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yond the best demonstration, even when all demonstrations

are highly suboptimal. This, in turn, enables a reinforcement

learning agent to exceed the performance of the demonstra-

tor by learning to optimize this extrapolated reward function.

Specifically, we use ranked demonstrations to learn a state-

based reward function that assigns greater total return to

higher-ranked trajectories. Thus, while standard inverse re-

inforcement learning approaches seek a reward function that

justifies the demonstrations, we instead seek a reward func-

tion that explains the ranking over demonstrations, allowing

for potentially better-than-demonstrator performance.

Utilizing ranking in this way has several advantages. First,

rather than imitating suboptimal demonstrations, it allows

us to identify features that are correlated with rankings, in a

manner that can be extrapolated beyond the demonstrations.

Although the learned reward function could potentially over-

fit to the provided rankings, we demonstrate empirically

that it extrapolates well, successfully predicting returns of

trajectories that are significantly better than any observed

demonstration, likely due to the powerful regularizing ef-

fect of having many pairwise ranking constraints between

trajectories. For example, the degenerate all-zero reward

function (the agent always receives a reward of 0) makes any

given set of demonstrations appear optimal. However, such

a reward function is eliminated from consideration by any

pair of (non-equally) ranked demonstrations. Second, when

learning features directly from high-dimensional data, this

regularizing effect can also help to prevent overfitting to the

small fraction of state space visited by the demonstrator. By

utilizing a set of suboptimal, but ranked demonstrations, we

provide the neural network with diverse data from multiple

areas of the state space, allowing an agent to better learn

both what to do and what not to do in a variety of situations.

We evaluate T-REX on a variety of standard Atari and Mu-

JoCo benchmark tasks. Our experiments show that T-REX

can extrapolate well, achieving performance that is often

more than twice as high as the best-performing demon-

stration, as well as outperforming state-of-the-art imitation

learning algorithms. We also show that T-REX performs

well even in the presence of significant ranking noise, and

provide results showing that T-REX can learn good poli-

cies simply by observing a novice demonstrator that noisily

improves over time.

2. Related Work

The goal of our work is to achieve improvements over a sub-

optimal demonstrator in high-dimensional reinforcement

learning tasks without requiring a hand-specified reward

function or supervision during policy learning. While there

is a large body of research on learning from demonstrations

(Argall et al., 2009; Gao et al., 2012; Osa et al., 2018; Arora

& Doshi, 2018), most work assumes access to action labels,

while we learn only from observations. Additionally, little

work has addressed the problem of learning from ranked

demonstrations, especially when they are significantly sub-

optimal. To the best of our knowledge, our work is the

first to show better-than-demonstrator performance in high-

dimensional tasks such as Atari, without requiring active

human supervision or access to ground-truth rewards.

2.1. Learning from demonstrations

Early work on learning from demonstration focused on be-

havioral cloning (Pomerleau, 1991), in which the goal is to

learn a policy that imitates the actions taken by the demon-

strator; however, without substantial human feedback and

correction, this method is known to have large generalization

error (Ross et al., 2011). Recent deep learning approaches

to imitation learning (Ho & Ermon, 2016) have used Gen-

erative Adversarial Networks (Goodfellow et al., 2014) to

model the distribution of actions taken by the demonstrator.

Rather than directly learn to mimic the demonstrator, in-

verse reinforcement learning (IRL) (Gao et al., 2012; Arora

& Doshi, 2018) seeks to find a reward function that models

the intention of the demonstrator, thereby allowing general-

ization to states that were unvisited during demonstration.

Given such a reward function, reinforcement learning (Sut-

ton & Barto, 1998) techniques can be applied to learn an op-

timal policy. Maximum entropy IRL seeks to find a reward

function that makes the demonstrations appear near-optimal,

while further disambiguating inference by also maximiz-

ing the entropy of the resulting policy (Ziebart et al., 2008;

Boularias et al., 2011; Wulfmeier et al., 2015; Finn et al.,

2016). While maximum entropy approaches are robust to

limited and occasional suboptimality in the demonstrations,

they still fundamentally seek a reward function that justi-

fies the demonstrations, resulting in performance that is

explicitly tied to the performance of the demonstrator.

