved through brute-force search, which is computationally expensive and difficult to implement, especially for datasets

with high dimensional features. Accordingly, we propose to reduce the computational complexity of solving (9) by deter-

mining the first row in feature reordering matrix O and adding the constraints on

∑

u r and M . The detail procedures are

described as follows.

To reduce the computational complexity and maximize the local and global feature correlations, we propose to determine

the first row in O by utilizing the feature-label correlation vector L , such that the O is a label-targeting feature reordering

matrix. Specifically, we first order the values in L in descending order to obtain a vector L

′
. It is easy to obtain the feature

indexes order V corresponding to L

′
. The feature ordering in the first row of O is V = [V 1 , V 2 , . . . , V m

] as shown in Fig. 5 ,

i.e. , O 1 , j = V j (1 ≤ j ≤ m) . By doing so, only a part of elements in � j
1
(1 ≤ j ≤ (m − k + 1)) is required to be solved, such that

the computation complexity is reduced.

Meanwhile, in order to ensure that all feature values are kept in the new instance representation, so the information in

the original instance is maximally preserved, we make each row of the matrix O contain indexes of all features by adding

the constraint on

∑

u r and M , which is detailed at the end of this section. As a result, the original feature-selection problem

in (9) is transformed into a 0/1 integer programming problem as follows.

arg max
u

u

T M

j

i
u

s . t .
∑

r, u r ∈ u
u r = | I j

i
| + | α j

i
| , u r ∈ { 0 , 1 };

O 1 ,l = V l , l = 1 , 2 , . . . , m ;

u r = 1 (r ∈ I j
i
) ,

(10)

where α j
i

is the set of coordinates of unknown elements in � j
i
, | · | denotes the cardinality of a set, and M

j
i

is the modified

feature correlation matrix which is derived by setting the s th row and column in M to 0 (s ∈ [O α1
i
, . . . , O

α j−1
i

] & s / ∈ I
j
i

).

(10) is a standard 0/1 optimization problem. SDP [13] , gives an approximate solution to solve this kind of maximization

problem. Following SDP problem formulation defined in (10) , one can employ publicly available Matlab open source pack-

ages to solve (10) . In our experiments, we use branch-and-bound algorithm (B&B) [41] , which is based on a simple spatial

branch-and-bound strategy, to find solutions for (10) . The solution u r = 1 (r / ∈ I
j
i
) denotes that index r is one of the | α j

i
|

unknown elements in � j
i
, which is shown in Algorithm 1 . By utilizing (10) , we derive each adjacent area in O from top to

bottom, left to right, i.e. , we first compute the feature indexes in �1 , then �2 and so on.

1 1

456 H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465

Table 1

A toy dataset with six instances, five features, and a binary

class label.

Instances f 1 f 2 f 3 f 4 f 5 Label

x 1 0.2 0.3 0.6 0.4 0.1 1

x 2 0.4 0.72 0.3 0.2 0.7 1

x 3 0.13 0.55 0.3 0.1 0.33 0

x 4 0.22 0.42 0.14 0.44 0.11 1

x 5 0.34 0.51 0.48 0.35 0.52 0

x 6 0.28 0.37 0.59 0.27 0.47 0

Fig. 6. Example: The process of constructing feature reordering matrix O . The lower panel shows the feature-feature correlation matrix M . The second

panel, from left to right, shows the feature reordering matrix O , a 5 × 5 matrix, which is initially set as an empty matrix. To reduce the computational

complexity, the first row of O is first set by using feature feature-label correlation vector. The remaining adjacent areas, each showing as a 2 × 2 shaded

area, are constructed sequentially to ensure that feature correlation within each adjacent area is maximized.

Now we explain why the constraints on

∑

u r = | I j
i
| + | α j

i
| and M

j
i

can jointly ensure that each row of O contains the

indexes of all features, i.e. , the feature indexes in O

α j
i

are not only different from each other but also different from the

feature indexes in [O α1
i
, . . . , O

α j−1
i

] . We divide the elements in [O α1
i
, . . . , O

α j−1
i

] into two mutual exclusive subsets, de-

noted by E 1 and E 2 . Specifically, E 1 contains the element d (d ∈ [O α1
i
, . . . , O

α j−1
i

] & d ∈ I
j
i

), and E 2 contains the element

s (s ∈ [O α1
i
, . . . , O

α j−1
i

] & s / ∈ I
j
i

). One constraint M

j
i
, which is obtained by setting the s th row and column in M to 0

(s ∈ E 2), ensures that the feature indexes in O

α j
i

are different from the feature indexes in E 2 . The other constraint, i.e. ,

∑

u r = | I j
i
| + | α j

i
| , ensures that the feature indexes in O

α j
i

are not only different from each other but also different from

the feature indexes in I
j
i

. Due to the fact that E 1 ⊆ I
j
i
,

∑

u r = | I j
i
| + | α j

i
| exactly ensures that the feature indexes in O

α j
i

are

different from the feature indexes in E 1 . As a result, the constraints on

∑

u r = | I j
i
| + | α j

i
| and M

j
i

can jointly ensure that the

feature indexes in O

α j
i

are not only different from each other but also different from the feature indexes in [O α1
i
, . . . , O

α j−1
i

] .

4.3. Example: synthetic matrix generation

In this subsection, we use an example to demonstrate the transformation of a generic dataset into synthetic matrix

format for deep learning. Table 1 lists a toy dataset with 6 instances, 5 features, and a binary class label.

4.3.1. Feature-feature correlation matrix M and feature-label correlation vector L

EDLT first creates feature-feature correlation matrix M , as shown in Fig. 6 , and feature-label correlation vector L =
[0 . 1298 , 0 . 0122 , 0 . 3267 , 0 . 4542 , 0 . 3144] .

