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Abstract

We consider the problem of off-policy evaluation

in Markov decision processes. Off-policy evalua-

tion is the task of evaluating the expected return

of one policy with data generated by a different,

behavior policy. Importance sampling is a tech-

nique for off-policy evaluation that re-weights

off-policy returns to account for differences in the

likelihood of the returns between the two policies.

In this paper, we study importance sampling with

an estimated behavior policy where the behavior

policy estimate comes from the same set of data

used to compute the importance sampling esti-

mate. We find that this estimator often lowers

the mean squared error of off-policy evaluation

compared to importance sampling with the true

behavior policy or using a behavior policy that

is estimated from a separate data set. Intuitively,

estimating the behavior policy in this way cor-

rects for error due to sampling in the action-space.

Our empirical results also extend to other popular

variants of importance sampling and show that

estimating a non-Markovian behavior policy can

further lower large-sample mean squared error

even when the true behavior policy is Markovian.

1. Introduction

Sequential decision-making tasks, such as a robot manipu-

lating objects or an autonomous vehicle deciding when to

change lanes, are ubiquitous in artificial intelligence. For

these tasks, reinforcement learning (RL) algorithms pro-

vide a promising alternative to hand-coded skills, allowing

sequential decision-making agents to acquire policies au-

tonomously given only a reward function measuring task

performance (Sutton & Barto, 1998). When applying RL to

real world problems, an important problem that often comes

up is policy evaluation. In policy evaluation, the goal is to
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determine the expected return – sum of rewards – that an

evaluation policy, πe, will obtain when deployed on the task

of interest.

In off-policy policy evaluation, we are given data (in the

form of state-action-reward trajectories) generated by a sec-

ond behavior policy, πb. We then use these trajectories

to evaluate πe. Accurate off-policy policy evaluation is

especially important when we want to know the value of

a policy before it is deployed in the real world or have

many policies to evaluate and want to avoid running each

one individually. Importance sampling addresses this prob-

lem by re-weighting returns generated by πb such that they

are unbiased estimates of πe (Precup et al., 2000). While

the basic importance sampling estimator is often noted in

the literature to suffer from high variance, more recent im-

portance sampling estimators have lowered this variance

(Thomas & Brunskill, 2016a; Jiang & Li, 2016). Regardless

of additional variance reduction techniques, all importance

sampling variants compute the likelihood ratio
πe(a|s)
πb(a|s)

for

all state-action pairs in the off-policy data.

In this paper, we propose to replace πb(a|s) with its empiri-

cal estimate – that is, we replace the probability of sampling

an action in a particular state with the frequency at which

that action actually occurred in that state in the data. It is

natural to assume that such an estimator will yield worse

performance since it replaces a known quantity with an

estimated quantity. However, research in the multi-armed

bandit (Li et al., 2015; Narita et al., 2019), causal inference

(Hirano et al., 2003; Rosenbaum, 1987), and Monte Carlo

integration (Henmi et al., 2007; Delyon & Portier, 2016) lit-

erature has demonstrated that estimating the behavior policy

can improve the mean squared error of importance sampling

policy evaluation. Motivated by these results, we study the

performance of such methods for policy evaluation in full

Markov decision processes.

Specifically, we study a family of estimators that, given a

dataset, D, of trajectories, use D both to estimate the behav-

ior policy and then to compute the importance sampling es-

timate. Though related to methods in the statistics literature,

the so-called regression importance sampling methods are

specific to Markov decision processes where actions taken

at one time-step influence the states and rewards at future

time-steps. We show empirically that regression importance
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sampling lowers the mean squared error of importance sam-

pling off-policy evaluation in both discrete and continuous

action spaces. Though our study is primarily empirical, we

present theoretical results that, when the policy class of the

estimated behavior policy is specified correctly, regression

importance sampling is consistent and has asymptotically

lower variance than using the true behavior policy for im-

portance sampling. To the best of our knowledge, we are the

first to study this method for policy evaluation in Markov

decision processes.

2. Preliminaries

This section formalizes our problem and introduces impor-

tance sampling off-policy evaluation.