Syed & Schapire (2008) proved that, given prior knowledge

about which features contribute positively or negatively to

the true reward, an apprenticeship policy can be found that is

guaranteed to outperform the demonstrator. However, their

approach requires hand-crafted, linear features, knowledge

of the true signs of the rewards features, and also requires

repeatedly solving a Markov decision process (MDP). Our

proposed method uses deep learning and ranked demon-

strations to automatically learn complex features that are

positively and negatively correlated with performance, and

is able to generate a policy that can outperform the demon-

strator via the solution to a single RL problem.

Our work can be seen as a form of preference-based policy

learning (Akrour et al., 2011) and preference-based IRL

(PBIRL) (Wirth et al., 2016; Sugiyama et al., 2012) which

both seek to optimize a policy based on preference rankings

over demonstrations. However, existing approaches only
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consider reward functions that are linear in hand-crafted

features and have not studied extrapolation capabilities. For

a more complete overview survey of preference-based re-

inforcement learning, see the survey by Wirth et al. (2017).

Other methods (Burchfiel et al., 2016; El Asri et al., 2016)

have proposed the use of quantitatively scored trajectories as

opposed to qualitative pairwise preferences over demonstra-

tions. However, none of the aforementioned methods have

been applied to the types of high-dimensional deep inverse

reinforcement learning tasks considered in this paper.

2.2. Learning from observation

Recently there has been a shift towards learning from obser-

vations, in which the actions taken by the demonstrator are

unknown. Torabi et al. (2018a) propose a state-of-the-art

model-based approach to perform behavioral cloning from

observation. Sermanet et al. (2018) and Liu et al. (2018)

propose methods to learn directly from a large corpus of

videos containing multiple view points of the same task.

Yu et al. (2018) and Goo & Niekum (2019) propose meta-

learning-from-observation approaches that can learn from a

single demonstration, but require training on a wide variety

of similar tasks. Henderson et al. (2018) and Torabi et al.

(2018b) extend Generative Adversarial Imitation Learning

(Ho & Ermon, 2016) to remove the need for action labels.

However, inverse reinforcement learning methods based on

Generative Adversarial Networks (Goodfellow et al., 2014)

are notoriously difficult to train and have been shown to fail

to scale to high-dimensional imitation learning tasks such

as Atari (Tucker et al., 2018).

2.3. Learning from suboptimal demonstrations

Very little work has tried to learn good policies from highly

suboptimal demonstrations. Grollman & Billard (2011) pro-

pose a method that learns from failed demonstrations where

a human attempts, but is unable, to perform a task; however,

demonstrations must be labeled as failures and manually

clustered into two sets of demonstrations: those that over-

shoot and those that undershoot the goal. Shiarlis et al.

(2016) demonstrate that if successful and failed demonstra-

tions are labeled and the reward function is a linear combi-

nation of known features, then maximum entropy IRL can

be used to optimize a policy to match the expected feature

counts of successful demonstrations while not matching the

feature counts of failed demonstrations. Zheng et al. (2014)

and Choi et al. (2019) propose methods that are robust to

small numbers of unlabeled suboptimal demonstrations, but

require a majority of expert demonstrations in order to cor-

rectly identify which demonstrations are anomalous.

In reinforcement learning, it is common to initialize a policy

from suboptimal demonstrations and then improve this pol-

icy using the ground truth reward signal (Kober & Peters,

2009; Taylor et al., 2011; Hester et al., 2017; Gao et al.,

2018). However, it is often still difficult to perform signifi-

cantly better than the demonstrator (Hester et al., 2017) and

designing reward functions for reinforcement learning can

be extremely difficult for non-experts and can easily lead to

unintended behaviors (Ng et al., 1999; Amodei et al., 2016).

2.4. Reward learning for video games

Most deep learning-based methods for reward learning re-

quire access to demonstrator actions and do not scale to

high-dimensional tasks such as video games (e.g. Atari) (Ho

& Ermon, 2016; Finn et al., 2016; Fu et al., 2017; Qureshi

& Yip, 2018). Tucker et al. (2018) tested state-of-the-art

IRL methods on the Atari domain and showed that they are

unsuccessful, even with near-optimal demonstrations and

extensive parameter tuning.

