
Machine Teaching for Inverse Reinforcement Learning:
Algorithms and Applications

Daniel S. Brown and Scott Niekum
Department of Computer Science

University of Texas at Austin
{dsbrown,sniekum}@cs.utexas.edu

Abstract

Inverse reinforcement learning (IRL) infers a reward function
from demonstrations, allowing for policy improvement and
generalization. However, despite much recent interest in IRL,
little work has been done to understand the minimum set of
demonstrations needed to teach a specific sequential decision-
making task. We formalize the problem of finding maximally
informative demonstrations for IRL as a machine teaching
problem where the goal is to find the minimum number of
demonstrations needed to specify the reward equivalence class
of the demonstrator. We extend previous work on algorithmic
teaching for sequential decision-making tasks by showing a
reduction to the set cover problem which enables an efficient
approximation algorithm for determining the set of maximally-
informative demonstrations. We apply our proposed machine
teaching algorithm to two novel applications: providing a
lower bound on the number of queries needed to learn a policy
using active IRL and developing a novel IRL algorithm that
can learn more efficiently from informative demonstrations
than a standard IRL approach.

1 Introduction

As robots and digital personal assistants become more preva-
lent, there is growing interest in developing algorithms that
allow everyday users to program or adapt these intelligent sys-
tems to accomplish sequential decision-making tasks, such
as performing household chores, or carrying on a meaningful
conversation. A common way to teach sequential decision-
making tasks is through Learning from Demonstration (LfD)
(Argall et al. 2009), in which the goal is to learn a policy
from demonstrations of desired behavior. More specifically,
Inverse Reinforcement Learning (IRL) (Ng and Russell 2000;
Arora and Doshi 2018) is a form of LfD that aims to infer the
reward function that motivated the demonstrator’s behavior,
allowing for reinforcement learning (Sutton and Barto 1998)
and generalization to unseen states. Despite much interest in
IRL, there is not a clear, agreed-upon definition of optimality
in IRL, namely, the size of the minimal set of demonstrations
needed to teach a sequential decision-making task.

There are many compelling reasons to study optimal teach-
ing for IRL: (1) it gives insights into the intrinsic difficulty
of teaching certain sequential decision-making tasks; (2) it

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

provides a lower bound on the number of samples needed by
active IRL algorithms (Lopes, Melo, and Montesano 2009;
Brown, Cui, and Niekum 2018); (3) optimal teaching can be
used to design algorithms that better leverage highly informa-
tive demonstrations which do not follow the i.i.d. assumption
made by many IRL algorithms; (4) studying optimal teaching
can help humans better teach robots through demonstration
(Cakmak and Lopes 2012) and help robots better commu-
nicate their intentions (Huang et al. 2017); and (5) optimal
teaching can give insight into how to design (Mei and Zhu
2015) and defend against (Alfeld, Zhu, and Barford 2017)
demonstration poisoning attacks in order to design IRL algo-
rithms that are robust to poor or malicious demonstrations.

We formulate the problem of optimal teaching for se-
quential decision making tasks using the recently popu-
larized machine teaching framework (Zhu 2015). The ma-
chine teaching problem is the inverse of the machine learn-
ing problem. In machine teaching, the goal is to select
the optimal training set that minimizes teaching cost, of-
ten defined as the size of the training data set, and the
loss or teaching risk between the model learned by the stu-
dent and the learning target. While machine teaching has
been applied to regression and classification (Zhu 2015;
Liu and Zhu 2016), little work has addressed machine teach-
ing for sequential decision-making tasks such as learning
from demonstration via IRL.

The contributions of this paper are fourfold: (1) a formal
definition of machine teaching for IRL, (2) an efficient algo-
rithm to compute optimal teaching demonstrations for IRL,
(3) an application of machine teaching to find the lower bound
on the number of queries needed to learn a task using active
IRL, and (4) a novel Bayesian IRL algorithm that learns more
efficiently from informative demonstrations than a standard
IRL approach by leveraging the non-i.i.d. nature of highly
informative demonstrations from a teacher.

2 Related work

Determining the minimum number of demonstrations needed
to teach a task falls under the fields of Algorithmic Teaching
(Goldman and Kearns 1995; Balbach and Zeugmann 2009)
and Machine Teaching (Zhu 2015; Zhu et al. 2018). However,
almost all previous work has been limited to optimal teaching
for classification and regression tasks. The work of Singla
et al. (2014) bears a strong resemblance to our work: they

a
rX

iv
:1

8
0
5
.0

7
6
8
7
v
6

[c

s.
L

G
]

 5
 M

a
r

2
0
1
9

use submodularity to find an efficient approximation algo-
rithm for an optimal teaching problem that has a set-cover
reduction; however, their approach is designed for binary
classification rather than sequential decision making.

Cakmak and Lopes (2012) examined the problem of giving
maximally informative demonstrations to teach a sequential
decision-making task; however, as we discuss in Section 5,
their algorithm often underestimates the minimum number
of demonstrations needed to teach a task. Other related ap-
proaches examine how a robot can give informative demon-
strations to a human (Huang et al. 2017), or formalize optimal
teaching as a cooperative two-player Markov game (Hadfield-
Menell et al. 2016); however, neither approach addresses the
machine teaching problem of finding the minimum number
of demonstrations needed to teach a task.

Our proposed machine teaching algorithm leverages the
notion of behavioral equivalence classes over reward func-
tions to achieve an efficient approximation algorithm. Zhang
et al. (2009) also use behavioral equivalence classes over
reward functions as part of their solution to a policy teaching
problem, in which the goal is to induce a desired policy by
modifying the intrinsic reward of an agent through incentives.
Rathnasabapathy et al. (2006) and Zeng et al. (2012) use
equivalence classes over agent behaviors when solving the
problem of interacting with multiple agents in a POMDP.