2.1. Notation

We assume the environment is a finite horizon, episodic

Markov decision process with state space S, action space

A, transition probabilities, P , reward function R, hori-

zon L, discount factor γ, and initial state distribution d0
(Puterman, 2014). A Markovian policy, π, is a function

mapping the current state to a probability distribution over

actions; a policy is non-Markovian if its action distribu-

tion is conditioned on past states or actions. For simplic-

ity, we assume that S and A, are finite and that proba-

bility distributions are probability mass functions.1 Let

H := (S0, A0, R0, S1, . . . , SL−1, AL−1, RL−1) be a tra-

jectory, g(H) :=
∑L−1

t=0 γtRt be the discounted return of

trajectory H , and v(π) := E[g(H)|H ∼ π] be the expected

discounted return when the policy π is used starting from

state S0 sampled from the initial state distribution. We as-

sume that the transition and reward functions are unknown

and that the episode length, L, is a finite constant.

In off-policy policy evaluation, we are given a fixed eval-

uation policy, πe, and a data set of m trajectories and the

policies that generated them: D := {Hi, πb
(i)}mi=1 where

Hi ∼ πb
(i). We assume that ∀{Hi, πb

(i)} ∈ D, πb
(i) is

Markovian i.e., actions in D are independent of past states

and actions given the immediate preceding state. Our goal is

to design an off-policy estimator, OPE, that takes D and es-

timates v(πe) with minimal mean squared error (MSE). For-

mally, we wish to minimize ED[(OPE(πe,D)− v(πe))
2].

2.2. Importance Sampling

Importance Sampling (IS) is a method for reweighting re-

turns generated by a behavior policy, πb, such that they are

unbiased returns from the evaluation policy. Given a set of

m trajectories and the policy that generated each trajectory,

1 Unless otherwise noted, all results and discussion apply
equally to the discrete and continuous setting.

the IS off-policy estimate of v(πe) is:

IS(πe,D) :=
1

m

m∑

i=1

g(H(i))

L−1∏

t=0

πe(A
(i)
t |S

(i)
t )

πb
(i)(A

(i)
t |S

(i)
t )

. (1)

We refer to (1) – that uses the true behavior policy – as the

ordinary importance sampling (OIS) estimator and refer to
πe(A|S)
πb(A|S) as the OIS weight for action A in state S.

The importance sampling estimator with OIS weights can

be understood as a Monte Carlo estimate of v(πe) with a

correction for the distribution shift caused by sampling tra-

jectories from πb instead of πe. As more data is obtained,

the empirical frequency of any trajectory approaches the

expected frequency under πb and then the OIS weight cor-

rects the weighting of each trajectory to reflect the expected

frequency under πe.

3. Sampling Error in Importance Sampling

The ordinary importance sampling estimator (1) is known to

have high variance. A number of importance sampling vari-

ants have been proposed to address this problem, however,

all such variants use the OIS weight. The common reliance

on OIS weights suggest that an implicit assumption in the

RL community is that OIS weights lead to the most accurate

estimate. Hence, when an application requires estimating

an unknown πb in order to compute importance weights, the

application is implicitly assumed to only be approximating

the desired weights.

However, OIS weights themselves are sub-optimal in at

least one respect: the weight of each trajectory in the OIS
estimate is inaccurate unless we happen to observe each

trajectory according to its true probability. When the empir-

ical frequency of any trajectory is unequal to its expected

frequency under πb, the OIS estimator puts either too much

or too little weight on the trajectory. We refer to error due

to some trajectories being either over- or under-represented

in D as sampling error. Sampling error may be unavoidable

when we desire an unbiased estimate of v(πe). However,

correcting for it by properly weighting trajectories will, in

principle, give us a lower mean squared error estimate.

The problem of sampling error is related to a Bayesian

objection to Monte Carlo integration techniques: OIS ig-

nores information about the closeness of trajectories in D
(O’Hagan, 1987; Ghahramani & Rasmussen, 2003). This

objection is easiest to understand in deterministic and dis-

crete environments though it also holds for stochastic and

continuous environments. In a deterministic environment,

additional samples of any trajectory, h, provide no new in-

formation about v(πe) since only a single sample of h is

required to know g(h). However, the more times a particular

trajectory appears, the more weight it receives in an OIS es-

timate even though the correct weighting of g(h), Pr(h|πe),
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is known since πe is known. In stochastic environments, it

is reasonable to give more weight to recurring trajectories

since the recurrence provides additional information about

the unknown state-transition and reward probabilities. How-

ever, ordinary importance sampling also relies on sampling

to approximate the known policy probabilities.