Our work builds on the work of Christiano et al. (2017),

who proposed an algorithm that learns to play Atari games

via pairwise preferences over trajectories that are actively

collected during policy learning. However, this approach re-

quires obtaining thousands of labels through constant human

supervision during policy learning. In contrast, our method

only requires an initial set of (approximately) ranked demon-

strations as input and can learn a better-than-demonstrator

policy without any supervision during policy learning. Ibarz

et al. (2018) combine deep Q-learning from demonstrations

(DQfD) (Hester et al., 2017) and active preference learning

(Christiano et al., 2017) to learn to play Atari games using

both demonstrations and active queries. However, Ibarz et al.

(2018) require access to the demonstrator’s actions in order

to optimize an action-based, large-margin loss (Hester et al.,

2017) and to optimize the state-action Q-value function us-

ing (s, a, s′)-tuples from the demonstrations. Additionally,

the large-margin loss encourages Q-values that make the

demonstrator’s actions better than alternative actions, result-

ing in performance that is often significantly worse than

the demonstrator despite using thousands of active queries

during policy learning.

Aytar et al. (2018) use video demonstrations of experts to

learn good policies for the Atari domains of Montezuma’s

Revenge, Pitfall, and Private Eye. Their method first learns

a state-embedding and then selects a set of checkpoints

from a demonstration. During policy learning, the agent

is rewarded only when it reaches these checkpoints. This

approach relies on high-performance demonstrations, which

their method is unable to outperform. Furthermore, while

Aytar et al. (2018) do learn a reward function purely from

observations, their method is inherently different from ours

in that their learned reward function is designed to only

imitate the demonstrations, rather than extrapolate beyond

the capabilities of the demonstrator.

To the best of our knowledge, our work is the first to sig-
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nificantly outperform a demonstrator without using ground

truth rewards or active preference queries. Furthermore, our

approach does not require demonstrator actions and is able

to learn a reward function that matches the demonstrator’s

intention without any environmental interactions—given

rankings, reward learning becomes a binary classification

problem and does not require access to an MDP.

3. Problem Definition

We model the environment as a Markov decision process

(MDP) consisting of a set of states S , actions A, transition

probabilities P , reward function r : S → R, and discount

factor γ (Puterman, 2014). A policy π is a mapping from

states to probabilities over actions, π(a|s) ∈ [0, 1]. Given a

policy and an MDP, the expected discounted return of the

policy is given by J(π) = E[
∑

∞

t=0
γtrt|π].

In this work we are concerned with the problem of inverse

reinforcement learning from observation, where we do not

have access to the reward function of the MDP nor the ac-

tions taken by the demonstrator. Given a sequence of m
ranked trajectories τt for t = 1, . . . ,m, where τi ≺ τj if

i < j, we wish to find a parameterized reward function r̂θ
that approximates the true reward function r that the demon-

strator is attempting to optimize. Given r̂θ, we then seek to

optimize a policy π̂ that can outperform the demonstrations.

We only assume access to a qualitative ranking over demon-

strations. Thus, we only require the demonstrator to have

an internal goal or intrinsic reward. The demonstrator can

rank trajectories using any method, such as giving pairwise

preferences over demonstrations or by rating each demon-

stration on a scale. Note that even if the relative scores of

the demonstrations are used for ranking, it is still necessary

to infer why some trajectories are better than others, which

is what our proposed method does.

4. Method

We now describe Trajectory-ranked Reward EXtrapolation

(T-REX), an algorithm for using ranked suboptimal demon-

strations to extrapolate a user’s underlying intent beyond the

best demonstration. Given a sequence of m demonstrations

ranked from worst to best, τ1, . . . , τm, T-REX has two steps:

(1) reward inference and (2) policy optimization.

