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Abstract— Estimating statistical uncertainties allows au-
tonomous agents to communicate their confidence during task
execution and is important for applications in safety-critical
domains such as autonomous driving. In this work, we present
the uncertainty-aware imitation learning (UAIL) algorithm for
improving end-to-end control systems via data aggregation.
UAIL applies Monte Carlo Dropout to estimate uncertainty in
the control output of end-to-end systems, using states where it is
uncertain to selectively acquire new training data. In contrast to
prior data aggregation algorithms that force human experts to
visit sub-optimal states at random, UAIL can anticipate its own
mistakes and switch control to the expert in order to prevent
visiting a series of sub-optimal states. Our experimental results
from simulated driving tasks demonstrate that our proposed
uncertainty estimation method can be leveraged to reliably
predict infractions. Our analysis shows that UAIL outperforms
existing data aggregation algorithms on a series of benchmark
tasks.

I. INTRODUCTION

With recent advancement in training deep neural networks,

end-to-end systems have been shown to outperform their

modularized counterparts in a variety of tasks [4, 21, 30].

However, end-to-end control of robotic systems remains

challenging and has attracted much recent research effort [3,

19, 23, 26, 33].

One disadvantage of end-to-end learning is that it does

not typically offer the same level of transparency in decision-

making as simpler, more traditional systems, largely obstruct-

ing any efforts to make safety guarantees or identify failure

cases in advance.

Developing methods for estimating the predictive uncer-

tainty of end-to-end systems is one way to determine whether

a learning agent is producing behaviors that should not be

trusted. This work investigates how a learning agent’s ability

to detect uncertain states and return an “I don’t know”

response can be used to predict infractions, improve the

quality of the data collected, and reduce the amount of

demonstrations a human must provide.

One major difficulty in training end-to-end robotic systems

is the scarcity of data. Because human effort is often a

constraint during data collection, it is desirable to collect

the most useful data possible on each trial. For training

purposes, high-quality data should include both successful

trials and corrective behaviors that show how to recover from

bad states.
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Since there exist some states the learning agent should

never visit (such as crashes in autonomous driving tasks), it is

important to explore bad states in a controlled manner. Given

the non-i.i.d. nature of inputs to robotic control tasks, early

errors often propagate throughout task execution, which leads

to compounding errors and a qudratically growing regret

bound in the time horizon of the task, as shown in the work of

Ross and Bagnell [27]. By identifying the point of departure

from the optimal policy, a system can target for corrective

behaviors.

Ross et al. [28] presented how imitation learning can be

reduced to no-regret online learning by randomly switching

control between the learning agent and the human demon-

strator during task execution. Laskey et al. [16] have

recently shown the benefit of injecting control noise into

optimal demonstration in order to learn corrective behaviors.

However, these methods do not leverage the input state to

directly reason about whether it is potentially useful data for

improving the performance of an underlying model.

In this work, we propose an active online imitation

learning algorithm for deep end-to-end control systems. Our

method utilizes predictive uncertainty to anticipate mistakes

and switches control to the human expert at an anticipated

mistake state to prevent visiting a series of bad states. Given

an initial model, our proposed method will allow an imita-

tion learning agent to minimize the number of sub-optimal

states visited while still collecting labeled data at potentially

interesting states. Without making unnecessary mistakes, the

imitation learning agent is then able to collect more useful

data given the same amount of demonstration time. As an

on-policy learning algorithm as the method proposed by

Ross et al. [28], our method also shares the same no-regret

guarantees with online data aggregation algorithms of the

same kind. Our experiments demonstrate with an end-to-end

autonomous driving system that, given the same amount of

data collection time and human effort, our proposed system

improved performance of an imitation learning model more

than the alternative methods.

II. RELATED WORK

Our work builds on recent advances in predictive uncer-

tainty estimation for deep networks and is closely related to

the field of imitation learning.

A. Uncertainty Estimation for Deep Networks

In machine learning, uncertainty of a point prediction has

two major sources: the inherent data distribution1 and the

1In certain literature [24, 25], the stochasticity from data distribution is
referred to as risk instead of uncertainty.
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useful for the learning agent. Instead of on-policy learning,

CBA requests label on demand, which may not be suitable

for high-frequency decision making tasks with continuous

state-action spaces such as driving.