There is a large body of work on using active learning
for IRL (Lopes, Melo, and Montesano 2009; Cohn, Durfee,
and Singh 2011; Cui and Niekum 2017; Sadigh et al. 2017;
Brown, Cui, and Niekum 2018). Our goal of finding a min-
imal set of demonstrations to teach an IRL agent is related
to one of the goals of active learning: reducing the number
of examples needed to learn a concept (Settles 2012). In ac-
tive learning, the agent requests labeled examples to search
for the correct hypothesis. Optimal teaching is usually more
sample efficient than active learning since the teacher gets
to pick maximally informative examples to teach the target
concept to the learner (Zhu et al. 2018). Thus, a solution to
the machine teaching problem for IRL provides a method for
finding the lower bound on the number of queries needed to
learn a policy when using active IRL.

In the field of Cognitive Science, researchers have investi-
gated Bayesian models of informative human teaching and
the inferences human students make when they know they are
being taught (Shafto and Goodman 2008). Ho et al. (Ho et
al. 2016) showed that humans give different demonstrations
when performing a sequential decision making task, depend-
ing on whether they are teaching or simply doing the task.
While studies have shown that standard IRL algorithms can
benefit from informative demonstrations (Cakmak and Lopes
2012; Ho et al. 2016), to the best of our knowledge, no IRL
algorithms exist that can explicitly leverage the informative
nature of such demonstrations. In Section 7.2 we propose
a novel IRL algorithm that can learn more efficiently from
informative demonstrations than a standard Bayesian IRL
approach that assumes demonstrations are drawn i.i.d. from
the demonstrators policy. Research in computational learn-
ing theory has shown a dramatic reduction in the number of
teaching examples needed to teach anticipatory learners who
know they are being taught by a teacher (Doliwa et al. 2014;

Gao et al. 2017), but has not addressed sequential decision
making tasks. To the best of our knowledge, our work is the
first to demonstrate the advantages of an anticipatory IRL
algorithm which can leverage the non-i.i.d. nature of highly
informative demonstrations from a teacher.

3 Problem formalism

3.1 Markov decision processes

We model the environment as a Markov decision process
(MDP), 〈S,A, T, R, γ, S0〉, where S is the set of states, A is
the set of actions, T : S × A × S → [0, 1] is the transition
function, R : S → R is the reward function, γ ∈ [0, 1) is
the discount factor, and S0 is the initial state distribution.
A policy π : S × A 7→ [0, 1] is a mapping from states
to a probability distribution over actions. We assume that
a stochastic optimal policy gives equal probability to all
optimal actions. The value of executing policy π starting
at state s ∈ S is defined as

V π(s) = E[

∞
∑

t=0

γtR(st) | π, s0 = s]. (1)

The Q-value of a state-action pair (s, a) is defined as

Qπ(s, a) = R(s) + γEs′∼T (·|s,a)[V
π(s′)] (2)

and we denote the optimal Q-value function as Q∗(s, a) =
maxπ Q

π(s, a).
As is common in the literature (Ziebart et al. 2008; Sadigh

et al. 2016; Pirotta and Restelli 2016; Barreto et al. 2017),
we assume that the reward function can be expressed as a
linear combination of features, φ : S 7→ R

k, so that R(s) =
wTφ(s) where w ∈ R

k is the vector of feature weights. This
assumption is not restrictive as these features can be nonlinear
functions of the state variables. We can write the expected
discounted return of a policy as

ρ(π) = E[
∞
∑

t=0

γtwTφ(st) | π] = wTµπ, (3)

where µπ = E[
∑∞

t=0 γ
tφ(st)|π].

3.2 Machine teaching

The machine teaching problem (Zhu 2015) is to select the
optimal training set D∗ that minimizes the teaching cost,
often defined as the size of the data set, and the teaching risk
which represents the teacher’s dissatisfaction with the model
learned by the student. We focus on the constrained form of
machine teaching (Zhu et al. 2018) defined as

min
D

TeachingCost(D) (4)

s.t. TeachingRisk(θ̂) ≤ ε (5)

θ̂ = MachineLearning(D) (6)

where D is the training set to be optimized, θ̂ is the model
the student learns under D, and ε ≥ 0 determines how much
the model learned by the student can differ from the learning
target of the teacher.

3.3 Problem definition

We now formulate the optimal teaching problem for IRL
as a machine teaching problem. We assume that the expert
teacher operates under a ground-truth reward, R∗, and is
able to demonstrate state-action pairs (s, a) by executing the
corresponding optimal policy π∗. A naive formulation of
the machine teaching problem for IRL would be to find the
minimal set of demonstrations, D, that enables an IRL agent
to learn R∗ within some ε teaching risk. However, IRL is ill-
posed (Ng and Russell 2000)—there are an infinite number of
reward functions that explain any optimal policy. Instead, we
focus on determining the minimal set of demonstrations that
enable a learner to find a reward function that results in an
optimal policy with performance similar to the performance
of the teacher’s policy under R∗. Specifically, we define the
policy loss of an estimated weight vector ŵ compared with
the true weight vector w∗ as

Loss(w∗, ŵ) = w∗T (µπ∗ − µπ̂), (7)

where π∗ is the optimal policy under w∗ and π̂ is the optimal
policy under ŵ. Equation (7) gives the difference in expected
return between the teacher’s policy π∗ and the expected re-
turn of the learner’s policy, when both are evaluated under

the teacher’s reward function R∗ = w∗Tφ(s). We can now
formalize the machine teaching problem for IRL.