Given the ranked demonstrations, T-REX performs reward

inference by approximating the reward at state s using a neu-

ral network, r̂θ(s), such that
∑

s∈τi
r̂θ(s) <

∑

s∈τj
r̂θ(s)

when τi ≺ τj . The parameterized reward function r̂θ can be

trained with ranked demonstrations using the generalized

loss function:

L(θ) = Eτi,τj∼Π

[

ξ
(

P
(

Ĵθ(τi) < Ĵθ(τj)
)

, τi ≺ τj

)]

, (1)

where Π is a distribution over demonstrations, ξ is a bi-

nary classification loss function, Ĵ is a (discounted) return

defined by a parameterized reward function r̂θ, and ≺ is

an indication of the preference between the demonstrated

trajectories.

We represent the probability P as a softmax-normalized

distribution and we instantiate ξ using a cross entropy loss:

P
(

Ĵθ(τi) < Ĵθ(τj)
)

≈

exp
∑

s∈τj

r̂θ(s)

exp
∑

s∈τi

r̂θ(s) + exp
∑

s∈τj

r̂θ(s)
,

(2)

L(θ) = −
∑

τi≺τj

log

exp
∑

s∈τj

r̂θ(s)

exp
∑

s∈τi

r̂θ(s) + exp
∑

s∈τj

r̂θ(s)
. (3)

This loss function trains a classifier that can predict whether

one trajectory is preferable to another based on the predicted

returns of each trajectory. This form of loss function follows

from the classic Bradley-Terry and Luce-Shephard models

of preferences (Bradley & Terry, 1952; Luce, 2012) and

has been shown to be effective for training neural networks

from preferences (Christiano et al., 2017; Ibarz et al., 2018).

To increase the number of training examples, T-REX trains

on partial trajectory pairs rather than full trajectory pairs.

This results in noisy preference labels that are only weakly

supervised; however, using data augmentation to obtain

pairwise preferences over many partial trajectories allows

T-REX to learn expressive neural network reward functions

from only a small number of ranked demonstrations. During

training we randomly select pairs of trajectories, τi and τj .

We then randomly select partial trajectories τ̃i and τ̃j of

length L. For each partial trajectory, we take each observa-

tion and perform a forward pass through the network r̂θ and

sum the predicted rewards to compute the cumulative return.

We then use the predicted cumulative returns as the logit

values in the cross-entropy loss with the label corresponding

to the higher ranked demonstration.

Given the learned reward function r̂θ(s), T-REX then seeks

to optimize a policy π̂ with better-than-demonstrator perfor-

mance through reinforcement learning using r̂θ.

5. Experiments and Results

5.1. Mujoco

We first evaluated our proposed method on three robotic

locomotion tasks using the Mujoco simulator (Todorov et al.,

2012) within OpenAI Gym (Brockman et al., 2016), namely

HalfCheetah, Hopper, and Ant. In all three tasks, the goal

of the robot agent is to move forward as fast as possible

without falling to the ground.
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Table 1. Comparison of T-REX with a state-of-the-art behavioral cloning algorithm (BCO) (Torabi et al., 2018a) and state-of-the-art IRL

algorithm (GAIL) (Ho & Ermon, 2016). Performance is evaluated on the ground-truth reward. T-REX achieves better-than-demonstrator

performance on 7 out of 8 games and surpasses the BCO and GAIL baselines on 7 out of 8 games. Results are the best average performance

over 3 random seeds with 30 trials per seed.

Ranked Demonstrations LfD Algorithm Performance

Game Best Average T-REX BCO GAIL

Beam Rider 1,332 686.0 3,335.7 568 355.5
Breakout 32 14.5 221.3 13 0.28
Enduro 84 39.8 586.8 8 0.28
Hero 13,235 6,742.0 0 2,167 0
Pong -6 -15.6 -2.0 -21 -21

Q*bert 800 627 32,345.8 150 0
Seaquest 600 373.3 747.3 0 0

Space Invaders 600 332.9 1,032.5 88 370.2

the demonstrator in all games, and GAIL only performed

better than the average demonstration on Space Invaders.