III. METHODOLOGY

Given an end-to-end continuous control task and an initial

model, it is desirable to improve the model’s performance

with as few data points as possible while keeping the expert

from visiting a series of sub-optimal states. Our proposed on-

line data aggregation algorithm has two major components:

uncertainty estimation and active data acquisition.

A. Uncertainty Estimation

Given an input (image and/or measurements) x, an end-

to-end control system outputs normalized continuous signals

y (e.g. steering angle of a car). Applying MC-Dropout, a set

of output samples can be drawn for the same input x from

multiple forward passes, with which we can obtain a discrete

distribution 3 of the output samples. A desirable uncertainty

score should capture the level of inconsistency in this discrete

sample distribution from all aspects.

Let {yn} denote the set of discretized output samples

drawn from n forward passes, c denote a class and c∗ denote

the mode (which can be used as the actual control output).

Entropy H and variational ratio VR are two important

measures for capturing categorical uncertainty [11]:

H({yn}) = −
∑

c

∑
n
1[yn, c]

N
log[

∑
n
1[yn, c]

N
] (1)

VR({yn}, c∗) = 1−

∑
n
1[yn, c∗]

N
(2)

where 1 denotes the indicator function.

At the same time, end-to-end control models operate

on time-series input and output continuous control signals.

Therefore, we also compute the standard deviation (from the

mode) SD and temporal divergence TD of {yn}, i.e. the

KL-divergence between the output distribution of time step

k and (k − 1). Let {yn}k be the output set at time step k

(conditioned on input xk):

SD({yn}, c∗) =

∑
n
||yn − c∗||2

N
(3)

TD({yn}
k
, {yn}

k−1
) = KL[p({yn}

k
)||p({yn}

k−1
)] (4)

Combining the above measures, our proposed uncertainty

score describes the level of inconsistency in the output

sample distribution by taking into account categorical un-

certainty, temporal smoothness and the expected error in the

output distribution:

U({yn}
k
, {yn}

k−1
) =

[TD({yn}
k
, {yn}

k−1
) · H({yn}

k
) · VR({yn}

k
, c∗)

+ λSD({yn}
k
, c∗)]2 (5)

3The granularity of discretization is problem-specific and should be
balanced with the number of samples drawn.

Algorithm 1 UAIL (Input: Environment P , Initial Demon-

strations D0, Expert Policy π∗, Uncertainty Threshold η,

Time Window T , Sample Size N , Learning Episodes E,

Batch Size B; Output: Policy π)

• Initialize demonstration set D = D0;

• Repeat for E times:

1) Train neural network policy π with D;

2) Sample initial state s0 from P and set t = 0;

3) Initialize Uncertainty Array U [T ];
4) while size of D is less than B:

a) Obtain {yn}
t

with MC-Dropout on st;

b) Compute U [t mod T ] = U({yn}
t
, {yn}

t−1
) ;

c) D = D ∪ {st, π
∗(st)};

d) if
∑

T

k=0
U [k] > η: st = P (st, π

∗(st));
e) else: st = P (st, π(st));

• return π

Empirically 4, TD, VR and H values are noisy when

used alone and therefore are multiplied as one term in the

uncertainty score function. The λ term is used to weigh SD

such that all the terms are on the same order of magnitude.

Applying a quadratic filter helps to further reduce noise and

balance false-positive and true-positive rates.

B. Active Data Acquisition

In imitation learning, experts often demonstrate only opti-

mal actions and therefore seldom visit sub-optimal states.

However, with limited training data and non-i.i.d. inputs,

the learning agent is bound to make mistakes and visit

adversarial states that are sub-optimal. It is desirable to also

collect action labels at these adversarial states.

DAgger [28] addresses this issue by switching controls in

between the learning agent and the human expert at random

during task execution and collecting only the human’s control

signals. However, random control switches often makes

it hard for humans to demonstrate naturally due to the

sparsity of actual feedback. Laskey et al. proposed DART

[16], which, instead of forcing the demonstrator to visit

sub-optimal states under the agent’s policy, approximates

the noise in the learned policy during off-policy imitation

learning. DART utilizes control noise to explore the bound-

ary between good and bad states during data collection.

