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Abstract— Due to burdensome data requirements, learning
from demonstration often falls short of its promise to allow
users to quickly and naturally program robots. Demonstrations
are inherently ambiguous and incomplete, making correct
generalization to unseen situations difficult without a large
number of demonstrations in varying conditions. By contrast,
humans are often able to learn complex tasks from a single
demonstration (typically observations without action labels) by
leveraging context learned over a lifetime. Inspired by this
capability, our goal is to enable robots to perform one-shot
learning of multi-step tasks from observation by leveraging
auxiliary video data as context. Our primary contribution is
a novel system that achieves this goal by: (1) using a single
user-segmented demonstration to define the primitive actions
that comprise a task, (2) localizing additional examples of these
actions in unsegmented auxiliary videos via a metalearning-
based approach, (3) using these additional examples to learn
a reward function for each action, and (4) performing rein-
forcement learning on top of the inferred reward functions to
learn action policies that can be combined to accomplish the
task. We empirically demonstrate that a robot can learn multi-
step tasks more effectively when provided auxiliary video, and
that performance greatly improves when localizing individual
actions, compared to learning from unsegmented videos.

I. INTRODUCTION

Learning from demonstration (LfD) [1] has emerged as a

powerful way to quickly and naturally program robots to per-

form a wide variety of tasks. Unfortunately, demonstrations

are inherently ambiguous and incomplete. Correct general-

ization to unseen situations is therefore difficult without a

large number of demonstrations in varying conditions. This

data requirement places a significant burden on end-users,

often limiting the use of LfD to simple tasks.

By contrast, humans are often able to learn complex

tasks from a single demonstration by leveraging context

learned over a lifetime—for example, information about how

objects work, episodic memories of similar situations, or an

intuitive understanding of the intentions of the demonstra-

tor. Similarly, robots increasingly have access to auxiliary

sources of video data—for example, from prior experiences,

curated datasets such as the Epic-Kitchen dataset [2], or

less structured Youtube videos. In this work, we propose

to leverage auxiliary video data as contextual information to

help robots intelligently disambiguate and generalize a single

demonstration of a multi-step task. Essentially, a single user-

provided, segmented demonstration describes what activities

to perform (as well as one example of how to perform them,

grounded in the actual environment that the robot will act in),

while the auxiliary video data provides additional examples

of how each activity ought to be performed, allow the robot

to learn to generalize without overfitting.

Although prior works have explored the use of video data

in an LfD setting, in all instances that we are aware of

these methods have only addressed single step tasks [3], [4]

or have assumed well-aligned data with little variance [5].

However, many common robotics tasks, such as cooking and

assembly, require multiple steps that may have different goals

and involve different objects or features. Thus, as we show

experimentally (and as other works have argued [6], [7]),

learning a separate policy for each step of a task can lead to

improved generalization.

Our primary contribution is a novel framework that can

localize additional examples of each user-demonstrated ac-

tion in unsegmented auxiliary videos, which are then used

to aid learning. Specifically, we cast the problem of action

localization as a single-shot activity recognition problem, in

which we only have one example of each activity (from user-

provided demonstration segments) and attempt to classify

small sets of frames in each of the auxiliary videos as one

(or none) of those activities.

We then use the segmented video clips in tandem with

the original demonstration segments to learn to perform

each step of the task separately. However, one significant

difficulty in utilizing video data in an LfD setting is that there

are typically no available action labels for the observations.

This difficulty has motivated work in the learning from

observation (LfO) setting. Observations without action labels

are generally not sufficient for direct imitation learning, but

have been used instead to help build dense reward signals

[5], [3], learn object affordances [8], or resolve ambiguities

of written instructions [9].

While there are many possible ways to use the segmented

video data from our algorithms in an LfO setting, we focus

on an inverse reinforcement learning setting. Specifically,

for each subtask, the segmented video clips of that activity

are used to perform reward function inference, followed

by reinforcement learning on the inferred reward functions.

The learned policies can then be sequentially executed to

accomplish the task in novel situations. Figure 1 illustrates

this full learning pipeline.

We first demonstrate the accuracy of our one-shot ac-
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a single (or small number of) stochastic gradient descent

steps. Parameters found with these frameworks are not for

any specific problem; instead, MAML and Reptile directly

optimize for performance of the network when the param-

eters are fine-tuned via SGD step(s) on a small amount of

training data for a particular problem. In our case, we wish to

learn initial parameters that allow us to successfully train an

activity classifier with only a single demonstration (a small

number of snippets) of each activity.

Finding these initial parameters can be done through SGD

as in other deep learning methods. MAML requires a set

of training tasks τ ∈ T , and criteria Cτ to calculate the

goodness of the parameters—how well the initial parameters

perform after one SGD step on a new problem τ . The

gradient descent step is formally defined as:

θ ← θ − β∇θ

∑

τ∈T

Cτ ( · ; θτ ), (1)

where θτ = θ−α∇θCτ (·; θ), and α and β are learning rates

for finetuning and MAML training respectively.