Machine teaching problem for IRL: Given an MDP,M,

and the teacher’s reward function, R∗ = w∗Tφ(s), find the
set of demonstrations, D, that minimizes the following opti-
mization problem:

min
D

TeachingCost(D) (8)

s.t. Loss(w∗, ŵ) ≤ ε (9)

ŵ = IRL(D) (10)

where D is the set of demonstrations, and ŵ is the reward
recovered by the learner using Inverse Reinforcement Learn-
ing (IRL). This formalism covers both exact teaching (ε = 0)
and approximate teaching (ε > 0). In this work we define

TeachingCost(D) = |D| (11)

where, |D| can denote either the number of (s, a) pairs in D
or the number of trajectories in D; however, our proposed
approach can be easily extended to problems with different
teaching costs, e.g., where some demonstrations may be more
expensive or dangerous for the teacher.

3.4 Discussion

Like most machine teaching problems (Zhu et al. 2018), the
machine teaching problem for IRL is a difficult optimization
problem. A brute-force approach would require searching
over the power set of all possible demonstrations. This search
is intractable due to the size of the power set and the need
to solve an IRL problem for each candidate set of demon-
strations. One of our contributions is an efficient algorithm
for solving the machine teaching problem for IRL that only
requires solving a single policy evaluation problem to find

the expected feature counts of π∗ and then running a greedy
set-cover approximation algorithm.

Before discussing our proposed approach in detail, we first
introduce the notion of a behavioral equivalence class which
is a key component of our approximation algorithm. We will
also provide an overview and analysis of the work of Cakmak
and Lopes (2012) which provides the baseline and motivation
for our approach.

4 Behavioral Equivalence Classes

The behavioral equivalence class (BEC) of a policy π is de-
fined as the set of reward functions under which π is optimal:

BEC(π) = {w ∈ R
k | π optimal w.r.t. R(s) = wTφ(s)}.

(12)
In this section we briefly discuss how to calculate the be-
havioral equivalence class for both a policy and for a set of
demonstrations from a policy. Given an MDP with either
finite or continuous states and with a reward function repre-
sented as a linear combination of features, Ng and Russell
(2000) derived the behavioral equivalence class (BEC) for a
policy. We summarize their result as follows:

Theorem 1. (Ng and Russell 2000) Given an MDP, BEC(π)
is given by the following intersection of half-spaces:

wT (µ(s,a)
π − µ(s,b)

π) ≥ 0, (13)

∀a ∈ argmax
a′∈A

Q∗(s, a′), b ∈ A, s ∈ S, (14)

where w ∈ R
k are the reward function weights and

µ(s,a)
π = E[

∞
∑

t=0

γtφ(st)|π, s0 = s, a0 = a], (15)

is the vector of expected feature counts that result from taking
action a in state s and following π thereafter.

We can similarly define the BEC for a set of demonstra-
tions D from a policy π:

Corollary 1. BEC(D|π) is given by the following intersec-
tion of half-spaces:

wT (µ(s,a)
π − µ(s,b)

π) ≥ 0, ∀(s, a) ∈ D, b ∈ A. (16)

All proofs can be found in the appendix.

Example: Consider the grid world shown in Figure 1(a),
with four actions available in each state and deterministic
transitions. We computed the BEC using a featurized reward
function R(s) = wTφ(s), where w = (w0, w1) with w0

indicating the reward weight for a “white” cell and w1 indi-
cating the reward weight for the “grey” cell (see appendix for
full details). The resulting half-space constraints are shown
in Figure 1(b). The intersection of these half-spaces exactly
describes the set of rewards that make the policy shown in
Figure 1(a) optimal: both white and grey cells have negative
reward and the weight for the grey feature is low enough that
the optimal policy avoids the shaded cell when starting from
the top right cell.

to only use deterministic policies for teaching. We instead
propose a novel approach based on a set cover equivalence
which removes the need to estimate volumes and works for
both deterministic and stochastic teacher policies.

6 Set Cover Machine Teaching for IRL

Our proposed algorithm seeks to remedy the problems with
the UVM algorithm identified in the previous section in order
to find an efficient approximation to the machine teaching
problem proposed in Section 3.3.

Our first insight is the following:

Proposition 1. Consider an optimal policy π∗ for reward

R∗(s) = w∗Tφ(s). Given any weight vector w ∈ BEC(π∗),
if R(s) = wTφ(s) is not constant for all states in S, then
Loss(w∗, w) = 0.

This proposition says that if we have a non-degenerate
weight vector in the behavioral equivalence class for a policy
π∗, then we incur zero policy loss by using w rather than
w∗ for performing policy optimization. This follows directly
from Equation (12). Thus, to ensure that the policy loss con-
straint, Loss(w∗, ŵ) ≤ ε, holds in the machine teaching
problem, we can focus on finding a demonstration set D such
that the weight vector, ŵ, learned through IRL is in BEC(π∗).

Note that Proposition 1 also assumes that the IRL agent
being taught will not find a degenerate reward function if a
non-degenerate solution exists. This property is true of all
standard IRL methods (Gao et al. 2012; Arora and Doshi
2018). While it is possible that an IRL algorithm may return
a constant reward function (e.g., R(s) = 0, ∀s ∈ S) ifD = ∅,
the only way forD = ∅ to be the optimal solution for machine
teaching is if the resulting loss is less than ε, i.e.,

Loss(w∗, ŵ) = w∗T (µπ∗ − µπ̂) ≤ ε. (21)

For ε = 0, this will be false since a constant reward function
will almost surely lead to an optimal policy π̂ which does not
match the feature counts of the teacher’s policy, π∗.