However, collection process can be made more effective by

actively detecting adversarial states.

With uncertainty estimations, a learning agent can now

predict when it is likely to make a mistake and switch

control to the human expert in order to prevent visiting

a series of sub-optimal states. We propose an uncertainty-

based data aggregation algorithm named UAIL (Uncertainty-

Aware Imitation Learning), which detects adversarial states

actively in order to fix the learning agent’s mistake as soon

as possible. As shown in Algorithm 1, per-frame uncertainty

in a short time window T is accumulated for estimating the

4Note that the exact form of the uncertainty score function can be domain-
specific and network-specific.



total uncertainty at time t to decide whether the agent should

switch control to the human expert. The action that the expert

takes is recorded as the optimal action for all input frames.

The data collection and model training process alternates.

IV. EXPERIMENT SETUP

We tested our method in end-to-end autonomous driving

domain. Existing end-to-end driving networks have shown

their ability to perform road-following and obstacle avoid-

ance [2, 3, 23, 26]. Recent work has been exploring how

to leverage these capabilities for practical use. Codevilla et

al. [6] proposed to use a command-conditional network to

address the ambiguity [26] in learning the optimal action

to take at intersections. The learned model can then be

combined with a high-level planner that issues route com-

mands. We employed this model for evaluating our uncer-

tainty estimation technique and data aggregation algorithm

on autonomous driving tasks. We conducted experiments in

the CARLA 3D driving simulation environment [8].

A. Uncertainty Estimation

While the performance of MC-Dropout for uncertainty

estimation has been evaluated in prior work [9, 11, 17],

leveraging such uncertainty estimation for predicting infrac-

tions in temporal decision making tasks, to the best of our

knowledge, has not been previously explored.

Our proposed uncertainty estimation technique was eval-

uated on an existing autonomous driving model provided by

Codevilla et al. [6]. The model was trained on two hours of

human-driving data collected in simulation in Town 1 in the

CARLA environment. The imitation network takes image

of the front camera and the speed of the vehicle as input

and outputs steering angle and throttle value. The imitation

agent and our uncertainty estimation system are tested in

a novel environment (Town 2) with both seen and unseen

weather conditions using a subset5 of test cases provided

in the CARLA benchmark [8]. Collisions, intersections with

the opposite lane, and driving onto the curb are recorded

as infractions. The network outputs two control signals:

steering angle and throttle value. Uncertainties for the two

control signals were computed independently and summed

with weights in the total uncertainty estimation function. The

tested uncertainty estimation signals are:

1) Steer Error SDsteer;

2) Throttle Error SDthrottle;

3) Total Uncertainty (Usteer + αUthrottle);
In our tests, 20 output samples were used per input. The

value of α was set empirically as 0.6.

B. Active Data Acquisition

For an end-to-end control task, we hypothesize that:

1) Given a pool of training data, the subset selected with

our uncertainty estimations will improve an agent’s

performance more than a subset selected randomly;

5Our test set focuses on cases where the provided model performs poorly,
i.e. has one or more infractions across trials.

2) Given same amount of data collection time and hu-

man effort, data collected with UAIL will improve

an agent’s performance more than data collected with

alternative methods.

To test these hypotheses, we obtained the set of demonstra-

tion data provided by Codevilla et al. [6] and cleaned it up

by removing data files that contained infractions. We refer to

this data set as the passive dataset. We selected a subset of

data files from the clean data set and used it as the starter set

from which we will improve the trained model’s performance

using different data selection methods.

To test hypothesis 1), we randomly sampled a fixed

amount of data from passive and added it to the starter

set to serve as a baseline for further comparison. We then

processed the passive dataset using our proposed uncertainty

scoring function and obtained a set of data named active filter

by sorting all the data files by their accumulated uncertainty

and adding the top ones to starter set such that active filter

has the same size as that of baseline.