H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465 457

Table 2

The converted synthetic matrix for

instance x 1 : F (x 1) .

0.4 0.6 0.1 0.2 0.3

0.3 0.11 0.4 0.6 0.2

0.2 0.4 0.3 0.1 0.6

0.3 0.1 0.6 0.4 0.2

0.2 0.4 0.3 0.1 0.6

4.3.2. The feature reordering matrix construction and synthetic matrix generation

EDLT first orders the values in L in a descending order to obtain a vector L

′ = [0 . 4542 , 0 . 3267 , 0 . 3144 , 0 . 1298 , 0 . 0122] .

Then, it is easy to obtain the feature indexes order vector V = [4 , 3 , 5 , 1 , 2] corresponding to L

′
. The feature ordering in the

first row of O is V = [4 , 3 , 5 , 1 , 2] , as shown in Fig. 6 .

Assume that the size of the convolution filter is 2 × 2, there are 16 adjacent areas of 2 × 2 in O . Then, EDLT derives each

adjacent area in O from top to bottom, left to right. In other words, EDLT derives feature indexes in �1
1 , �

2
1 , �

3
1
, �4

1 , �
1
2 ,

..., �4
4

in turn. Fig. 6 shows the details of obtaining feature indexes in �1
1

and �2
1
, and the elements in other adjacent areas

can be derived in the same way.

For �1
1 , the known feature indexes in �1

1 is I 1
1

= [4 , 3] , and the set of coordinates of unknown elements in �1
1 is α1

1
=

[(2 , 1) , (2 , 2)] . Because there is no s satisfying s ∈ (α0
i

= ∅)& s / ∈ (I 1
1

= [4 , 3]) , we have M

1
1 = M . Substituting I 1

1
, M

1
1 , and

α1
1

into (10) , EDLT derives the solution u = [4 , 3 , 2 , 5] . Because I 1
1

is [4,3], the feature reordering O α1
1

= [2 , 5] , i.e. , O 2 , 1 = 2

and O 2 , 2 = 5 .

For �2
1
, the known feature indexes in �2

1
is I 2

1
= [3 , 5] , and the set of coordinates of unknown elements in �2

1
is α2

1
=

[(2 , 3)] . Because s = 2 satisfies s ∈ (O α1
1

= [2 , 5]) & s / ∈ (I 1
1

= [3 , 5]), M

2
1 is obtained by setting the 2th row and column of

M to 0 as in Fig. 6 . Substituting I 1
1
, M

2
1 , and α2

1
into (10) , we derive the solution u = [3 , 5 , 4] . Because I 1

1
is [3,5], the

feature reordering O α2
1

= [4] , i.e. , O 2 , 3 = 4 .

Using similar logics, EDLT can derive feature indexes in other 14 adjacent areas, and the final feature reordering matrix

O is shown in Fig. 6 .

Finally, based on Algorithm 2 , each instance in the original dataset is converted into a synthetic matrix format. Table 2

shows the converted synthetic matrix representation of instance x 1 , i.e. , F (x 1) .

5. Computational complexity analysis

The proposed EDLT algorithm converts each instance from its feature values into a synthetic matrix/image format based

on the feature reordering matrix O , such that the CNN can be utilized to learn features from generic data for conventional

classification tasks.

The computational complexity of EDLT mainly relies on the computational costs in solving (10) to obtain the unknown

feature indexes in each adjacent area � j
i

of O , as shown in Fig. 5 . Indeed, (10) is a 0/1 integer programming problem, and

we utilize the branch and bound (B&B) algorithm to solve this optimization problem. Let g(� j
i
) denote the computational

complexity of solving (10) to obtain the unknown feature indexes in adjacent area � j
i
. Then, the computational complexity

of the EDLT method is

δ =

m −k +1 ∑

i =1

m −k +1 ∑

j=1

g(� j
i
) (11)

We now discuss the complexity of g(� j
i
) . Specifically, for g(�1

i
) , when starting to derive the unknown feature indexes

in �1
i
, the feature indexes in the k − 1 rows of �1

i
are available. The constraints on (10) ensures that the feature indexes

in each row of the feature reordering matrix O are different from each other, and that the unknown feature indexes to be

solved by (10) are different from known feature indexes in �1
i
. Therefore, the maximal size of solution space for solving

(10) is m − k . As a result, we have g(�1
i
) = O (2 m −k) [41] .

Similarly, for g(� j
i
)(∀ j ≥ 2) , because the feature indexes in each row of the feature reordering matrix O are different

from each other and the unknown feature indexes to be solved by (10) are different from the known feature indexes in � j
i
,

the maximal size of solution space for solving (10) is m − k − j + 2 . Therefore, we have g(� j
i
) = O (2 m −k − j+2) . As a result,

g(� j
i
) can be calculated by

g(� j
i
) =

{
O (2

m −k) , j = 1 ,

O (2

m −k − j+2) , j ≥ 2 .
(12)

Substituting (12) into (11) , we have

δ = O ((m − k) 2

m −k) . (13)

458 H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465

Table 3

A brief description of the benchmark datasets.

ID Dataset Instance Features Classes

1 wall-following 5456 24 4

2 vehicle 946 18 4

3 breast tissue 106 9 6

4 vowel 990 9 6

5 ecoli 336 7 8

6 wine quality-red 1599 11 11

7 breast cancer wisconsin (Diagnostic) 569 30 2

8 wine 178 13 3

9 banknote authentication 1372 4 2

10 vertebral column 310 6 2

11 yeast 1484 8 10

12 seeds 210 7 3

13 climate model simulation crashes 540 18 2

14 glass identification 214 9 6

15 leaf 340 14 30

16 plrx 182 12 2

17 pima 768 9 2

18 iris 150 4 3

19 wireless indoor localization 20 0 0 7 4

20 sonar 208 60 2

21 hill-vallay 1212 100 2

22 gas sensor array drift 13910 128 6

In comparisons, when solving the objective function in (9) using brute-force search, we have g(� j
i
) = 2 m , which results

in the total computational complexity O (m

2 2 m). Therefore, the proposed EDLT algorithm (i.e. (10)) can dramatically reduce

the computational complexity.