Finally, we note that the problem of sampling error applies

to any variant of importance sampling using OIS weights,

e.g., weighted importance sampling (Precup et al., 2000),

per-decision importance sampling (Precup et al., 2000), the

doubly robust estimator (Jiang & Li, 2016; Thomas & Brun-

skill, 2016a), and the MAGIC estimator (Thomas & Brun-

skill, 2016a). Sampling error is also a problem for on-policy

Monte Carlo policy evaluation since Monte Carlo is the

special case of OIS when the behavior policy is the same as

the evaluation policy.

4. Regression Importance Sampling

In this section we introduce the primary focus of our work: a

family of estimators called regression importance sampling

(RIS) estimators that correct for sampling error in D by

importance sampling with an estimated behavior policy. The

motivation for this approach is that, though D was sampled

with πb, the trajectories in D may appear as if they had

been generated by a different policy, πD. For example, if πb

would choose between two actions with equal probability in

a particular state, the data might show that one action was

selected more often than the other in that state. Thus instead

of using OIS to correct from πb to πe, we introduce RIS
that corrects from πD to πe.

We assume that, in addition to D, we are given a policy class

– a set of policies – Πn where each π ∈ Πn is a distribution

over actions conditioned on an n-step state-action history:

π : Sn+1 × An → [0, 1]. Let Ht−n:t be the trajectory

segment: St−n, At−n, ...St−1, At−1, St where if t− n < 0
then Ht−n:t denotes the beginning of the trajectory until

step t. The RIS(n) estimator first estimates the maximum

likelihood behavior policy in Πn given D:

πD
(n) := argmax

π∈Πn

∑

H∈D

L−1∑

t=0

log π(a|Ht−n:t). (2)

The RIS(n) estimate is then the importance sampling esti-

mate with πD
(n) replacing πb:

RIS(n)(πe,D) :=
1

m

m∑

i=1

g(Hi)

L−1∏

t=0

πe(At|St)

πD
(n)(At|Ht−n:t)

Analogously to OIS, we refer to
πe(At|St)

πD
(n)(St|Ht−n:t)

as the

RIS(n) weight for action At, state St, and trajectory seg-

ment Ht−n:t. Note that the RIS(n) weights are always

well-defined since πD
(n) never places zero probability mass

on any action that occurred in D.

4.1. Correcting Importance Sampling Sampling Error

We now present an example illustrating how RIS corrects

for sampling error in off-policy data.

Consider a deterministic MDP with finite |S| and |A|. Let

H be the (finite) set of possible trajectories under πb and

suppose that our observed data, D, contains at least one of

each h ∈ H. In this setting, the maximum likelihood behav-

ior policy can be computed with count-based estimates. We

define c(hi:j) as the number of times that trajectory segment

hi:j appears during any trajectory in D. Similarly, we define

c(hi:j , a) as the number of times that action a is observed

following trajectory segment hi:j during any trajectory in

D. RIS(n) estimates the behavior policy as:

πD(a|hi−n:i) :=
c(hi−n:i, a)

c(hi−n:i)
.

Observe that both OIS and all variants of RIS can be written

in one of two forms:

1

m

m∑

i=1

wπe
(hi)

wπ(hi)
g(hi)

︸ ︷︷ ︸
(i)

=
∑

h∈H

c(h)

m

wπe
(h)

wπ(h)
g(h)

︸ ︷︷ ︸
(ii)

where wπ(h) =
∏L−1

t=0 π(at|st) and for OIS π := πb and

for RIS(n) π := πD
(n) as defined in Equation (2).

If we had sampled trajectories using πD
(L−1) instead of πb,

in our deterministic environment, the probability of each

trajectory would be Pr(H|πD
(L−1)) = c(H)

m . Thus Form

(ii) can be written as:

E

[
wπe

(H)

wπ(H)
g(H)|H ∼ πD

(L−1)

]
.

To emphasize what we have shown so far: OIS and RIS
are both sample-average estimators whose estimates can be

written as exact expectations. However, this exact expecta-

tion is under the distribution that trajectories were observed

and not the distribution of trajectories under πb.