To test hypothesis 2), we collected new demonstration data

in Town 1 by recording human drivers operating the simu-

lated car (using a Logitech G29 steering wheel controller)

under three different conditions: stochastic mixing, random

noise, and UAIL, where stochastic mixing and random noise

are the one-step versions of DAGGER and DART. A total

number of 12 participants6 contributed to the driving data,

which amounts to 2 hours of driving per condition. The

obtained three different datasets are all of the same size as

baseline and their compositions are:

• Stochastic mixing: Starter Set and newly collected data

with 40% agent control at random;

• Random noise: Starter Set and newly collected data with

injected random noise within 30° of the ego-vehicle’s

current heading at every 5 frames;

• UAIL: Starter Set and newly collected data with active

control switch at high uncertainty states.

The parameters for designing the three different conditions

were chosen to control the level of human effort required

and were set empirically such that the agent takes control

or injects noise as frequently as possible but at a level such

that the vehicle is still controllable for experienced human

drivers. A preliminary user study was conducted to serve as a

measure for how well the level of human effort is controlled.

The user study collected subjective views of the participants

on how they would rank the easiness of control under the

three different conditions (without knowing which is which).

We created our own Intersections benchmark with the de-

fault maps in CARLA to extensively test the learned models’

performance on handling intersections. The benchmark was

designed to have a balanced number of test cases among left

turns, right turns, and go-straight scenarios at intersections.

611 out of 12 participants have a US-issued driving license and 1 has a
learner’s permit.
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Fig. 2: ROC curves for predicting infractions in test environment:(a)(b)(c) plot different uncertainty functions under different

time-step buffers; (d) plots the total uncertainty function under different commands with 5 time-step buffer.

V. RESULTS

A. Uncertainty Estimation

We evaluated how well our proposed candidate uncertainty

functions predict an infraction by plotting their receiver

operating characteristic (ROC) curves. Since delays are

expected in between a high-uncertainty estimation and an

infraction, we employed time-step buffers to account for

the variable delay when evaluating the predictions. A k-

time-step buffer will allow any prediction found to be less

than k time-steps ahead an infraction to be counted as a

true positive. Time-step buffers with 3, 5, and 10 time-

steps7 are used to evaluate different uncertainty functions.

Since the network has a branched structure, ROC curves

under different commands are plotted in Figure 2(d). The

ROC curves under different commands have different shapes,

which indicates that different threshold values should be

used to achieve similar true-positive ratios across different

commands.

Figure 2 shows the ROC curves for the candidate signals.

The smaller the time-step buffer is, the more likely an

7In our simulated experiments, with 20 MC-Dropout samples, the FPS is
around 3 and therefore 3 time-steps are about 1 second. (The low FPS was
due to running both the driving network and CARLA simulation on a local
machine.)

Conditions Median Uncertainty Value

Map Weather Agents Follow Left Right Straight

Town1 Seen No 0.694 0.827 0.868 0.667

Town1 Seen Yes 0.739 0.823 0.854 0.717

Town1 Unseen Yes 0.737 0.870 0.903 0.757

Town2 Seen Yes 0.759 0.852 0.881 0.815

Town2 Unseen Yes 0.740 0.809 0.952 0.753

Map Town1 Avg. 0.788

Map Town2 Avg. 0.820

Seen Weather Avg. 0.791

Unseen Weather Avg. 0.815

TABLE I: Median Uncertainty Value in Different Scenarios

(a) Selected frames with estimated uncertainty below threshold
tend to correspond with scenarios in which the agent has collected
many training data.

(b) Selected frames with estimated uncertainty above threshold
tend to correspond with scenarios containing lighting changes,
unseen agents or infractions.

Fig. 3: Example CARLA frames from on-line uncertainty mon-
itoring. (Note: these are not input to the network but CARLA
graphical displays. The network takes input from a front facing
camera mounted on the car.)

estimation will be treated as false positive, in which cases

leveraging past estimations could help predicting infractions.

As indicated by the area under the ROC curves, our proposed

uncertainty estimation function outperforms raw standard

deviation measures (i.e. Steer and Throttle errors).

Given a desired true-positive/false-positive ratio, an un-

certainty threshold can be selected for online monitoring

purpose. Figure 3 shows example frames that are below

or above the selected threshold during online monitoring.