6. Experiments

To validate the performance of EDLT in enabling deep learning for generic classification tasks, we use CNN as the deep

learning module and implement a number of baseline using Tensorflow [1] configured with one GPU card for accelerated

training. The feature reordering matrix O in EDLT is calculated using MATLAB R2016b, running on a 64-bit Windows 10

workstation with a 3.5-GHz Intel Core CPU and 128G memory.

We compare the algorithm performance on 22 benchmark datasets from UCI machine learning data repository [34] . In

order to interpret features learned from EDLT created synthetic matrix, we utilize natural images from CIFAR-10 dataset

[24] for a case study. A brief description of the 22 benchmark datasets is summarized in Table 3 . All reported results are

based on 10 times 5-fold cross validation with classification accuracy being used as the performance metrics.

6.1. Experimental settings

In our experiments, we utilize CNN as the deep learning method. For fair comparisons, each CNN model contains two

convolutional layers with same filter size and each convolutional layer is followed by a max pooling layer. We utilize the

leaky relu as the activation function [33] , and use the Adam optimizer [22] with a learning rate of 0.001. Features extracted

by the CNN model are used to train a single hidden layer dense neural network to classify test data.

6.2. Baseline methods

Because no existing method exists to make deep learning applicable for generic datasets, we implement two baseline

approaches, random reordering feature (RR) and label-feature correlation reordering feature (LFC), to compare the efficiency

of the feature reordering module in EDLT. Similar to EDLT, both RR and LFC enable deep learning for generic datasets by

converting each instance from its feature vector into a synthetic matrix format. The difference between the two baselines

and EDLT is the way of constructing feature reordering matrix O .

RR constructs the feature reordering matrix O by random ordering. Specifically, each row of the feature reordering matrix

O contains all feature, placed in a random order. Because PR uses random order to create a synthetic matrix for each

instance, there is no local correlation compared to EDLT. If EDLT outperforms PR, it will indicate that reordering features

and their values to create local correlation, like EDLT does, is preferable for deep learning.

LFC constructs the feature reordering matrix O based on the feature-feature correlation matrix and feature-label corre-

lation vector without considering global correlation maximization. Specifically, each row of the feature reordering matrix O

contains all feature indexes. The first column of O are feature indexes order vector V . Then, the other feature indexes in

the i th row are obtained by ordering the correlation with the first feature in descending order, i.e. , the second element in

H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465 459

Table 4

Algorithm performance comparisons (the number of filter of each convolution layer is 32 and 4, respec-

tively. The number of hidden layer of the dense NN is 1).

Dataset RR LFC EDLT

2 × 2 3 × 3 2 × 2 3 × 3 2 × 2 3 × 3

wall-following 85.16 87.72 84.538 87.11 88.6 88.25

vehicle 63.15 73.68 65.96 71.048 73.68 78.94

breast tissue 72.72 72.72 74.995 75.45 77.27 77.27

vowel 86.36 93.93 86.559 93.881 86.44 92.67

ecoli 88.23 85.29 85.2903 86.172 85.29 85.29

wine quality-red 61.7 61.29 61.56 61.5 61.25 61.56

breast cancer wisconsin (Diagnostic) 95.6 98.24 96.38 98.15732 97.3684 98.24

wine 97.2 100 96.85 100 100 100

banknote authentication 100 98.9 97.2 99.52 100 100

vertebral column 77.41 75.8 78.84 78.7 78.22 79.03

yeast 59.745 59.59 60.861 61.6 59.59 62.43

seeds 90.47 92.85 92.15 94.27 92.85 92.85

climate model simulation crashes 94.4 95.37 95.17 94.44 95.37 97.22

glass identification 58.1 58.1 56.31 61.85 53.48 58.13

leaf 73.52 74.9 75.729 75.79 77.94 76.47

plrx 56.75 56.75 55.55 54.31 56.75 59.45

pima 80.51 77.27 79.4 79.66 79.87 79.2

iris 100 100 98.3 98.3 100 100

wireless indoor localization 96.75 98.5 96.5 98.4 96 98.75

sonar 90.47 90.47 89.41 90.47 90.47 83.33

hill-vally 61.31 58.29 62.13 62.5 69.26 71.87

gas sensor array drift 99.08 99.06 98.83 99.3 99.35 99.2

Average 81.24 82.65 81.32 82.42 82.64 83.55

the i th row is the index of the feature with the largest correlation with the first feature in the i th row, and so on. Obviously

LFC only considers a local correlation between the first selected feature and the remaining features, while EDLT considers

both global and local correlation maximization.

For comparison purposes, we also compare the algorithm performance using popular machine learning methods, includ-

ing k -nearest neighbors algorithm (k -NN), support vector machine (SVM), Decision tree learning (DT), dense neural network

(NN)), by utilizing the sklearn module in tensorflow [36] . Furthermore, we also compare the performance with the stochastic

configuration networks (SCNs), which is a randomized learning method.

k -NN is a non-parametric method to find the instance’s n nearest neighbors in the training set [2] . The k -NN classifies

the instance as the class that the most n nearest neighbors belong to.

SVM is a supervised learning model to construct a hyperplane with largest margin to separate instances into different

classes. Using kennel functions [11] , instances are mapped into a high-dimensional space and are classified into different

classes, depending on the side of the hyperplane the instances falling into.

DT is to predict the label of the instance by constructing a decision tree where leaves represent class labels and branches

represent conjunctions of features [6] .