Our second insight is based on the fact that the behavioral
equivalence class for π∗ is an intersection of half-spaces (The-
orem 1). Rather than give demonstrations until the uncertainty
volume, G(D), is less than some arbitrary value, demonstra-
tions should be chosen specifically to define BEC(π∗). Thus,
to obtain a feasible solution to the machine teaching prob-
lem for IRL we need to select a demonstration set such that
the corresponding intersection of half-spaces, BEC(D|π∗) is
equal to BEC(π∗).

Our final insight is to formulate an efficient approxima-
tion algorithm for the machine teaching problem for IRL
through a reduction to the set cover problem. This allows us
to avoid the difficult volume estimation problem required by
the UVM algorithm and focus instead on a well known dis-
crete optimization problem. From Section 4 we know that the
behavioral equivalence class of both a policy and a demon-
stration are both characterized by intersections of half-spaces,
and each demonstration from π∗ produces an intersection
of half-spaces which contains BEC(π∗). Thus, the machine
teaching problem for IRL (Section 3.3) with ε = 0 is an in-
stance of the set cover problem: we have a set of half-spaces
defining BEC(π∗), each possible trajectory from π∗ covers

zero or more of the half-spaces that define BEC(π∗), and we
wish to find the smallest set of demonstrations, D, such that
BEC(D|π∗) = BEC(π∗).

One potential issue is that, as seen in Figure 1, many half-
space constraints will be non-binding and we are only inter-
ested in covering the non-redundant half-space constraints
that minimally define BEC(π∗). To address this, we use lin-
ear programming to efficiently remove redundant half-spaces
constraints (Paulraj and Sumathi 2010) before running our
set cover algorithm (see appendix for details).

Note that this approach allows us to solve the machine
teaching IRL problem without needing to repeatedly solve
RL or IRL problems. The only full RL problem that needs
to be solved is to obtain π∗ from w∗. After π∗ is obtained,

we can efficiently solve for the feature expectations µ
(s,a)
π∗ by

solving the following equation

µ
(s,a)
π∗ = φ(s) + γEs′|a[µ

(s′)
π∗] (22)

where µ
(s)
π∗ = φ(s) + γEs′|π∗(s)[µ

(s′)
π∗]. These equations sat-

isfy a Bellman equation and can be solved for efficiently.

The values µ
(s,a)
π∗ and µ

(s)
π∗ are often called successor features

(Dayan 1993) in reinforcement learning and recent work has
shown that they can be efficiently computed for model-free
problems with continuous state-spaces (Barreto et al. 2017).

We summarize our approach as follows: Given π∗, the op-
timal policy under the teachers reward function w∗, (1) Solve

for the successor features µ
(s,a)
π∗ , (2) Find the half-space con-

straints for BEC(π∗) using Theorem 1, (3) Find the minimal
representation of BEC(π∗) using linear programming, (4)
Generate candidate demonstrations under π∗ from each start-
ing state and calculate their corresponding half-space unit
normal vectors using Corollary 1, and (5) Greedily cover all
half-spaces in BEC(π∗) by sequentially picking the candidate
demonstration that covers the most uncovered half-spaces.

We call this algorithm Set Cover Optimal Teaching (SCOT)
and give pseudo-code in Algorithm 1. In the pseudo-code we

use N̂[·] to denote the set of unit normal vectors for a given
intersection of half-spaces and \ to denote set subtraction. To
generate candidate demonstration trajectories we perform m
rollouts of π∗ for each start state. If π∗ is deterministic, then
m = 1 is sufficient.

Whereas UVM finds demonstrations that successively slice
off volume from the uncertainty region, SCOT directly es-
timates the minimal set of demonstrations that exactly con-
strain BEC(π∗). This removes both the need to calculate
high-dimensional volumes and the need to determine an ap-
propriate stopping threshold. SCOT also has the following
desirable properties:

Proposition 2. The Set Cover Optimal Teaching (SCOT)
algorithm always terminates.

Theorem 2. Under the assumption of error-free demon-
strations, SCOT is a (1 − 1/e)-approximation to the Ma-
chine Teaching Problem for IRL (Section 3.3) for the follow-
ing learning algorithms: Bayesian IRL (Ramachandran and
Amir 2007; Choi and Kim 2011), Policy Matching (Neu and
Szepesvári 2007), and Maximum Likelihood IRL (Babes et al.
2011; Lopes, Melo, and Montesano 2009).

Algorithm 1 Set Cover Optimal Teaching (SCOT)

Require: MDPM with set of possible initial states S0 and

reward function R∗(s) = w∗Tφ(s).
1: // Compute the behavioral equivalence class of π∗

2: Compute optimal policy π∗ forM and feature expecta-

tions µ
(s,a)
π∗ .

3: Use Theorem 1 to compute BEC(π∗).

4: U ← N̂[BEC(π∗)].
5: Remove redundant half-space constraints from U .
6: // Compute candidate demonstration trajectories
7: T = ∅
8: for all s0 ∈ S0 do
9: for i = 1, . . . ,m do

10: Generate trajectory τ = (s0, a0, . . . , sH−1, aH−1)
by starting at s0 and following π∗ for H steps.