Figure 4 shows 2D-map projections of example trajectories

of the ego-vehicle during turning behaviors with annotated

locations at which online uncertainty measure surpassed



(a) Confident Turns

(b) Uncertain Turns

Fig. 4: Map view of annotated trajectories: green lines are the
agent’s trajectories; red circles indicate where uncertainty exceeded
threshold; blue circles indicate infractions; small black arrows
denote the MC-dropout samples of steering angles.

Fig. 5: Histogram of responses to user study question: How would
you rank the three conditions by easiness of driving? (p-values
obtained from performing t-test for the three conditions are 0.481,
0.741 and 0.770 respectively.)

threshold or actual infractions happened.

To test if the uncertainty estimation is sensitive to novel

scenes, we collected five datasets under different scenarios

(i.e. training/testing map, seen/unseen weather etc.), each

consisting of 9,600 frames. The median uncertainty measures

under different commands are shown in Table I. The general

trend is that frames taken in novel environment and under

unseen weather have a higher average uncertainty value

than those from seen weather and environment. The dataset

containing no other agents (cars or pedestrians) has the

lowest uncertainty value under most commands.

B. Active Learning

The performance8 of the models trained with different

datasets is shown in Table II. As expected, all models

8Video demonstrating uncertainty monitoring and behavior of the trained
agents can be found at https://youtu.be/I6z176kr1ws

Dataset Infraction
Success Rate Km per Infraction

Rate Town1 Town2 Town1 Town2

Passive (full) - 0.55 0.40 0.69 0.55

Baseline - 0.52 0.34 0.90 0.47

Starter Set - 0.41 0.24 0.65 0.56

Active Filter - 0.68 0.51 0.90 0.67

Stochastic Mix 20.05 % 0.58 0.44 0.83 0.47

Random Noise 19.54 % 0.73 0.51 0.75 0.51

UAIL 13.83 % 0.74 0.61 0.88 0.63

TABLE II: Performance Comparison on Intersections Benchmark.
Avg success rate and distance traveled between infractions are
reported. Distance traveled between infractions can be higher for a
model with lower success rate due to its failure in learning turning
behaviors.

improved after incorporating additional data. The model

trained with the active filter dataset outperformed that with

baseline as we hypothesized. Interestingly, the model trained

with active filter also achieved better performance than the

model using all the passive data, which suggests that in

certain cases, likely when the training data distribution has

multiple modes (different driving styles in this case), less

data can train an agent with better behavior.

Among the three newly collected datasets, the model

trained with UAIL data has the highest success rates, and at

the same time the infraction rate of the data collected with

UAIL is the lowest, which indicates that it is safer to collect

data with UAIL than using alternative methods. As shown

in Figure 5, our user study did not indicate any method to

be significantly more difficult than the others across users.

We believe we were able to control the level of human effort

required at an even level and therefore evaluating the models

trained with data obtained under the selected three different

conditions is a fair comparison for the algorithms under test.

Therefore, our primary experimental results agree with our

hypothesis, demonstrating that UAIL can be used to collect

more useful data for improving the performance of an initial

model given the same amount of data collection time and

human effort.

VI. CONCLUSION

In this paper, we present a technique to estimate uncer-

tainty for end-to-end control systems and show how such

estimation can be leveraged to predict infractions and acquire

new training data selectively. We demonstrate in an end-to-

end autonomous driving system, that our proposed system

allows an imitation learning agent to selectively acquire new

input data from human experts at states with high uncertainty

in order to maximally improve its performance.

One limitation of data aggregation methods like ours is

that they require new expert demonstrations, which may not

be available/preferable in certain use cases. Future extension

of this work may include examining how to leverage un-

certainty estimations as self-supervision signals and improve

the agent’s learned policy through reinforcement learning.



In our pilot user study, we observed a bi-modal distribution

for user’s experience with UAIL, which will require an

in-depth investigation by explicitly measuring participant’s

locus of control [18] and taking participant’s past experiences

(e.g. proficiency in driving and/or playing video games) into

consideration in order to to conclude whether UAIL is more

efficient for a certain type of users.
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