NN represents a dense layer neural network, which is used to approximate some complex function [10] . The information

flows from the input layer through all hidden layers to the output layer to predict the label of test data. In our experiments,

we use a dense network, so all hidden nodes are connected to the hidden nodes of the next layer or all output layer nodes.

We use a dense network with 1 hidden layer or 2 hidden layers in our experiments.

SCNs are randomised learning algorithms for single layer feed-forward neural networks. SCNs randomly assigns input

weight values and biases with a supervisory mechanism, and evaluate the output weights in either constructive or selective

manner [45–47] . We utilize a SC-III [47] algorithm to assign the random parameters in our experiments.

In the following sections, we first study feature reordering method performance in different parameter settings, including

different convolution filter sizes, the number of convolution filters, and the different number of hidden layers in the dense

neural network. After that, we report the accuracy performance on all benchmark datasets. Finally, we report a case study

to show effectiveness of EDLT in creating new instance representation for CNN to learn features for generic data.

6.3. Feature reordering method comparisons

For all experiments, unless specified otherwise, the parameter settings are as follows. The size of the convolution filter

is set to 2 × 2 and 3 × 3, and the number of convolution filters is set to (32,4) and (32,16). For dense neural networks (NN),

we consider two structures, i.e. , a NN with one hidden layer and a NN with two hidden layers. We set the number of nodes

in the hidden layer of the two NN structures to 100 and (100,50), respectively.

Tables 4–7 report detailed comparisons of different feature reordering methods, where the results are based on different

number of convolution filters and different number of hidden layers in the NN. Specifically, in Tables 4 and 5 , we report the

460 H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465

Table 5

Algorithm performance comparisons (the number of filter of each convolution layer is 32 and 16,

respectively. The number of hidden layer of the dense NN is 1).

Dataset RR LFC EDLT

2 × 2 3 × 3 2 × 2 3 × 3 2 × 2 3 × 3

wall-following 90.03 90.42 90.07 90.256 92.65 91.75

vehicle 73.68 73.68 73.88 73.18 73.68 84.21

breast tissue 77.27 77.27 75.75 77.27 77.27 77.27

vowel 95.45 96.46 95.57 96 95.3 97.06

ecoli 81.93 82.35 85.1 83.33 85.29 85.29

wine quality-red 61.02 60.31 60 60.53 61.83 60.98

breast cancer wisconsin (Diagnostic) 97.36 97.36 97.43 98.76 97.3684 98.24

wine 100 100 99.12 100 100 100

banknote authentication 100 100 100 100 100 100

vertebral column 79.03 75.8 78.72 78.56 80.51 81.84

yeast 60.64 60.6 60.68 59.97 61.27 60.04

seeds 90.47 92.85 91.65 91.69 90.47 90.47

climate model simulation crashes 95.76 96.29 93.3 95.54 94.44 97.22

glass identification 58.1 62.32 60.75 59.95 59.12 63.95

leaf 76.89 73.52 75.97 72.79 76.47 74.7

plrx 54.82 56.75 53.27 59.06 52.35 60.53

pima 79.87 79.22 78.78 78.56 79.79 78.83

iris 100 100 100 100 100 100

wireless indoor localization 96.75 98.5 96.81 98.16 97.25 98.5

sonar 88.09 88.09 90.17 90.16 95.23 90.47

hill-vally 56.52 59.625 61.54 62.254 66.3 76.18

gas sensor array drift 99.04 99.2 98.95 99.3 99.35 99.45

Average 82.43 82.83 82.58 82.87 83.45 84.86

Table 6

Algorithm performance comparisons (the number of filter of each convolution layer is 32 and 4,

respectively. The number of hidden layer of the dense NN is 2).

Dataset RR LFC EDLT

2 × 2 3 × 3 2 × 2 3 × 3 2 × 2 3 × 3

wall-following 87.74 88.1 87.27 89.56 90.65 89.03

vehicle 71.04 77.1 73.68 78.94 73.68 89.47

breast tissue 75.32 75.32 72.72 77.27 77.27 77.27

vowel 88.54 94.75 92.42 95.95 85.1 92.79

ecoli 82.71 83.98 85.29 82.35 79.41 83.82

wine quality-red 61.09 61.96 58.35 60.1 60.56 61.48

breast cancer wisconsin (Diagnostic) 97.1 98.06 96.49 97.36 97.36 98.24

wine 97.6 100 97.2 100 100 100

banknote authentication 100 100 100 100 100 100

vertebral column 78.79 79.83 77.41 80.64 75.8 82.25

yeast 60.88 60.6 61.44 61.72 60.6 61.06

seeds 90.17 91.95 88.09 90.47 90.47 90.47

climate model simulation crashes 95.24 95.82 97.2 95.37 94.44 97.22

glass identification 61.45 61.33 65.11 65.11 66.5 60.46

leaf 70.79 71.68 64.7 70.58 73.52 74.1

plrx 53.27 56.75 56.75 59.45 51.35 62.16

pima 79.12 78.78 79.87 78.24 81.81 79.04

iris 100 100 100 100 100 100

wireless indoor localization 97.03 98.16 98 98.5 96.125 98.5

sonar 89.87 89.11 92.85 85.71 92.85 90.47

hill-vally 57.95 57.02 60.37 62.87 67.48 69.33

gas sensor array drift 99.13 98.91 98.85 99.25 99.18 99.39

Average 81.58 82.69 82.00 83.15 82.46 84.38

accuracy performance of different feature reordering methods on 22 benchmark datasets using one hidden layer dense NN

for final classification. The results of two hidden layer dense NN are reported in Tables 6 and 7 .