11: T = T ∪ τ
12: Use Corollary 1 to calculate BEC(τ |π∗)
13: end for
14: end for
15: // Solve set cover using greedy approximation
16: D ← ∅, C ← ∅
17: while |U \ C| 6= 0 do

18: τgreedy = argmaxτ∈T

∣

∣

∣
N̂[BEC(τ |π∗)] ∩ U \ C

∣

∣

∣

19: D = D ∪ τgreedy
20: C = C ∪ N̂[BEC(τ |π∗)]
21: end while
22: return D

6.1 Algorithm comparison

To compare the performance of SCOT and UVM, we ran an
experiment on random 9x9 grid worlds with 8-dimensional
binary features per cell. We computed maximally informative
demonstration sets with SCOT and UVM using trajectories
consisting of single state-action pairs. We measured the per-
formance loss for each algorithm by running IRL to find
the maximum likelihood reward function given the demon-
strations, and then calculating both the policy loss and the
percentage of states where the resulting policy took a sub-
optimal action under the true reward. Table 2 shows that the
UVM algorithm underestimates the size of the optimal teach-
ing set of demonstrations, due to the difficulty of estimating
volumes as discussed earlier, resulting in high performance
loss. We tried sampling more points, but found that this only
slightly improved performance loss while significantly in-
creasing run-time. Compared to UVM, SCOT successfully
finds demonstrations that lead to the correct policy, with
orders of magnitude less computation.

To further explore the sensitivity of UVM to the number
of features, we ran a test on a fixed size grid world with vary-
ing numbers of features. We used a deterministic teaching
policy to ameliorate the problems with volume computation
discussed in Section 5. We found that SCOT is robust for high-
dimensional feature spaces, whereas UVM consistently un-
derestimates the minimum number of demonstrations needed
when there are 10 or more features, even when teaching a
deterministic policy (see appendix for full details).

7 Applications of Machine Teaching for IRL

We now discuss some novel applications of machine teaching
for IRL. One immediate application of SCOT is that it allows
the first rigorous and efficiently computable definition of
intrinsic teaching difficulty (teaching dimension) for IRL
benchmarks. In the following section we demonstrate how
SCOT can be used to benchmark active IRL algorithms by
providing a lower bound on sample complexity. Finally, we
demonstrate that SCOT can be incorporated into Bayesian
IRL to allow more efficient use of informative demonstrations
through counter-factual reasoning.

7.1 Bounding sample complexity for active IRL

Our first application is to provide a lower bound on the sample
complexity of learning a reward function via active queries
(Lopes, Melo, and Montesano 2009; Cui and Niekum 2017;
Brown, Cui, and Niekum 2018). To the best of our knowledge,
no one has tried to benchmark existing algorithms against op-
timal queries, due to the combinatorial explosion of possible
queries. Note that SCOT requires knowledge of the optimal
policy, so it cannot be used directly as an active learning algo-
rithm. Instead, we use SCOT as a tractable approximation to
the optimal sequence of queries for active IRL. SCOT gener-
ates a sequence of maximally informative demonstrations via
the set cover approximation. Thus, we can treat the sequence
of demonstrations found by SCOT as an approximation of
the best sequence of active queries to ask an oracle when
performing active IRL.

We evaluated three active query strategies from the litera-
ture: Max Entropy, a strategy proposed by Lopes et al. (Lopes,
Melo, and Montesano 2009) that queries the state with the
highest action entropy, Max Infogain, a strategy proposed by
Cui at al. (Cui and Niekum 2017) that selects the trajectory
with the largest expected change in the posterior P (R|D),
and Max VaR, a recently proposed risk-aware active IRL
strategy (Brown, Cui, and Niekum 2018) that utilizes prob-
abilistic performance bounds for IRL (Brown and Niekum
2018) to query for the optimal action at the state where the
maximum likelihood action given the current demonstrations
has the highest 0.95-Value-at-Risk (95th-percentile policy
loss over the posterior) (Jorion 1997). We compare these al-
gorithms against random queries and against the maximally
informative sequence of queries found using SCOT.

We ran an experiment on 100 random 10x10 grid worlds
with 10-dimensional binary features. Figure 2 shows the per-
formance loss for each active IRL algorithm. Each iteration
corresponds to a single state query and a corresponding opti-
mal trajectory from that state. After adding each new trajec-
tory to D, the MAP reward function is found using Bayesian
IRL (Ramachandran and Amir 2007), and the corresponding
optimal policy is compared against the optimal policy under
the true reward function.

The results in Figure 2 show that all active IRL approaches
perform similarly for early queries, but that Max Entropy
ends up performing no better than random as the number of
queries increases. This result matches the findings of prior
work which showed that active entropy queries perform simi-
larly to random queries for complex domains (Lopes, Melo,

Science and Systems Workshop on Mathematical Models,
Algorithms, and Human-Robot Interaction.

Dayan, P. 1993. Improving generalization for temporal
difference learning: The successor representation. Neural
Computation 5(4):613–624.

Doliwa, T.; Fan, G.; Simon, H. U.; and Zilles, S. 2014. Recur-
sive teaching dimension, vc-dimension and sample compres-
sion. The Journal of Machine Learning Research 15(1):3107–
3131.

Fu, J.; Luo, K.; and Levine, S. 2017. Learning robust re-
wards with adversarial inverse reinforcement learning. arXiv
preprint arXiv:1710.11248.

Gao, Y.; Peters, J.; Tsourdos, A.; Zhifei, S.; and Meng Joo,
E. 2012. A survey of inverse reinforcement learning tech-
niques. International Journal of Intelligent Computing and
Cybernetics 5(3):293–311.

Gao, Z.; Ries, C.; Simon, H. U.; and Zilles, S. 2017.
Preference-based teaching. Journal of Machine Learning
Research 18(31):1–32.

Goldman, S. A., and Kearns, M. J. 1995. On the complex-
ity of teaching. Journal of Computer and System Sciences
50(1):20–31.

Gunning, D. 2017. Explainable artificial intelligence (xai).