In our setting, a classification problem τ is defined by the

set of activity labels for a given demonstration video. The

loss function Cτ is a softmax cross entropy loss since the

problem is a K-way classification problem. Therefore, Eq. 1

is formally represented as:

θ ← θ − β∇θ

∑

τ∈T

Cτ (v
target
τ , ltarget; θτ ), (2)

where θτ = θ − α∇θCτ (v
demo
τ , ldemo

τ ; θ), and both

(vdemo
τ , ldemo

τ ) and (vtarget
τ , ltargetτ ) are data samples be-

longing to the same task τ .

After we learn good initial parameters θ through Eq. 2,

one-shot activity localization with a demonstration video can

be performed using θτ , which are parameters that are fine-

tuned with a demonstration video v
demo
τ and labels ldemo

τ . A

neural network of parameters θτ is specialized for a specific

task τ , and it will emit a dense classification result for every

snippet from a given task video vτ . For the case in which a

target video contains snippets of other activities not included

in the task τ , we set a matching threshold, such that if

predictions for all the classes are below this value, we will

instead output “none of the above”.

B. Learning from Observation

Now, for any given demonstration video, an activity lo-

calization network can be quickly trained in a one-shot

fashion. Given an auxiliary set of task-relevant videos, this

network can then be used to label each snippet of these

videos as one (or none) of the demonstrated activities. This

provides additional examples of each activity, which will

support learning a separate reward function and policy for

each activity. Since labeling happens at the snippet level, this

process will not necessarily yield clean, contiguous activity

segments. Future work may explore the advantages of de-

noising these labels and identifying large, contiguous action

segments, but we demonstrate that our approach to reward

inference works even in the presence of moderate label noise.

The proposed learning from observation procedure con-

sists of three consecutive components: (1) reward function

inference, utilizing noisy snippet level labels for each step,

(2) behavioral cloning (BC), that exploits state-action pairs

from the demonstration (if available) to expedite policy

learning, and (3) reinforcement learning, working on top of

the inferred reward function and the initial policy produced

by 1 and 2, respectively.

In order to perform reward function inference with the

auxiliary snippets for each activity, we utilize a shuffle-and-

learn-style loss [20]. Intuitively, we expect that accumulated

rewards should (approximately) monotonically increase in a

successful execution (or in a successful demonstration) of

an activity. Based on this assumption, we can train a neural

network g that can predict progress (i.e. outputs a single

value representing the rate of activity completion), using it

as a surrogate reward function.

By asking the network to predict the order of two frames

from a video, we can directly model the monotonic progress

of an activity. This loss can be formally written as:

Loss = Lce(sigmoid(g(ot, ot′)),1(t < t′)), (3)

where g is a neural network, ot and ot′ are observations

(video frames) of the same activity at each time step t and t′,

and Lce is the cross entropy loss. This formulation is similar

to both Shuffle-and-Learn [20] and TCN [4]; however, these

methods use a triplet-based loss, whereas we have found

empirically that using simple ordered pairs yields improved

performance in our setting. Additionally, our approach does

not require the additional hyperparameter that TCN uses to

construct the positive and negative example for each triplet.

By measuring the progress of an activity through the

trained function g, we can provide a surrogate reward signal

to the agent; it gets a positive reward if it makes forward

progress and vice versa. Many formulations of the function

g are possible, such as sigmoid(g(ot−1, ot))− 0.5, directly

measuring progress between current time step and the pre-

vious time step. Yet, we empirically found that measuring

progress between very adjacent frames is unstable. Instead,

we measure progress with an initial frame o0 as an anchor,

then use a difference of raw g values as a reward function:

Rt = g(o0, ot+1)− g(o0, ot). (4)

We train the function g for each activity by sampling

pairs of video frames that both come from the same video

and have the same predicted activity label. We empirically

observed that trained function is fairly robust to noisy labels

from the activity localization algorithm, as we will further

discuss in the experiments. Furthermore, unlike the work

of Sermanet et al. [4], the proposed reward function does

not require time-aligned video demonstrations as input. This

simple but effective algorithm for reward function inference

is an additional contribution.

IV. EVALUATION

We conducted two types of experiments to assess the

performance of our algorithms. First, an action localization



experiment measured the performance of the the proposed

algorithms in both well-constrained simulated videos and un-

constrained real videos. Second, a policy learning experiment

demonstrated the importance of the activity localization step

for a multi-step task.