The results from Tables 4–7 show that EDLT has the best performance gain across different parameter settings, con-

firming that reordering features and their values to create local and global correlations, like EDLT does, will result in good

performance for deep learning to be used for generic data. While LFC only considers local correlation, RR does not con-

sider any correlation in the synthetic matrix. The local correlation is the key for the CNN to learn meaningful features for

classification.

H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465 461

Table 7

Algorithm performance comparisons (the number of filter of each convolution layer is 32 and 16,

respectively. The number of hidden layer of the dense NN is 2).

Dataset RR LFC EDLT

2 × 2 3 × 3 2 × 2 3 × 3 2 × 2 3 × 3

wall-following 90.67 90.398 90.67 90.361 92.1 91.13

vehicle 70.17 71.92 74.73 78.94 73.68 84.21

breast tissue 76.74 75.32 72.72 72.72 77.27 77.27

vowel 94.79 95.99 94.35 96.96 92.72 96.96

ecoli 83.65 81.72 77.52 83.82 85.29 83.08

wine quality-red 61.71 61.6 63.75 63.43 62.5 62

breast cancer wisconsin (Diagnostic) 97.5 98.42 98.24 97.63 97.36 98.24

wine 100 100 100 100 100 100

banknote authentication 100 100 100 100 100 100

vertebral column 80.84 79.55 80.28 80.17 83.87 82.25

yeast 60.48 59.46 60.74 59.93 58.86 59.81

seeds 91.95 92.85 90.47 90.47 90.47 90.47

climate model simulation crashes 95.26 95.83 95.6 94.44 95.6 97.22

glass identification 57.55 58.59 63.66 60.46 59.79 62.78

leaf 74.75 71.68 72.78 72.05 80.88 72.3

plrx 55.98 58.29 53.27 59.45 55.4 56.75

pima 78.67 79.21 80.51 79.54 80.27 78.69

iris 100 100 100 100 100 100

wireless indoor localization 97.6 98 97.43 97.5 96.625 97.5

sonar 90.47 90.94 88.09 88.09 88.09 88.09

hill-vally 59.76 60.159 60.28 60.48 71.87 67.94

gas sensor array drift 99.17 99.19 99.13 99.25 99.33 99.31

Average 82.62 82.68 82.62 82.98 83.72 83.90

In Table 4 , compared to RR and LFC, the average performance gains of EDLT are 1.4% and 1.32% for 2 × 2 filter, and 0.9%

and 0.91% for 3 × 3 filter, respectively. In Table 5 , compared to RR and LFC, the average performance gains of EDLT 1.02% and

0.87% for 2 × 2 filter, and 2.03% and 1.99% for 3 × 3 filter. In Table 6 , the average performance gains of EDLT are 0.88% and

0.46% for 2 × 2 filter, and 1.69% and 1.23% for 3 × 3 filter, and in Table 7 , the average performance gains of EDLT are 1.1% and

1.1% for 2 × 2 filter, and 1.22% and 0.92% for 3 × 3 filter.

Furthermore, the best performance gain of EDLT is higher than those of RR and LFC. To be specific, the best performance

gain of EDLT , RR and LFC are 84.86% in Table 5 , 82.83% in Table 5 , and 83.15% in Table 6 , respectively.

The results in Tables 4–7 assert that the feature reordering matrix in EDLT does play an effective role for CNN to leverage

local and global correlation to learn effective features.

The experiments show that, for a fixed NN structure, the best CNN learning results for EDLT are obtained by setting the

size of the convolution filter to 3 × 3, the number of convolution filter to (32,16). Therefore, in the following subsections, we

utilize this CNN structure settings in the experiments.

6.4. Detailed comparisons of machine learning methods

In Table 8 , we report detailed comparisons between EDLT and popular learning methods (i.e., k -NN, SVM, DT, NN, and

SCNs) on 22 generic benchmark datasets, where NN- i and EDLT- i mean that the number of hidden layer in the dense NN is

i .

In our experiments, we set the number of nearest neighbors n to 5 for k -NN, and use the linear kennel function for SVM.

We use CART (Classification And Regression Tree) algorithm to generate a decision tree for DT, and employ NN- i as the NN

module in EDLT- i . We also consider two kinds of NN structures with one and two hidden layers, respectively, and we set

the number of nodes in the hidden layer of these two NN module to 100 and (100,50), respectively.

The results from Table 8 show that among all methods, EDLT achieves the best performance gain. Compared to k -NN,

SVM, DT, NN-1, NN-2, and SCNs, the performance gains of EDLT-1 are 7.9%, 6.99%, 6.12%, 6.18%, 2.34%, and 4.99% respectively.

Comparing randomized learning algorithms (i.e. SCNs) to deterministic-heuristic based learning approaches (i.e., k -NN,

SVM, DT, and NN-1), the results from Table 8 show that SCNs outperform k -NN, SVM, DT, and NN-1. The performance

gains of the SCNs, compared to each respective method, are 2.91%, 2%, 1.13%, and 1.19%. This demonstrates that randomized

learning algorithms are more effective than deterministic-heuristic based learning approaches for the underlying benchmark

datasets.

Interestingly, the results show that the performance gain of EDLT- i is superior to that of NN- i , confirming that features

learned by utilizing the CNN are more effective than the original features in the generic dataset for classification. This

confirms that converting each instance in the generic dataset into a synthetic matrix/image, like EDLT does, and further

applying CNN to the converted data, can indeed lead to a better classification accuracy for generic classification tasks.

462 H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465

Table 8

Comparisons between EDLT and different machine learning methods on benchmark datasets.