Hadfield-Menell, D.; Russell, S. J.; Abbeel, P.; and Dragan,
A. 2016. Cooperative inverse reinforcement learning. In Ad-
vances in Neural Information Processing Systems 29. 3909–
3917.

Ho, M. K.; Littman, M.; MacGlashan, J.; Cushman, F.; and
Austerweil, J. L. 2016. Showing versus doing: Teaching by
demonstration. In Advances In Neural Information Process-
ing Systems, 3027–3035.

Huang, S. H.; Held, D.; Abbeel, P.; and Dragan, A. D. 2017.
Enabling robots to communicate their objectives. In Robotics:
Science and Systems.

Jorion, P. 1997. Value at risk. McGraw-Hill, New York.

Liu, J., and Zhu, X. 2016. The teaching dimension of linear
learners. Journal of Machine Learning Research 17(162):1–
25.

Lopes, M.; Melo, F.; and Montesano, L. 2009. Active learn-
ing for reward estimation in inverse reinforcement learning.
In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 31–46. Springer.

Mei, S., and Zhu, X. 2015. Using machine teaching to
identify optimal training-set attacks on machine learners. In
AAAI, 2871–2877.

Melo, F. S.; Lopes, M.; and Ferreira, R. 2010. Analysis of in-
verse reinforcement learning with perturbed demonstrations.
In ECAI, 349–354.

Michini, B.; Walsh, T. J.; Agha-Mohammadi, A.-A.; and How,
J. P. 2015. Bayesian nonparametric reward learning from
demonstration. IEEE Transactions on Robotics 31(2):369–
386.

Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978.
An analysis of approximations for maximizing submodular
set functionsi. Mathematical Programming 14(1):265–294.

Neu, G., and Szepesvári, C. 2007. Apprenticeship learning
using inverse reinforcement learing and gradient methods. In
Proc. of 23rd Conference Annual Conference on Uncertainty
in Artificial Intelligence, 295–302.

Ng, A. Y., and Russell, S. J. 2000. Algorithms for inverse
reinforcement learning. In ICML, 663–670.

Paulraj, S., and Sumathi, P. 2010. A comparative study of
redundant constraints identification methods in linear pro-
gramming problems. Mathematical Problems in Engineering.

Pirotta, M., and Restelli, M. 2016. Inverse reinforcement
learning through policy gradient minimization. In AAAI.

Ramachandran, D., and Amir, E. 2007. Bayesian inverse rein-
forcement learning. In Proceedings of the 20th International
Joint Conference on Artifical intelligence, 2586–2591.

Rathnasabapathy, B.; Doshi, P.; and Gmytrasiewicz, P. 2006.
Exact solutions of interactive pomdps using behavioral equiv-
alence. In Proceedings of the fifth international joint confer-
ence on Autonomous agents and multiagent systems, 1025–
1032.

Sadigh, D.; Sastry, S. S.; Seshia, S. A.; and Dragan, A. 2016.
Information gathering actions over human internal state. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 66–73.

Sadigh, D.; Dragan, A. D.; Sastry, S. S.; and Seshia, S. A.
2017. Active preference-based learning of reward functions.
In Proceedings of Robotics: Science and Systems (RSS).

Settles, B. 2012. Active learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning 6(1):1–114.

Shafto, P., and Goodman, N. 2008. Teaching games: Sta-
tistical sampling assumptions for learning in pedagogical
situations. In Proceedings of the 30th annual conference of
the Cognitive Science Society, 1632–1637.

Simonovits, M. 2003. How to compute the volume in high
dimension? Mathematical programming 97(1):337–374.

Singla, A.; Bogunovic, I.; Bartók, G.; Karbasi, A.; and
Krause, A. 2014. Near-optimally teaching the crowd to
classify. In ICML, 154–162.

Smith, R. L. 1984. Efficient monte carlo procedures for
generating points uniformly distributed over bounded regions.
Operations Research 32(6):1296–1308.

Stone, P.; Kaminka, G. A.; Kraus, S.; Rosenschein, J. S.;
et al. 2010. Ad hoc autonomous agent teams: Collaboration
without pre-coordination. In AAAI.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge.

Valiant, L. G. 1979. The complexity of computing the
permanent. Theoretical computer science 8(2):189–201.

Wolsey, L. A. 1982. An analysis of the greedy algorithm
for the submodular set covering problem. Combinatorica
2(4):385–393.

Zeng, Y., and Doshi, P. 2012. Exploiting model equivalences
for solving interactive dynamic influence diagrams. Journal
of Artificial Intelligence Research 43:211–255.

Zhang, H.; Parkes, D. C.; and Chen, Y. 2009. Policy teaching
through reward function learning. In Proceedings of the 10th
ACM conference on Electronic commerce, 295–304. ACM.

Zhu, X.; Singla, A.; Zilles, S.; and Rafferty, A. N.
2018. An overview of machine teaching. arXiv preprint
arXiv:1801.05927.

Zhu, X. 2015. Machine teaching: An inverse problem to
machine learning and an approach toward optimal education.
In AAAI, 4083–4087.

Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum entropy inverse reinforcement learning. In
AAAI, 1433–1438.

A Behavioral equivalence classes

Theorem 1. (Ng and Russell 2000) Given an MDP, BEC(π)
is given by the following intersection of halfspaces:

wT (µ(s,a)
π − µ(s,b)

π) ≥ 0, (25)

∀a ∈ argmax
a′∈A

Q∗(s, a′), b ∈ A, s ∈ S (26)

w ∈ R
k are the reward function weights, µ

(s,a)
π =

E[
∑∞

t=0 γ
tφ(st)|π, s0 = s, a0 = a], is the vector of ex-

pected feature counts from taking action a in state s and
acting optimally thereafter.