Despite using better training data, GAIL was unable to learn

good policies on any of the Atari tasks. These results are

consistent with those of Tucker et al. (2018) that show that

current GAN-based IRL methods do not perform well on

Atari. In the appendix, we compare our results against prior

work (Ibarz et al., 2018) that uses demonstrations plus active

feedback during policy training to learn control policies for

the Atari domain.

Reward Extrapolation We also examined the extrapola-

tion of the reward function learned using T-REX. Results

are shown in Figure 4. We observed accurate extrapolation

for Beam Rider, Breakout, Enduro, Seaquest, and Space

Invaders—five games where we are able to significantly

outperform the demonstrator. The learned rewards for Pong,

Q*bert, and Hero show less correlation. On Pong, T-REX

overfits to the suboptimal demonstrations and ends up pre-

ferring longer games which do not result in a significant

win or loss. T-REX is unable to score any points on Hero,

likely due to poor extrapolation and the higher complex-

ity of the game. Surprisingly, the learned reward function

for Q*bert shows poor extrapolation, yet T-REX is able to

outperform the demonstrator. We analyzed the resulting

policy for Q*bert and found that PPO learns a repeatable

way to score points by inducing Coily to jump off the edge,

and is able to consistently achieve high scores without actu-

ally clearing any levels. This behavior was not seen in the

demonstrations. In the appendix, we plot the maximum and

minimum predicted observations from the trajectories used

to create Figure 4 along with attention maps for the learned

reward functions.

5.2.4. HUMAN DEMONSTRATIONS

The above results used synthetic demonstrations generated

from an RL agent. We also tested T-REX when given

ground-truth rankings over human demonstrations. We used

novice human demonstrations from the Atari Grand Chal-

lenge Dataset (Kurin et al., 2017) for five Atari tasks. T-

REX was able to significantly outperform the best human

demonstration in Q*bert, Space Invaders, and Video Pinball,

but was unable to outperform the human in Montezuma’s

Revenge and Ms Pacman (see the appendix for details).

5.3. Robustness to Noisy Rankings

All experiments described thus far have had access to

ground-truth rankings. To explore the effects of noisy rank-

ings we first examined the stage 1 Hopper task. We syn-

thetically generated ranking noise by starting with a list of

trajectories sorted by ground-truth returns and randomly

swapping adjacent trajectories. By varying the number of

swaps, we were able to generate different noise levels. Given

n trajectories in a ranked list provides
(

n
2

)

pairwise pref-

erences over trajectories. The noise level is measured as

a total order correctness: the fraction of trajectory pairs

whose pairwise ranking after random swapping matches the

original ground-truth pairwise preferences. The results of

this experiment, averaged over 9 runs per noise level, are

shown in Figure 5. We found that T-REX is relatively robust

to noise of up to around 15% pairwise errors.

To examine the effect of noisy human rankings, we used the

synthetic PPO demonstrations that were used in the previous

Atari experiments and used Amazon Mechanical Turk to

collect human rankings. We presented videos of the demon-

strations in pairs along with a brief text description of the

goal of the game and asked workers to select which demon-

stration had better performance, with an option for selecting

“Not Sure”. We collected six labels per demonstration pair

and used the most-common label as the label for training

the reward function. We removed from the training data any

pairings where there was a tie for the most-common label or

where “Not Sure” was the most common label. We found
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A. Code and Videos

Code as well as supplemental videos are avail-

able at https://github.com/hiwonjoon/

ICML2019-TREX.

B. T-REX Results on the MuJoCo Domain

B.1. Policy performance

Table 1 shows the full results for the MuJoCo experiments.

The T-REX (time-ordered) row shows the resulting perfor-

mance of T-REX when demonstrations come from observ-

ing a learning agent and are ranked based on timestamps

rather than using explicit preference rankings.

B.2. Policy visualization

We visualized the T-REX-learned policy for HalfCheetah

in Figure 1. Visualizing the demonstrations from different

stages shows the specific way the policy evolves over time;

an agent learns to crawl first and then begins to attempt

to walk in an upright position. The T-REX policy learned

from the highly suboptimal Stage 1 demonstrations results

in a similar-style crawling gait; however, T-REX captures

some of the intent behind the demonstration and is able to

optimize a gait that resembles the demonstrator but with in-

creased speed, resulting in a better-than-demonstrator policy.