Dataset k -NN SVM DT NN-1 NN-2 SCNs EDLT-1 EDLT-2

wall-following 85.1 78.8 99.7 67.94 83.42 69.56 91.75 91.13

vehicle 52.63 63.1 57.89 52.63 63.15 73.68 84.21 84.21

breast tissue 45.45 68 72.72 77.27 77.27 61.59 77.27 77.27

vowel 93.43 96.96 75.75 65.65 83.3 74.1 97.06 96.96

ecoli 85.29 80.8 82.35 89.7 88.23 85.87 85.29 83.08

wine quality-red 58.125 62.8 67.5 62.5 64.06 61.4 60.98 62

breast cancer wisconsin (Diagnostic) 95.6 97.36 91.22 97.36 97.36 96.87 98.24 98.24

wine 80.5 100 97.2 100 100 100 100 100

banknote authentication 100 97.8 99.27 94.54 100 100 100 100

vertebral column 77.41 74.19 77.41 74.19 79.03 75.97 81.84 82.25

yeast 54.2 58.24 49.83 58.24 60.94 60.53 60.04 59.81

seeds 85.7 85.7 95.23 95.23 95.23 95.87 90.47 90.47

climate model simulation crashes 96.29 95.37 88.8 94.4 98.1 97.01 97.22 97.22

glass identification 58.13 58.13 51.16 53.48 60.46 59.15 63.95 62.78

leaf 38.23 32.35 41.17 72.05 76.47 66.17 74.7 72.3

plrx 54.05 54.05 54.05 54.05 54.05 54 60.53 56.75

pima 77.9 82.46 78.57 79.87 80.51 80.1 78.83 78.69

iris 100 100 100 90 96.67 92.12 100 100

wireless indoor localization 97.5 96.75 96.25 96.25 97.25 95.27 98.5 97.5

sonar 83.3 83.3 64.28 88.09 85.71 84.82 90.47 88.09

hill-vally 75.2 50 94.3 70.12 75.72 79.204 76.18 67.94

gas sensor array drift 99.18 96.94 97.76 97.5 93.9 98.7 99.45 99.31

Average 76.96 77.87 78.74 78.68 82.52 79.872 84.86 83.9

Fig. 7. Comparisons between original HSV features and CNN features learned from EDLT converted matrix/image (“Dog” vs. “Deer”).

6.5. Case study of EDLT converted matrix/image and features

In this subsection, we carry out a case study to compare features in the original space vs. features learned from EDLT

converted matrix/image. Our goal is to understand what the deep learning is learning from the synthetic matrix, compared

to the original features.

In our experiments, we utilize the natural images collected from CIFAR-10 dataset, a common benchmark task for object

recognition, and extract 64-dimensional Hue-Saturation-Value (HSV) features [7] as the original features to represent each

image. We use image as the test bed, because we can compare images, against their features, to validate the algorithm

performance. It’s worth noting that we are not trying to find best features to represent an image, but to understand how

EDLT converts the original features to support deep learning. Therefore, we only use HSV features in our case study.

As shown in Figs. 7 , 8 , and 9 , we first extract HSV features from each image. After that, the HSV features are used to

generate a synthetic image by using EDLT. Then, the synthetic images are fed to a CNN model to learn new features, which

are used to train a dense NN for classification. Finally, we use t -SNE tool [42] to compare the difference between the HSV

H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465 463

Fig. 8. Comparisons between original HSV features and CNN features learned from EDLT converted matrix/image (“Dog”).

Fig. 9. Comparisons between original HSV features and CNN features learned from EDLT converted matrix/image (“Deer”).

features and the features learned by CNN to observe what exactly the CNN is learning from the synthetic image (In the CNN

model, we use 3 convolutional layers with filter size 3 × 3. The number of converlution filter are 1632 and 1).

Fig. 7 shows the feature comparisons between a “Dog” vs. a “Deer”. It shows that the HSV features in the original feature

space are not discriminative to differentiate “Dog” vs . “Deer” (noticing high spike overlapping between two HSV maps).

By applying EDLT to convert each HSV represented instance, the synthetic image shows a better separation between two

categories. This difference is further captured by the CNN to learn distinct features to better classify “Dog” vs. “Deer”.

In Figs. 10 and 11 , we further report the t−SNE feature representation results between original HSV features and the

EDLT converted features. Fig. 10 shows that the CNN feature has better discrimination than the HSV feature for the two

categories. Meanwhile, the results from Fig. 11 show that the three categories almost completely overlap with each other in

the HSV feature space, but are roughly distinguishable in the CNN feature space. This asserts that EDLT converted features

provide better feature representation for classification.

Table 9 further presents the performance gain for two and three categories by utilizing different machine learning meth-

ods. The settings of k -NN, SVM, DT, NN-1, NN-2, and SCNs are the same as that of Table 8 . The results show that EDLT

achieves the best performance gain. Compared to k -NN, SVM, DT, NN-1, NN-2, and SCNs, the performance gains of EDLT are

2.18%, 0.98%, 5.83%, 1.05%, 1.14%, and 1.6% respectively, for binary class classification, and 3.6%, 2.45%, 8.45%, 2.6%, 1.27% and

2.63% , respectively, for three class classification.

464 H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465

Fig. 10. Comparisons between original features (HSV) vs. EDLT converted CNN features(“Cat” vs. “Ship”).

Fig. 11. Comparisons between original features (HSV) vs. EDLT converted CNN features(“Deer”, “dog”, and “Ship”).

Table 9

Detailed comparisons of machine learning methods on benchmark datasets.