A. Activity Localization Experiment: Setup

We examined the proposed meta-learning based activity

localization approach with both simulated and real-world

videos. The simulated videos featured a two-joint robotic arm

performing a reaching task. These videos were relatively con-

sistent in content and presentation, making them, in principle,

easier to analyze than unconstrained videos. By contrast,

real-world videos present more challenges, including highly

variable camera angles and environmental features. In our

experiment, ActivityNet [10], which is commonly used for

activity classification or detection, is adopted.

Reacher environment This dataset contains simulated

videos of a two-joint robot arm trying to select and reach for

targets based on color. In total, 4 potential targets of different

colors are present, but the arm must reach for the correct 2 or

3 target colors, depending on the number of steps in the task.

These videos were created using the Bullet physics simulator

[21] with a pretrained policy that can successfully reach a

target position. Note that the task involves selecting a set

of multiple target colors in any order, so different videos

featuring the robot solving the same underlying task (such

as {orange, green}) can present the subtasks in a different

order. Some sample videos are shown in Fig. 2.

We generated three datasets of videos with different con-

figurations. For the first, most basic dataset, we generated

videos with 4 colors, using 2 of them as targets (6 total

combinations). For each combination, we generated 100

videos. Also, meta-test set videos (of unseen activities) were

generated with 4 colors different from those in the training

and validation sets. The second, more complex dataset was

generated from a set of 6 possible colors, having a task of

length 3. However, only 4 colors are shown in each scene—

three target colors and one distractor color. Meta-test videos

were also generated in the same manner, but with a set of

6 different colors. For each possible color combination, we

generated 40 videos. The thrid dataset was designed to test

learning transfer in significantly novel settings. Length 2

tasks with 36 colors were generated and used as a training

and a validation set, with 3 videos for each possible task.

Then the meta-trained network was tested on: videos with

(1) another set of 36 different colors, (2) a bad reacher policy

(under-damping around a target) with 4 different colors, and

(3) a three-joint reacher arm with 4 different colors. The

resolution of the videos was 64 by 64 pixels, and we used

snippets of 16 raw video frames as an input for each network.

ActivityNet This dataset includes video clips of 100

human activities, such as playing golf or drinking coffee.

While our algorithm is targeted to a single task video

having multiple activities, the videos in this dataset only

contain a single activity type. However, we can perform

the same activity localization task by creating pseudo tasks

by concatenating single-activity videos. This was done by

randomly choosing 5 activities and using a random video

segment from each activity. This would not be a good

baseline for a segmentation algorithms, since there are stark

differences between activity changes; however, given that our

approach uses snippet-based activity classification, this does

not give our algorithm an unfair advantage, and thus serves

as a proof-of-concept that our approach can work on real-

world datasets. However, this does suggest that our approach

could be improved in future work by integrating our snippet-

based method with more traditional segmentation that takes

the broader temporal context into account.

We chose 80 activities for meta-training, and the remaining

20 activities were held out for meta-testing. We chose 5

random activities to make a pseudo multi-step task video,

such that 5-way classification tasks were generated. 3D

ConvNet [22] feature vectors of length 500 were extracted

for every 16 frames for each video, and each of the feature

vectors were used as an input snippet for our algorithm.

Because the same set of activities were displayed across

demonstration and target videos in both datasets, we set

the prediction suppressing threshold low-enough so that no

“none of the above” predictions we made.

Network architectures and baselines For the reacher

environment, a three-layer 3D CNN was used across different

configurations as a base architecture, and only the final

classification layer was modified, depending on the number

of steps in a target task. For example, for the base reacher

environment with two steps, a fully connected layer out-

putting two logits was added on top of the base architecture.

We used our MAML-based framework for training. Detailed

hyperparameters used in the experiment can be found in the

publicly available code1.

A neural network sharing the same base network architec-

ture was used as a baseline. It was trained with classification

objective but with all the possible labels existing in the

training set videos: the number of colors in its configuration.

Then, we removed the last classification layer and used the

trained network as a feature extractor. Activity localization

was performed by assigning a label of the closest demo

snippet to a target snippet in the feature space via Euclidean

distance.

For the ActivityNet dataset, we used a recurrent neural

network (RNN) with gated recurrent units (GRU) [23].

Specifically, two fully connected layers were applied to

snippet-level feature vectors, and these outputs was passed

through the RNN, followed by a final classification layer to

make a dense prediction. In this setup, we used our Reptile-

based framework for computational reasons. Since Reptile

does not require second order derivatives, not only can the

training be performed quickly, but also it does not blow up

the size of computation graph when unrolling over many

time steps.