Similarly, given demonstrations from Stage 2, which are still

highly suboptimal, T-REX learns a policy that resembles the

gait of the best demonstration, but is able to optimize and

partially stabilize this gait. Finally, given demonstrations

from Stage 3, which are still suboptimal, T-REX is able to

learn a near-optimal gait.

C. Behavioral Cloning from Observation

To build the inverse transition models used by BCO (Torabi

et al., 2018a) we used 20,000 steps of a random policy to

collect transitions with labeled states. We used the Adam

optimizer with learning rate 0.0001 and L2 regularization of

0.0001. We used the DQN architecture (Mnih et al., 2015)

for the classification network, using the same architecture

to predict actions given state transitions as well as predict

actions given states. When predicting P (a|st, st+1), we

concatenate the state vectors obtaining an 8x84x84 input

consisting of two 4x84x84 frames representing st and st+1.

We give both T-REX and BCO the full set of demonstrations.

We tried to improve the performance of BCO by running be-

havioral cloning only on the best X% of the demonstrations,

but were unable to find a parameter setting that performed

better than X = 100, likely due to a lack of training data

when using very few demonstrations.

D. Atari reward learning details

We used the OpenAI Baselines implementation of PPO with

default hyperparameters. We ran all of our experiments on

an NVIDIA TITAN V GPU. We used 9 parallel workers

when running PPO.

When learning and predicting rewards, we mask the score

and number of lives left for all games. We did this to avoid

having the network learn to only look at the score and rec-

ognize, say, the number of significant digits, etc. We addi-

tionally masked the sector number and number of enemy

ships left on Beam Rider. We masked the bottom half of

the dashboard for Enduro to mask the position of the car in

the race. We masked the number of divers found and the

oxygen meter for Seaquest. We masked the power level and

inventory for Hero.

To train the reward network for Enduro, we randomly down-

sampled full trajectories. To create a training set we repeat-

edly randomly select two full demonstrations, then randomly

cropped between 0 and 5 of the initial frames from each

trajectory and then downsampled both trajectories by only

keeping every xth frame where x is randomly chosen be-

tween 3 and 6. We selected 2,000 randomly downsampled

demonstrations and trained the reward network for 10,000

steps of Adam with a learning rate of 5e-5.
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Table 1. The results on three robotic locomotion tasks when given suboptimal demonstrations. For each stage and task, the best

performance given suboptimal demonstrations is shown on the top row, and the best achievable performance (i.e. performance achieved

by a PPO agent) under the ground-truth reward is shown on the bottom row. The mean and standard deviation are based on 25 trials

(obtained by running PPO five times and for each run of PPO performing five policy rollouts). The first row of T-REX results show the

performance when demonstrations are ranked using the ground-truth returns. The second row of T-REX shows results for learning from

observing a learning agent (time-ordered). The demonstrations are ranked based on the timestamp when they were produced by the PPO

algorithm learning to perform the task.

HalfCheetah Hopper Ant

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2

Best Demo

Performance

12.52

(1.04)

44.98

(0.60)

89.87

(8.15)

3.70

(0.01)

5.40

(0.12)

7.95

(1.64)

1.56

(1.28)

54.64

(22.09)

T-REX

(ours)

46.90

(1.89)

61.56

(10.96)

143.40

(3.84)

15.13

(3.21)

10.10

(1.68)

15.80

(0.37)

4.93

(2.86)

7.34

(2.50)

T-REX

(time-ordered)

51.39

(4.52)

54.90

(2.29)

154.67

(57.43)

10.66

(3.76)

11.41

(0.56)

11.17

(0.60)

5.55

(5.86)

1.28

(0.28)

BCO
7.71

(8.35)

23.59

(8.33)

57.13

(19.14)

3.52

(0.14)

4.41

(1.45)

4.58

(1.07)

1.06

(1.79)

26.56

(12.96)

GAIL
7.39

(4.12)

8.42

(3.43)

26.28

(12.73)