Consider choosing wπ := w
(L−1)
πD

as RIS(L − 1) does.

This choice results in (ii) being exactly equal to v(πe)
2 On

the other hand, choosing wπ := wπb
will not return v(πe)

unless we happen to observe each trajectory at its expected

frequency (i.e., πD
(L−1) = πb).

Choosing wπ to be wπD
(n) for n < L − 1 also does not

result in v(πe) being returned in this example. This ob-

servation is surprising because even though we know that

the true Pr(h|πb) =
∏L−1

t=0 πb(at|st), it does not follow

2This statement follows from the importance sampling identity:

E[Pr(H|πe)
Pr(H|π)

g(h)|H ∼ π] = E[g(H)|H ∼ πe] = v(πe) and the

fact that we have assumed a deterministic environment.
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that the estimated probability of a trajectory is equal to the

product of the estimated Markovian action probabilities,

i.e., that
c(h)
m =

∏L−1
t=0 πD

(0)(at|st). With a finite number

of samples, the data may have higher likelihood under a

non-Markovian behavior policy – possibly even a policy

that conditions on all past states and actions. Thus, to fully

correct for sampling error, we must importance sample with

an estimated non-Markovian behavior policy. However,

wπD
(n) with n < L−1 still provides a better sampling error

correction than wπb
since any πD

(n) will reflect the statis-

tics of D while πb does not. This statement is supported

by our empirical results comparing RIS(0) to OIS and a

theoretical result we present in the following section that

states that RIS(n) has lower asymptotic variance than OIS
for all n.

Before concluding this section, we discuss two limitations of

the presented example – these limitations are not present in

our theoretical or empirical results. First, the example lacks

stochasticity in the rewards and transitions. In stochastic

environments, sampling error arises from sampling states,

actions, and rewards while in deterministic environments,

sampling error only arises from sampling actions. Neither

RIS nor OIS can correct for state and reward sampling error

since such a correction requires knowledge of what the true

state and reward frequencies are and these quantities are

typically unknown in the MDP policy evaluation setting.

Second, we assumed that D contains at least one of each

trajectory possible under πb. If a trajectory is absent from

D then RIS(L− 1) has non-zero bias. Theoretical analysis

of this bias for both RIS(L− 1) and other RIS variants is

an open question for future analysis.

4.2. Theoretical Properties of RIS

Here, we briefly summarize new theoretical results (full

proofs appear in the appendices) as well as a connection to

prior work from the multi-armed bandit literature:

• Proposition 1: For all n, RIS(n) is a biased estima-

tor, however, it is consistent provided πb ∈ Πn (see

Appendix A for a full proof).

• Corollary 1: For all n, if πb ∈ Πn then RIS has

asymptotic variance at most that of OIS. This result

is a corollary to a result by Henmi et al. (2007) for

general Monte Carlo integration (see Appendix B for

a full proof). We highlight that the derivation of this

result includes some o(n) and op(1) terms that may

be large for small sample sizes; the lower variance is

asymptotic and we leave analysis of the finite-sample

variance of RIS to future work.

• Connection to REG: For finite MDPs, Li et al. (2015)

introduce the regression (REG) estimator and show

it has asymptotic lower minimax MSE than OIS pro-

vided the estimator has full knowledge of the environ-

ment’s transition probabilities. With this knowledge

REG can correct for sampling error in both the actions

and state transitions. RIS(L− 1) is an approximation

to REG that only corrects for sampling error in the ac-

tions. The derivation of the connection between REG
and RIS(L− 1) is given in Appendix C.

We also note that prior theoretical analysis of importance

sampling with an estimated behavior policy has made the

assumption that πD is estimated independently of D (Dudı́k

et al., 2011; Farajtabar et al., 2018). This assumption sim-

plifies the theoretical analysis but makes it inapplicable to

regression importance sampling.

4.3. RIS with Function Approximation

The example in Section 4.1 presented RIS with count-based

estimation of πD. In many practical settings, count-based

estimation of πD is intractable and we must rely on function

approximation. For example, in our final experiments we

learn πD as a Gaussian distribution over actions with the

mean given by a neural network. Two practical concerns

arise when using function approximation for RIS: avoiding

over-fitting and selecting the function approximator.