A simple RNN classifier was adopted as a baseline. The

RNN was trained with a classification loss sharing the same

1https://github.com/hiwonjoon/ICRA2019-Activity-Localize



Panel A: Reacher (2 subtasks, 4 colors each)

Classifier Meta Learning

Same Task 0.4820 0.8479

Unseen Task 0.4514 0.6944

Panel B: Reacher (3 subtasks, 6 colors)

Classifier Meta Learning

Same Task 0.7410 0.7852
Unseen Task 0.6512 0.7189

Panel C: Reacher (2 subtasks, more colors)

Classifier Meta Learning

Same Task (36 colors) 0.7418 0.7867

Unseen Task (36 colors) 0.6749 0.7015

Bad Policy Arm 0.5432 0.6337

Three-joint Arm 0.5218 0.6161

Panel D: ActivityNet Dataset

RNN
Classifier

RNN
Reptile

mIoU
Validation set 0.2121 0.3585
Meta-test Set 0.2245 0.2883

Accuracy
Validation Set 0.2266 0.4894
Meta-test Set 0.2428 0.4077

TABLE I: Activity localization results on Reacher-

domain and the real-world ActivityNet dataset; mIoU

is displayed.

base architecture, and it was used as a feature extractor in

the same fashion as the reacher environment. The activity

localization was also performed in the same way as in the

reacher experiments.

B. Activity Localization Experiment: Results

Our results are presented in Table I. Our meta-learning

methods showed significantly better results than the baseline

classifier for both the simulated and real world domains,

even when using the validation sets for which the base-

line was directly optimized. Though a slight drop in the

performance can be observed for all meta-test set cases,

it still demonstrates that the suggested method is able to

adapt quickly without requiring a large video dataset for a

novel task. Though the mean intersection-over-union (mIoU)

performance on real videos dropped noticeably compared

to the simpler simulated videos, there is large room for

improvement since we employed a very simple network

for this proof-of-concept experiment. Future work may also

include the exploration of methods to suppress the high

frequency noise in dense predictions, as well as techniques

to more directly handle the large variance in real-world video

via specialized network architectures like TCN [4].

C. Policy Learning with Video Snippets: Setup

Next, we evaluated the the full multi-step learning pipeline

in the two-joint reacher arm environment discussed in the

previous subsection. This experiment is designed to show

(1) the importance of activity localization for multi-step

task learning and (2) the robustness of our reward function

inference approach to noise in the localization step.

We generated 799 new videos for the {orange, green}
task, and snippets of the videos were classified using the

meta-trained model from the previous section, with one

demonstration video as input. To investigate how the noise in

the predicted snippet labels might affect reward function in-

ference (compared to using perfectly segmented videos) and

policy learning (compared to having ground truth rewards),

we compared the performance of policies based on reward

functions inferred from MAML with policies learned from

(1) ground truth rewards (upper bound for RL performance),

(2) rewards inferred from perfectly segmented videos (upper

bound for the suggested reward function learning method),

and (3) rewards inferred from unsegmented videos (baseline).

Reward function inference was performed via the shuffle-

and-learn-style LfO approach described in Section III-B.

Reward function inference was conducted by training the

proxy function g. We designed a two-stage neural network

for g: a frame embedder and a progress predictor. The

frame embedder converts a raw RGB image into a fixed-

length embedding vector, and the progress predictor takes

two such embeddings as input and emits a single logit

value representing the relative order between the two input

frames. A neural network having three 2D convolutional

layers followed by two fully connected layers was used for

the frame embedder, and a two-layer, fully connected neural

network was used for the progress predictor. The embedding

feature vector length was 64. Both of the networks were

trained in a end-to-end fashion with the aforementioned loss

functions. Detailed hyperparameters, such as kernel size, can

be found in the publicly available code.

The policies were trained using proximal policy optimiza-

tion (PPO) [24] using the implementation from OpenAI base-

lines [25]. A two-layer, fully connected neural network was

used to represent the policy, with identical hyperparameters

for each of the policies. The performance of a learned policy

was measured by success rate among 300 trials; if the robot

reached a target location and remained there for more than

32 frames, then a policy rollout was regarded as a success.

D. Policy Learning with Video Snippets: Results

Reward Function Inference Results In Figure 2, we

show the accumulated reward from the inferred reward

function of each subtask during a successful task execution

(2a), as well as a comparison of accumulated reward for the

orange subtask when the reward function is inferred using

different segmentation methods (or no segmentation at all)

(2b). First, we can clearly observe that each of the trained

models effectively represents the degree of completion for

each different subtask; the value goes up only as it reaches

the correct target. The results also confirmed the necessity of

video segmentation—without segmentation, the inferred re-

ward function did not correctly represent any of the subtasks

individually, nor the overall task.

RL Results The results of the reinforcement learning

experiments are shown in Table II and Figure 3. We con-

firmed that inferred reward functions based on only raw video

frames can be used to generate meaningful policies for multi-

step tasks, but only when videos are properly divided into

subtasks, as the reward signal learned without separation

does not result in a successful policy. Furthermore, it was

also possible to generate a successful policy with noisy
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