Proof. In every state s we can assume that there is one
or more optimal actions a. For each optimal action a ∈
argmaxa′∈A Q∗(s, a′), we then have by definition that

Q∗(s, a) ≥ Q∗(s, b), ∀b ∈ A (27)

Rewriting this in terms of expected discounted feature counts
we have

wTµ(s,a)
π ≥ wTµ(s,b)

π , ∀b ∈ A (28)

Thus, the behavioral equivalence class is the intersection of
the following half-spaces

wT (µ(s,a)
π − µ(s,b)

π) ≥ 0, (29)

∀a ∈ argmax
a′∈A

Q∗(s, a′), b ∈ A, s ∈ S. (30)

We can define the BEC for a set of demonstrations D from
a policy π similarly:

Corollary 1. BEC(D|π), is given by the following intersec-
tion of halfspaces:

wT (µπ(s, a)− µπ(s, b)) ≥ 0, ∀(s, a) ∈ D, b ∈ A. (31)

Proof. The proof follows from the proof of Theorem 1 by
only considering half-spaces corresponding to optimal (s, a)
pairs in the demonstration.

B Example

Given an MDP with finite states and actions, we can calculate
BEC(π) via the following result, proved by Ng and Russell
(Ng and Russell 2000), which is equivalent to Theorem 1.

Corollary 2. (Ng and Russell 2000) Given a finite state space
S with a finite number of actions A, policy π is optimal if
and only if reward function R satisfies

(Tπ −Ta)(I− γTπ)
−1R ≥ 0, ∀a ∈ A (32)

where Ta is the transition matrix associated with always
taking action a, Tπ is the transition matrix associated with
policy π, and R is the column vector of rewards for each
state s ∈ S .

Proof. See (Ng and Russell 2000).

Consider the grid world shown in Figure 1(a) (see the main
text) with four actions (up, down, left, right) available in each
state and deterministic transitions. Actions that would leave
the grid boundary (such as taking the up action from the
states in the top row) result in a self-transition. We computed
the BEC region defined by Theorem 2:

(Tπ −Ta)(I− γTπ)
−1Φw ≥ 0

for a ∈ {up, down, left, right}, setting γ = 0.9 and using
a featurized reward function R(s) = wTφ(s), where w =
(w0, w1) is the feature weight vector with w0 indicating the
reward weight for a “white” cell and w1 indicating the reward
weight for a “shaded” cell. We can express the vector of state
rewards as R = Φw, where

Φ = [φ(s0)
T , φ(s1)

T , φ(s2)
T , φ(s3)

T , φ(s4)
T , φ(s5)

T]

and φ(si) = (1, 0) for i ∈ {0, 2, 3, 4, 5} and φ(s1) = (0, 1),
are the feature vectors for each state numbered left to right
top to bottom.

The computation results in the following non-redundant
constraints that fully define BEC(π) for π given in Figure 1:

2.539w0 − w1 ≥ 0, −w0 ≥ 0. (33)

These constraints exactly describe the set of rewards that
make the policy shown in Figure 1(a) optimal. This can be
seen by noting that the constraints ensure that all feature
weights are non-positive, because a positive weights would
cause the optimal policy to avoid early termination to accumu-
late as much reward as possible. We also have the constraint
that if we start in state 3, it is better to move down and around
the shaded state then to go directly to the terminal state, this
means

w0 + γw0 + γ2w0 + γ3w0 + γ4w0 ≥ w0 + γw1 + γ2w0

(34)

⇔ (1 + γ2 + γ3)w0 ≥ w1

(35)

which gives us the second constraint using γ = 0.9. It is
straightforward to complete similar inequalities for all states
to check that 0 ≥ w0 and 2.539w0 ≥ w1 are the only non-
redundant constraints.

Computing the intersection of halfspaces corresponding to
the demonstration gives the following convex cone

−w1 ≥ 0, w1 − w2 ≥ 0. (36)

Note that the second constraint on the difference between
the two feature weights is looser than the BEC region for

be fully defined by only a subset of the possible demonstra-
tions. Thus, our machine teaching algorithm seeks to select
the minimum number of demonstrations that cover all of the
rows of Af .

For continuous domains, we cannot fully enumerate every
optimal (s, a)-pair. However, it is possible to approximate
BEC(π∗) by sampling optimal rollouts from the state space.
We then solve the constraint set-cover problem using these
same sampled rollouts, so we are again guaranteed to ter-
minate once all demonstrations are chosen, and will likely
terminate after only selecting a small subset of the sampled
demonstrations.

Proposition 3. The set-cover machine teaching algorithm
is a (1 − 1/e)-approximation to the minimum number of
demonstrations needed to fully define BEC(π∗).

Proof. This result follows from the submodularity of the set
cover problem (Wolsey 1982; Nemhauser, Wolsey, and Fisher
1978).

F Optimality of set cover algorithm

We now prove the condition under which our proposed al-
gorithm is a (1-1/e)-approximation of the solution to the
Machine Teaching Problem for IRL.

Both the UVM and SCOT algorithms focus on teach-
ing halfspaces to an IRL algorithm to define the behavioral
equivalence region, BEC(π∗). Thus, they assume that when
the IRL algorithm receives state-action pair (s, a) from the
demonstrator, the IRL algorithm will enforce the constraint
that Q∗(s, a) ≥ Q∗(s, b), ∀b ∈ A. We call this assumption
the halfspace assumption.

Definition 1. The halfspace assumption is that Q∗(s, a) ≥
Q∗(s, b), ∀b ∈ A, (s, a) ∈ D.