Classification Tasks k -NN SVM DT NN-1 NN-2 SCNs EDLT

(Bird, Horse) 79.95 81.15 76.3 81.08 80.99 80.53 82.13

(Cat, Deer, Horse) 66.2 67.35 61.35 67.153 68.53 67.17 69.8

7. Conclusion

In this paper, we proposed to enable deep learning for generic data classification where data used for learning are not

images/videos, like most deep learning methods require, but are already represented in instance-feature tabular format. We

argued that local and global correlations are the key to enable deep learning for generic data, and our goal is to convert each

instance into suitable format for deep learning method to be directly applied for learning and classification. To achieve the

goal, we proposed to reorder each instance’s features and their values as a matrix format with maximum local and global

correlations. The proposed method, EDLT, first builds the feature-feature correlation matrix and feature-label correlation vec-

tor, and uses 0/1 optimization to obtain a feature reordering matrix such that features with strong correlations are adjacent

to each other. After each instance is converted from its instance-feature tabular format into a synthetic matrix format, deep

learning methods are applied to learn meaningful features for classification. Experiments and comparisons on 22 benchmark

datasets confirm that enabling deep learning to generic datasets has clear performance gain, compared to classifiers learned

from original feature space, including decision tress, support vector machines, stochastic configuration networks, etc. This

research opens opportunities for deep learning to be broadly applied to generic datasets for classification.

H. Han, Y. Li and X. Zhu / Information Sciences 477 (2019) 448–465 465

Acknowledgment

This research is supported by the US National Science Foundation (NSF) through grant IIS-1763452 . Natural Science Foun-

dation of China under Grant 61671345.

References

[1] M. Abadi, A. Agarwal, P. Barham, Tensorflow: large-scale machine learning on heterogeneous systems, arXiv: 1603.04467 (2016).
[2] K. Anil , On optimum choice of k in nearest neighbour classification, Computation. Stat. Data An. 50 (11) (2006) 3113–3123 .

[3] Y. Bengio , O. Delalleau , N.L. Roux , The curse of highly variable functions for local kernel machines, in: Advances in Neural Information Processing

Systems, British Columbia, Canada, MIT Press, 2005, pp. 107–114 .
[4] Y. Bengio , P. Simard , Learning long-term dependencies with gradient descent is difficult, IEEE Trans. Neural Netw. 5 (1994) 157–166 .

[5] A. Blum , P. Langley , Selection of relevant features and examples in machine learning, Artif. Int. 97 (1–2) (1997) 245–271 .
[6] C.E. Brodley , P.E. Utgoff, Multivariate decision trees, Mach. Learn. 19 (1995) 45–77 .

[7] R. Brunelli , O. Mich , Histograms analysis for image retrieval, Pattern Recogn. 34 (8) (2001) 1625–1637 .
[8] J.-F. Chen , W.-L. Chen , C.-P. Huang , S.-H. Huang , A.-P. Chen , Financial time-series data analysis using deep convolutional neural networks, in: IEEE

International Conference on Cloud Computing and Big Data, Macau, China, 2016, pp. 87–92 .

[9] D. Ciresan , U. Meier , J. Schmidhuber , Multi-column deep neural networks for image classification, in: IEEE Conference on Computer Vision and Pattern
Recognition, Rhode Island, USA, 2012, pp. 3642–3649 .

[10] C.M. Bishop , Neural networks for pattern recognition, Oxford University Press, Oxford, UK, 1995 .
[11] C. Cortes , V. Vapnik , Support-vector networks, Mach. Learn. 20 (1995) 273–297 .

[12] X. Ding , Y. Zhang , T. Liu , J. Duan , Deep learning for event-driven stock prediction, in: Morgan Kaufmann International Joint Conference on Artificial
Intelligence, Buenos Aires, Argentina, 2015, pp. 2327–2333 .

[13] M. Goemans , D. Williamson , Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,
Quaest. Geographicae 42 (6) (1995) 1115–1145 .

[14] A . Graves , A .-R. Mohamed , G. Hinton , Speech recognition with deep recurrent neural networks, in: IEEE International Conference on Acoustics, Speech

and Signal Processing, Vancouver, Canada, 2013, pp. 6645–6649 .
[15] A . Graves , A .-R. Mohamed , G. Hinton , Speech recognition with deep recurrent neural networks, in: IEEE International Conference on Acoustics, Speech

and Signal Processing, Vancouver, Canada, 2013, pp. 6645–6649 .
[16] X. Guo , S. Singh , H. Lee , R.L. Lewis , X. Wang , Deep learning for real-time atari game play using offline monte-carlo tree search planning, in: Advance

in Neural Information Processing Systems Conference, Montreal, Canada, MIT press, 2014, pp. 3338–3346 .
[17] I. Guyon , A. Elisseeff, An introduction to variable and feature selection, Mach. Learn. Res. 3 (2003) 1157–1182 .

[18] M.F.A. Hady , F. Schwenker , Semi-supervised learning,in handbook on neural information processing, Springer, Berlin, Germany, 2013 .

[19] J. Hauke , T. Kossowski , Comparison of values of Pearson’s and Spearman’s correlation coefficient on the same sets of data, Quaest. Geographicae 31
(2) (2011) 87–93 .

[20] S. Hochreiter , J. Schmidhuber , Long short-term memory, Neural Comput. 9 (1997) 1735–1780 .
[21] K. Kavukcuoglu , P. Sermanet , Y.-L. Boureau , K. Gregor , Learning convolutional feature hierarchies for visual recognition, in: Advance in Neural Informa-

tion Processing Systems Conference, Vancouver, B.C., Canada, MIT press, 2010, pp. 1090–1098 .
[22] D. Kingma , J. Ba , Adam: A method for stochastic optimization, in: IEEE International Conference on Learning Representations, San Diego, CA, USA,

2015, pp. 1–13 .

[23] R. Kohavi , G. John , Wrappers for feature subset selection, Artif. Int. 97 (12) (1997) 273–324 .
[24] A. Krizhevsky , Learning Multiple Layers of Features from Tiny Images, Dept. of Computer Science, Univ. of Toronto, Toronto, 2012 Master’s thesis .

[25] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep convolutional neural networks, in: Advance in Neural Information Processing
Systems Conference, Lake Tahoe, Nevada, USA, MIT press, 2012, pp. 1106–1114 .