RIS uses all of the data available for off-policy evaluation

to both estimate πD and compute the off-policy estimate

of v(πe). Unfortunately, the RIS estimate may suffer from

high variance if the function approximator is too expressive

and πD is over-fit to our data. Additionally, if the policy

class of πb is unknown, it may be unclear what is the right

function approximation representation for πD. A practical

solution is to use a validation set – distinct from D – to

select an appropriate policy class and appropriate regulariza-

tion criteria for RIS. This solution is a small departure from

the previous definition of RIS as selecting πD to maximize

the log likelihood on D. Rather, we select πD to maximize

the log likelihood on D while avoiding over-fitting. This

approach represents a trade-off between robust empirical

performance and potentially better but more sensitive esti-

mation with RIS.

5. Empirical Results

We present an empirical study of the RIS estimator across

several policy evaluation tasks. Our experiments are de-

signed to answer the following questions:

1. What is the empirical effect of replacing OIS weights

with RIS weights in sequential decision making tasks?

2. How important is using D to both estimate the behavior

policy and compute the importance sampling estimate?

3. How does the choice of n affect the MSE of RIS(n)?

With non-linear function approximation, our results suggest

that the standard supervised learning approach of model
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s0 s1 ... s5

a0

a1

a0

a1

a0

a1

Figure 1: The SinglePath MDP. This environment has 5 states, 2
actions, and L = 5. The agent begins in state 0 and both actions
either take the agent from state n to state n+ 1 or cause the agent
to remain in state n. Not shown: If the agent takes action a1 it
remains in its current state with probability 0.5.

selection using hold-out validation loss may be sub-optimal

for the regression importance sampling estimator. Thus, we

also investigate the question:

4. Does minimizing hold-out validation loss set yield the

minimal MSE regression importance sampling esti-

mator when estimating πD with gradient descent and

neural network function approximation?

5.1. Empirical Set-up

We run policy evaluation experiments in several domains.

We provide a short description of each domain here; a com-

plete description and additional experimental details are

given in Appendix E.3

• Gridworld: This domain is a 4× 4 Gridworld used in

prior off-policy evaluation research (Thomas & Brun-

skill, 2016a; Hanna et al., 2017). RIS uses count-based

estimation of πb. This domain allows us to study RIS
separately from questions of function approximation.

• SinglePath: See Figure 1 for a description. This do-

main is small enough to allow implementations of

RIS(L−1) and the REG method from Li et al. (2015).

All RIS methods use count-based estimation of πb.

• Linear Dynamical System: This domain is a point-

mass agent moving towards a goal in a two dimensional

world by setting x and y acceleration. Policies are

linear in a second order polynomial transform of the

state features. We estimate πD with least squares.

• Simulated Robotics: We also use two continuous con-

trol tasks from the OpenAI gym: Hopper and HalfChee-

tah.4 In each task, we use neural network policies with

2 layers of 64 tanh hidden units each for πe and πb.

5.2. Empirical Results

We now present our empirical results. Except where speci-

fied otherwise, RIS refers to RIS(0).

3Code is provided at https://github.com/LARG/

regression-importance-sampling.
4For these tasks we use the Roboschool versions: https:

//github.com/openai/roboschool

Finite MDP Policy Evaluation Our first experiment com-

pares several importance sampling variants implemented

with both RIS weights and OIS weights. Specifically, we

use the basic IS method described in Section 2, the weighted

IS estimator (Precup et al., 2000), and the weighted doubly

robust estimator (Thomas & Brunskill, 2016a).

Figure 2(a) shows the MSE of the evaluated methods av-

eraged over 100 trials. The results show that using RIS
weights improves all IS variants relative to OIS weights.5

We also evaluate alternative data sources for estimating πD

in order to establish the importance of using D to both

estimate πD and compute the value estimate. Specifically,

we consider:

1. Independent Estimate: In addition to D, this method

has access to an additional set, Dtrain. The behavior

policy is estimated with Dtrain and the policy value

estimate is computed with D. Since (s, a) pairs in D
may be absent from Dtrain we use Laplace smoothing

to ensure that the importance weights are well-defined.

2. Extra-data Estimate: This baseline is the same as

Independent Estimate except it uses both Dtrain and

D to estimate πb. Only D is used to compute the policy

value estimate.