We now prove that, under the assumption of error-free
demonstrations, three common IRL algorithms make the
halfspace assumption: Bayesian IRL (Ramachandran and
Amir 2007; Choi and Kim 2011), Policy Matching (Neu and
Szepesvári 2007), and Maximum Likelihood IRL (Lopes,
Melo, and Montesano 2009; Babes et al. 2011).

Lemma 1. Under the assumption of error-free demon-
strations, Bayesian IRL (Ramachandran and Amir 2007;
Choi and Kim 2011) makes the halfspace assumption.

Proof. Bayesian IRL uses likelihood

Popt(D|R) =
∏

(s,a)∈D

eαQ
∗(s,a)

∑

b∈A eαQ∗(s,b)
(40)

where Q∗ is the optimal Q-function under reward function
R and α ∈ [0,∞) represents the confidence that the demon-
strations come from π∗. As α→∞, Bayesian IRL assume
error-free demonstrations and we have

lim
α→∞

Popt(D|R) = 0 ⇐⇒ ∃b ∈ A, s.t. Q∗(s, a) < Q∗(s, b).

(41)
Thus, Bayesian IRL only gives positive likelihood to reward
functions R, if Q∗(s, a) ≥ Q∗(s, b) ∀b ∈ A, (s, a) ∈ D.

Corollary 3. Under the assumption of error-free demonstra-
tions, Policy Matching (Neu and Szepesvári 2007) makes the
optimal teaching assumption.

Proof. Melo et al. (Melo, Lopes, and Ferreira 2010) proved
that Bayesian IRL (Ramachandran and Amir 2007) and Pol-
icy Matching (Neu and Szepesvári 2007) share the same
reward solution space. Thus, the lemma follows from the
previous proof.

Corollary 4. Under the assumption of error-free demonstra-
tions, Maximum Likelihood IRL (Lopes, Melo, and Monte-
sano 2009; Babes et al. 2011) makes the optimal teaching
assumption.

Proof. Maximum Likelihood IRL uses the same likelihood
function as Bayesian IRL, thus the result follows from the
previous lemma.

We can now prove the following Theorem:

Theorem 2. Under the assumption of error-free demonstra-
tions, SCOT is a (1 − 1/e)-approximation to the Machine
Teaching Problem for IRL (Section 3.3) for the following
learning algorithms:

• Bayesian Inverse Reinforcement Learning (Ramachandran
and Amir 2007; Choi and Kim 2011)

• Policy Matching (Neu and Szepesvári 2007)

• Maximum Likelihood Inverse Reinforcement Learning
(Lopes, Melo, and Montesano 2009; Babes et al. 2011)

Proof. Given an IRL algorithm that makes the halfspace
assumption, by Proposition 3 SCOT will find a set of demon-
strations that are a (1-1/e)-approximation of the maximally
informative demonstration set. Thus, by Lemma 1, in the
limit as α→∞, the SCOT machine teaching algorithm is a
(1-1/e)-approximation to the optimal demonstration set for
Bayesian IRL. Similarly, by corollaries 3 and 4, SCOT is a
(1-1/e)-approximation to the optimal demonstration set for
Policy Matching and Maximum Likelihood IRL.

G Algorithm comparison full results

We compared the SCOT algorithm with the UVM algorithm
of Cakmak and Lopes (Cakmak and Lopes 2012). We also
report here a comparison against SCOT without removing
redundancies and against random selected demonstrations
from the optimal policy.

We ran an experiment on random 9x9 grid worlds with
8 binary indicator features per cell with one feature active
per cell and γ = 0.95. For this experiment the demonstra-
tions were single state-action pairs. We measured the 0-1
policy loss (Michini et al. 2015) for each demonstration
set by computing the percentage of states where the result-
ing policy took a suboptimal action under the true reward.
The policy was found by first finding the maximum likeli-
hood reward function (Lopes, Melo, and Montesano 2009;
Babes et al. 2011), by using BIRL (Ramachandran and Amir
2007) with a uniform prior and α = 100. We ran the MCMC
chain for 10,000 steps using α = 100 and step size of 0.005.

a uniform prior to obtain the MAP reward function given
demonstrations for each active IRL algorithm. Each active
query resulted in an optimal trajectory of length 20 demon-
strated from the optimal policy. We ran the MCMC chain for
10,000 steps using α = 100 and step size of 0.005.

I BIO-IRL algorithm specifics

We calculate angular similarity as follows: We take all the
normal vectors from BEC(D|π∗) and do a greedy matching to
BEC(π∗). Once we match the first vector in BEC(D|π∗) with
the closest vector in BEC(R), we remove the best match from
BEC(π∗) and continue with the next vector in BEC(D|π∗).
When there are no remaining half-spaces in BEC(D|π∗) The
algorithm returns the cumulative sum of half-space similari-
ties divided by the number of half-spaces in BEC(π∗).

Because our normal vectors can have positive and negative
elements, we define the similarity between two vectors x and
y as

similarity(x,y) = 1− cos−1(x · y)/π. (42)

I.1 Markov chain BIO-IRL experiment

We used α = 100 as the softmax temperature parameter for
BIRL and BIO-IRL.

I.2 Ball sorting BIO-IRL experiment

We discretized the table top into a 6x6 grid of positions, all of
which are potential starting states. The four discrete actions
move the ball along the table top in the four cardinal direc-
tions. The demonstrations consisted of optimal trajectories
found using Value Iteration of length 10. BIRL and BIO-
IRL both used the following parameters: α = 100, MCMC
chain length=1000, MCMC step size = 0.05. BIO-IRL used
λ = 100.