[26] L. Ladla , T. Deepa , Feature selection methods and algorithms, Int. J. Comput. S. Eng. 3 (5) (2011) 1787–1797 .
[27] P. Langley , Selection of relevant features in machine learning, in: AAAI Fall Symposium on Relevance, New Orleans, Louisiana, 1994, pp. 140–144 .

[28] D. Langlois , S. Chartier , D. Gosselin , An introduction to independent component analysis: infomax and fastica algorithms, Tutorials in Quant. Meth.

Psychol. 6 (1) (2010) 31–38 .
[29] Y. LeCun , Y. Bengio , G. Hinton , Deep learning, Nature 521 (2015) 436–4 4 4 .

[30] Y. LeCun , B. Boser , J.S. Denker , D. Henderson , R.E. Howard , W. Hubbard , L.D. Jackel , Handwritten digit recognition with a back-propagation network,
in: Advances in Neural Information Processing Systems, Vancouver, Canada, MIT Press, 1990, pp. 396–404 .

[31] H. Lee , R. Grosse , R. Ranganath , A.Y. Ng , Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: ACM
International Conference On Machine Learning, Montreal, Canada, 2009, pp. 609–616 .

[32] D. Lunga , S. Prasad , M.M. Crawford , O. Ersoy , Manifold learning-based feature extraction for classification of hyperspectral data: a review of advances

in manifold learning, IEEE Signal Proc. Mag. 31 (1) (2014) 55–66 .
[33] A .L. Maas , A .Y. Hannun , A .Y. Ng , Rectifier nonlinearities improve neural network acoustic models, in: ACM International Conference on Machine Learn-

ing, Atlanta, USA, 2013, pp. 3371–3408 .
[34] D. Newman, S. Hettich, C. Blake, C. Merz, Uci repository of machine learning databases, irvine, 1998.

[35] Y.-H. Pao , G.-H. Park , D.J. Sobajic , Learning and generalization characteristics of the random vector functional-link net, Neurocomputing 6 (2) (1994)
163–180 .

[36] F. Pedregosa , G. Varoquaux , A. Gramfort , V. Michel , Scikit-learn: machine learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830 .

[37] V. Rokhlin , A. Szlam , M. Tygert , A randomized algorithm for principal component analysis, SIAM J. Matrix Anal. A. 31 (3) (2009) 1100–1124 .
[38] S. Scardapane, D. Wang, Randomness in neural networks: an overview, WIREs Data Min. Knowl. Discovery (2017), doi: 10.10 02/widm.120 0 .

[39] J. Schmidhuber , Deep learning in neural networks: an overview, Neural Netw. 61 (2015) 85–117 .
[40] B. Scholkopft , K.-R. Mullert , Neural Networks for Signal Processing, Springer, 1999 .

[41] L. Sven , Integrating sqp and branch-and-bound for mixed integer nonlinear programming, Comput. Optim. Appl. 18 (3) (1998) 1115–1145 .
[42] L. van der Maaten , G. Hinton , Visualizing data using t-sne, Mach. Learn. Res. 9 (2008) 2579–2605 .

[43] P. Vincent , H. Larochelle , Y. Bengio , P.-A. Manzagol , Extracting and composing robust features with denoising autoencoders, in: ACM International
Conference on Machine Learning, Stockholm, Sweden, 2008, pp. 1096–1103 .

[44] P. Vincent , H. Larochelle , I. Lajoie , Y. Bengio , P.-A. Manzagol , Stacked denoising autoencoders: Learning useful representations in a deep network with

a local denoising criterion, in: ACM International Conference on Machine Learning, Haifa, Israel, 2010, pp. 3371–3408 .
[45] D. Wang, C. Cui, Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics, Inf. Sci. 417(55–71) 2017.

[46] D. Wang , M. Li , Robust stochastic configuration networks with kernel density estimation for uncertain data regression, IEEE Trans. Cybern. 412–413
(2017) 210–222 .

[47] D. Wang , M. Li , Stochastic configuration networks: fundamentals and algorithms, IEEE Trans. Cybern. 47 (10) (2017) 3466–3479 .
[48] D. Zhang , J. Wang , F. Wang , C. Zhang , Semi-supervised classification with universum, in: SIAM International Conference on Data Mining, San Diego,

CA, 2008, pp. 323–333 .

[49] X. Zhu , Cross-domain semi-supervised learning using feature formulation, IEEE Trans. Syst. Man Cybern. Part B 41 (6) (2011) 1627–1638 .

https://doi.org/10.13039/100000001
http://arxiv.org/abs/1603.04467
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0015
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0035
https://doi.org/10.1002/widm.1200
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0041
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0043
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0044
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0045
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0046
http://refhub.elsevier.com/S0020-0255(18)30870-3/sbref0046

	Convolutional neural network learning for generic data classification
	1 Introduction
	2 Related work
	2.1 Data representation based on feature selection and extraction
	2.1.1 Feature selection
	2.1.2 Feature extraction

	2.2 Deep learning for feature representation learning
	2.3 Differentiation from the proposed work

	3 Problem definition and overview framework
	3.1 Problem definition
	3.2 Overall framework of EDLT

	4 EDLT: Enabling deep learning for generic classification tasks
	4.1 Feature-feature correlation matrix and feature-label correlation vector
	4.2 Feature reordering matrix construction
	4.3 Example: synthetic matrix generation
	4.3.1 Feature-feature correlation matrix and feature-label correlation vector
	4.3.2 The feature reordering matrix construction and synthetic matrix generation

	5 Computational complexity analysis
	6 Experiments
	6.1 Experimental settings
	6.2 Baseline methods
	6.3 Feature reordering method comparisons
	6.4 Detailed comparisons of machine learning methods
	6.5 Case study of EDLT converted matrix/image and features

	7 Conclusion
	Acknowledgment
	References