Figure 2(b) shows that these alternative data sources for

estimating πb decrease accuracy compared to RIS and OIS.

Independent Estimate has high MSE when the sample size

is small but its MSE approaches that of OIS as the sample

size grows. We understand this result as showing that this

baseline cannot correct for sampling error in the off-policy

data since the behavior policy estimate is unrelated to the

data used in the off-policy evaluation. Extra-data Estimate

initially has high MSE but its MSE decreases faster than

that of OIS. Since this baseline estimates πb with data

that includes D, it can partially correct for sampling error

– though the extra data harms its ability to do so. Only

estimating πD with D and D alone improves performance

over OIS for all sample sizes.

We also repeat these experiments for the on-policy setting

and present results in Figure 2(c) and Figure 2(d). We ob-

serve similar trends as in the off-policy experiments suggest-

ing that RIS can lower variance in Monte Carlo sampling

methods even when OIS weights are otherwise unnecessary.

RIS(n) In the Gridworld domain it is difficult to observe

the performance of RIS(n) for various n because of the

long horizon: smaller n perform similarly and larger n scale

poorly with L. To see the effects of different n more clearly,

we use the SinglePath domain. Figure 3 gives the mean

5We also implemented and evaluated per-decision importance
sampling and the ordinary doubly robust estimator and saw similar
results. However we defer these results to Appendix F for clarity.
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6. Related Work

In this section we survey work related to behavior policy

estimation for importance sampling. Methods related to

RIS have been studied for Monte Carlo integration (Henmi

et al., 2007; Delyon & Portier, 2016) and causal inference

(Hirano et al., 2003; Rosenbaum, 1987). The REG method

(discussed below) can be seen as the direct extension of

these methods to MDPs. In contrast to these works, we

study policy evaluation in Markov decision processes which

introduces sequential structure into the samples and un-

known stochasticity in the state transitions. These methods

have also, to the best of our knowledge, not been studied in

Markov decision processes or for sequential data.

Li et al. (2015) study the regression (REG) estimator for

off-policy evaluation and show that its minimax MSE is

asymptotically optimal though it might perform poorly for

small sample sizes. Though REG and RIS are equivalent

for multi-armed bandit problems, for MDPs, the definition

of REG and any RIS method diverge. Figure 3 shows that

all tested RIS methods improve over REG for small sample

sizes though REG has lower asymptotic MSE. Intuitively,

REG corrects for sampling error in both the action selection

and state transitions through knowledge of the true state-

transition function. However, such knowledge is usually

unavailable and, in these cases, REG is inapplicable.

Narita et al. (2019) study behavior policy estimation for

policy evaluation and improvement in multi-armed bandit

problems. They also show lower asymptotic variance (as

we do), however, their results are only for the bandit setting.

In the contextual bandit literature, Dudik et al. (2011)

present finite sample bias and variance results for impor-

tance sampling that is applicable when the behavior pol-

icy probabilities are different than the true behavior policy.

Farajtabar et al. (2018) extended these results to full MDPs.

These works make the assumption that πD is estimated in-

dependently from the data used in the final IS evaluation.

In contrast, RIS uses the same set of data to both estimate

πb and compute the IS evaluation. This choice allows RIS
to correct for sampling error and improve upon the OIS
estimate (as shown in Figure 2(b), 2(d), and 4(b)).

A large body of work exists on lowering the variance of

importance sampling for off-policy evaluation. Such ap-

proaches include control variates (Jiang & Li, 2016; Thomas

& Brunskill, 2016a), normalized importance weights (Pre-

cup et al., 2000; Swaminathan & Joachims, 2015), and im-

portance ratio clipping (Bottou et al., 2013). These variance

reduction strategies are complementary to regression impor-

tance sampling; any of these methods can be combined with

RIS for further variance reduction.

7. Discussion and Future Work

Our experiments demonstrate that regression importance

sampling can obtain lower mean squared error than ordinary

importance sampling for off-policy evaluation in Markov

decision process environments. The main practical conclu-

sion of our paper is the importance of estimating πD with

the same data used to compute the importance sampling

estimate. We also demonstrate that estimating a behavior

policy that conditions on trajectory segments – instead of

only the preceding state – improves performance in the large

sample setting.