8.09

(3.25)

10.99

(2.35)

12.63

(3.66)

0.95

(2.06)

5.84

(4.08)

Best w/

GT Reward

199.11

(9.08)

15.94

(1.47)

182.23

(8.98)

(a) Stage 1

(b) Stage 2

(c) Stage 3

Figure 1. HalfCheetah policy visualization. For each subplot, (top) is the best given demonstration policy in a stage, and (bottom) is the

trained policy with a T-REX reward function.
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E. Comparison to active reward learning

In this section, we examine the ability of prior work on

active preference learning to exceed the performance of the

demonstrator. In Table 2, we denote the results that sur-

pass the best demonstration with an asterisk (*). DQfD+A

only surpasses the demonstrator in 3 out of 9 games tested,

even with thousands of active queries. Note that DQfD+A

extends the original DQfD algorithm (Hester et al., 2017),

which uses demonstrations combined with RL on ground-

truth rewards, yet is only able to surpass the best demon-

stration in 14 out of 41 Atari games. In contrast, we are

able to leverage only 12 ranked demos to achieve better-

than-demonstrator performance on 7 out of 8 games tested,

without requiring access to true rewards or access to thou-

sands of active queries from an oracle.

Ibarz et al. (2018) combine Deep Q-learning from demon-

strations and active preference queries (DQfD+A). DQfD+A

uses demonstrations consisting of (st, at, st+1)-tuples to

initialize a policy using DQfD (Hester et al., 2017). The

algorithm then uses the active preference learning algorithm

of Christiano et al. (2017) to refine the inferred reward func-

tion and initial policy learned from demonstrations. The first

two columns of Table 2 compare the demonstration qual-

ity given to DQfD+A and T-REX. While our results make

use of more demonstrations (12 for T-REX versus 4–7 for

DQfD+A), our demonstrations are typically orders of mag-

nitude worse than the demonstrations used by DQfD+A:

on average the demonstrations given to DQfD+A are 38

times better than those used by T-REX. However, despite

this large gap in the performance of the demonstrations, T-

REX surpasses the performance of DQfD+A on Q*Bert, and

Seaquest. We achieve these results using 12 ranked demon-

strations. This requires only 66 comparisons (n · (n− 1)/2)

by the demonstrator. In comparison, the DQfD+A results

used 3,400 preference labels obtained during policy training

using ground-truth rewards.
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F. Human Demonstrations and Rankings

F.1. Human demonstrations

We used the Atari Grand Challenge data set (Kurin et al.,

2017) to collect actual human demonstrations for five Atari

games. We used the ground truth returns in the Atari Grand

Challenge data set to rank demonstrations. To generate

demonstrations we removed duplicate demonstrations (hu-

man demonstrations that achieved the same score). We then

sorted the remaining demonstrations based on ground truth

return and selected 12 of these demonstrations to form our

training set. We ran T-REX using the same hyperparameters

as described above.

The resulting performance of T-REX is shown in Table 3.

T-REX is able to outperform the best human demonstration

on Q*bert, Space Invaders, and Video Pinball; however, it is

not able to learn a good control policy for Montezuma’s Re-

venge or Ms Pacman. These games require maze navigation

and balancing different objectives, such as collecting objects

and avoiding enemies. This matches our results in the main

text that show that T-REX is unable to learn a policy for

playing Hero, a similar maze navigation task with multiple

objectives such as blowing up walls, rescuing people, and

destroying enemies. Extending T-REX to work in these

types of settings is an interesting area of future work.

F.2. Human rankings

To measure the effects of human ranking noise, we took the

same 12 PPO demonstrations described above in the main

text and had humans rank the demonstrations. We used

Amazon Mechanical Turk and showed the workers two side-

by-side demonstrations and asked them to classify whether

video A or video B had better performance or whether they

were unsure.

We took all 132 possible sequences of two videos across

the 12 demonstrations and collected 6 labels for each pair

of demonstrations. Because the workers are not actually

giving the demonstrations and because some workers may

exploit the task by simply selecting choices at random, we

expect these labels to be a worst-case lower bound on the

accuracy. To ameliorate the noise in the labels we take all 6

labels per pair and use the majority vote as the human label.