For all n, RIS(n) is consistent and has lower asymptotic

variance than OIS. There remain theoretical questions con-

cerning the finite-sample setting and relaxing the assumption

that we estimate πD from a policy class that includes the

true behavior policy. The connection to the REG estimator

and our empirical results suggest that RIS with n close to

L may suffer from high bias. Future work that quantifies or

bounds this bias will give us a better understanding of RIS

methods. Relaxing the assumption that πb ∈ Π or analyzing

the case when πb 6∈ Π is also an important next step for

bridging the gap between our presented theory and the use

of RIS in settings where the policy class of πb is unknown.

In this paper we focused on batch policy evaluation where

D is given and fixed. Studying RIS for online policy eval-

uation setting is an interesting direction for future work.

Finally, incorporating RIS into policy improvement meth-

ods is an interesting direction for future work. In work

parallel to our own, two of the authors (Hanna & Stone,

2019) explored using an estimated behavior policy to lower

sampling error in on-policy policy gradient learning. How-

ever, our approach in that paper only focuses on reducing

variance in the one-step action selection while RIS could

lower variance in the full return estimation.

8. Conclusion

We have studied a class of off-policy evaluation importance

sampling methods, called regression importance sampling

methods, that apply importance sampling after first estimat-

ing the behavior policy that generated the data. Notably,

RIS estimates the behavior policy from the same set of data

that is also used for the IS estimate. Computing the behav-

ior policy estimate and IS estimate from the same set of

data allows RIS to correct for the sampling error inherent to

importance sampling with the true behavior policy. We eval-

uated RIS across several policy evaluation tasks and show

that it improves over ordinary importance sampling – that

uses the true behavior policy – in several off-policy policy

evaluation tasks. Finally, we showed that, as the sample size

grows, it can be beneficial to ignore knowledge that the true

behavior policy is Markovian.
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A. Regression Importance Sampling is Consistent

In this appendix we show that the regression importance sampling (RIS) estimator is a consistent estimator of v(πe)
under two assumptions. The main intuition for this proof is that RIS is performing policy search on an estimate of the

log-likelihood, L̂(π|D), as a surrogate objective for the true log-likelihood, L(π). Since πb has generated our data, πb is

the optimal solution to this policy search. As long as, for all π, L̂(π|D) is a consistent estimator of L(π) then selecting

πD = argmax
π

L̂(π|D) will converge probabilistically to πb and the RIS estimator will be the same as the OIS estimator

which is a consistent estimator of v(πe). If the set of policies we search over, Π, is countable then this argument is almost

enough to show RIS to be consistent. The difficulty (as we explain below) arises when Π is not countable.

Our proof takes inspiration from Thomas and Brunskill who show that their Magical Policy Search algorithm converges to

the optimal policy by maximizing a surrogate estimate of policy value (2016b). They show that performing policy search on

a policy value estimate, v̂(π), will almost surely return the policy that maximizes v(π) if v̂(π) is a consistent estimator of

v(π). The proof is almost identical; the notable difference is substituting the log-likelihood, L(π), and a consistent estimator

of the log-likelihood, L̂(π|D), in place of v(π) and v̂(π).

A.1. Definitions and Assumptions

Let (Ω,F , µ) be a probability space and Dm : Ω → D be a random variable. Dm(ω) is a sample of m trajectories with

ω ∈ Ω. Let dπb
be the distribution of states under πb. Define the expected log-likelihood:

L(π) = E [log π(A|S)|S ∼ dπb
, A ∼ πb]

and its sample estimate from samples in Dm(ω):

L̂(π|Dm(ω)) =
1

mL

∑

H∈Dm(ω)

L−1∑

t=0

log π(AH
t |SH

t ).

where SH
t and AH

t are the random variables representing the state and action that occur at time-step t of trajectory H .

Assuming for all s, a the variance of log π(a|s) is bounded, L̂(π|Dm(ω)) is a consistent estimator of L(π). We make this

assumption explicit:

Assumption 1. (Consistent Estimation of Log likelihood). For all π ∈ Π, L̂(π|Dm(ω))
a.s.
−−→ L(π).

This assumption will hold when the support of πb is a subset of the support of π for all π ∈ Π, i.e., no π ∈ Π places zero

probability measure on an action that πb might take. We can ensure this assumption is satisfied by only considering π ∈ Π
that place non-zero probability on any action that πb has taken.