If there is no majority or if the majority selects the “Not

Sure” label, then we do not include this pair in our training

data for T-REX.

The resulting accuracy and number of labels that had a ma-

jority preference are shown in Table 4. We ran T-REX using

the same hyperparameters described in the main text. We

ran PPO with 3 different seeds and report the performance

of the best final policy averaged over 30 trials. We found

that surprisingly, T-REX is able to optimize good policies

for many of the games, despite noisy labels. However, we

did find cases such as Enduro, where the labels were too

noisy to allow successful policy learning.

G. Atari Reward Visualizations

We generated attention maps for the learned rewards for the

Atari domains. We use the method proposed by Greydanus

et al. (2018), which takes a stack of 4 frames and passes a

3x3 mask over each of the frames with a stride of 1. The

mask is set to be the default background color for each game.

For each masked 3x3 region, we compute the absolute differ-

ence in predicted reward when the 3x3 region is not masked

and when it is masked. This allows us to measure the in-

fluence of different regions of the image on the predicted

reward. The sum total of absolute changes in reward for

each pixel is used to generate an attention heatmap. We used

the trajectories shown in the extrapolation plots in Figure 4

of the main text and performed a search using the learned

reward function to find the observations with minimum and

maximum predicted reward. We show the minimum and

maximum observations (stacks of four frames) along with

the attention heatmaps across all four stacked frames for the

learned reward functions in figures 2–9. The reward func-

tion visualizations suggest that our networks are learning

relevant features of the reward function.
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Table 2. Best demonstrations and average performance of learned policies for T-REX (ours) and DQfD with active preference learning

(DQfD+A) (see Ibarz et al. (2018) Appendix A.2 and G). Results for T-REX are the best performance over 3 random seeds averaged over

30 trials. Results that exceed the best demonstration are marked with an asterisk (*). Note that T-REX requires at most only 66 pair-wise

preference labels (n(n− 1)/2 for n = 12 demonstrations), whereas DQfD+A uses between 4–7 demonstrations along with 3.4K labels

queried during policy learning. DQfD+A requires action labels on the demonstrations, whereas T-REX learns from observation.

Best Demonstration Received Average Algorithm Performance

Game DQfD+A T-REX DQfD+A T-REX

Beam Rider 19,844 1,188 4,100 *3,335.7
Breakout 79 33 *85 *221.3
Enduro 803 84 *1200 *586.8
Hero 99,320 13,235 35,000 0.0

Montezuma’s Revenge 34,900 - 3,000 -
Pong 0 -6 *19 *-2.0

Private Eye 74,456 - 52,000 -
Q*bert 99,450 800 14,000 *32,345.8

Seaquest 101,120 600 500 *747.3
Space invaders - 600 - *1,032.5

Table 3. T-REX performance with real novice human demonstrations collected from the Atari Grand Challenge Dataset (Kurin et al.,

2017). Results are the best average performance over 3 random seeds with 30 trials per seed.

Novice Human
Game Best Average T-REX

Montezuma’s Revenge 2,600 1,275.0 0.0
Ms Pacman 1,360 818.3 550.7

Q*bert 875 439.6 6,869.2
Space Invaders 470 290.0 1,092.0
Video Pinball 4,210 2,864.3 20,000.2

Table 4. Evaluation of T-REX on human rankings collected using Amazon Mechanical Turk. Results are the best average performance

over 3 random seeds with 30 trials per seed.

Human-Ranked Demonstrations
Game Best Average Ranking Accuracy Num. Labels T-REX avg. perf.

Beam Rider 1,332 686.0 63.0% 54 3,457.2
Breakout 32 14.5 88.1% 59 253.2
Enduro 84 39.8 58.6% 58 0.03
Hero 13,235 6742 77.6% 58 2.5
Pong -6 -15.6 79.6% 54 -13.0

Q*bert 800 627 75.9% 58 66,082
Seaquest 600 373.3 80.4% 56 655.3

Space Invaders 600 332.9 84.7% 59 1,005.3


