We also make an additional assumption about the piece-wise continuity of the log-likelihood, L, and the estimate of the

log-likelihood, L̂. First we present two necessary definitions as given by Thomas and Brunskill (2016b):

Definition 1. (Piecewise Lipschitz continuity). We say that a function f : M → R on a metric space (M,d) is piecewise

Lipschitz continuous with respect to Lipschitz constant K and with respect to a countable partition, {M1,M2, ...} if f is

Lipschitz continuous with Lipschitz constant K on all metric spaces in {(Mi, di)}
∞
i=1.

Definition 2. (δ-covering). If (M,d) is a metric space, a set X ⊂ M is a δ-covering of (M,d) if and only if

maxy∈M minx∈X d(x, y) ≤ δ.

We now present our final assumption:

Assumption 2. (Piecewise Lipschitz objectives). Our policy class, Π, is equipped with a metric, dΠ, such that for all

Dm(ω) there exist countable partition of Π, ΠL := {ΠL
1 ,Π

L
2 , ...} and ΠL̂ := {ΠL̂

1 ,Π
L̂
2 , ...}, where L and L̂(·|Dm(ω)) are

piecewise Lipschitz continuous with respect to ΠL and ΠL̂ with Lipschitz constants K and K̂ respectively. Furthermore, for

all i ∈ N>0 and all δ > 0 there exist countable δ-covers of ΠL
i and ΠL̂

i .

As pointed out by Thomas and Brunskill, this assumption holds for the most commonly considered policy classes but is also

general enough to hold for other settings (see Thomas and Brunskill (2016b) for further discussion of Assumptions 1 and 2

and the related definitions).



Importance Sampling Policy Evaluation with an Estimated Behavior Policy

A.2. Consistency Proof

Note that:

πb = argmax
π∈Π

L(π)

πD = argmax
π∈Π

L̂(π|Dm(ω)).

Define the KL-divergence (DKL)) between πb and πD in state s as: δKL(s) = DKL(πb(·|s), πD(·|s)).

Lemma 1. If Assumptions 1 and 2 hold then Edπb
[δKL(s)]

a.s.
−−→ 0.

Proof. Define ∆(π, ω) = |L̂(π|Dm(ω))− L(π)|. From Assumption 1 and one definition of almost sure convergence, for

all π ∈ Π and for all ε > 0:

Pr
(
lim inf
m→∞

{ω ∈ Ω : ∆(π, ω) < ε}
)
= 1. (3)

Thomas and Brunskill point out that because Π may not be countable, (3) may not hold at the same time for all π ∈ Π. More

precisely, it does not immediately follow that for all ε > 0:

Pr
(
lim inf
m→∞

{ω ∈ Ω : ∀π ∈ Π,∆(π, ω) < ε}
)
= 1. (4)

Let C(δ) denote the union of all of the policies in the δ-covers of the countable partitions of Π assumed to exist by

Assumption 2. Since the partitions are countable and the δ-covers for each region are assumed to be countable, we have that

C(δ) is countable for all δ. Thus, for all π ∈ C(δ), (3) holds simulatenously. More precisely, for all δ > 0 and for all ε > 0:

Pr
(
lim inf
m→∞

{ω ∈ Ω : ∀π ∈ C(δ),∆(π, ω) < ε}
)
= 1. (5)

Consider a π 6∈ C(δ). By the definition of a δ-cover and Assumption 2, we have that ∃π′ ∈ ΠL
i , d(π, π

′) ≤ δ. Since

Assumption 2 requires L to be Lipschitz continuous on ΠL
i , we have that |L(π)−L(π′)| ≤ Kδ. Similarly |L̂(π|Dm(ω))−

L̂(π′|Dm(ω))| ≤ K̂δ. So, |L̂(π|Dm(ω))−L(π)| ≤ |L̂(π|Dm(ω))−L(π′)|+Kδ ≤ |L̂(π′|Dm(ω))−L(π′)|+(K̂+K)δ.

Then it follows that for all δ > 0:

(∀π ∈ C(δ),∆(π, ω) ≤ ε) →
(
∀π ∈ Π,∆(π, ω) < ε+ (K + K̂)δ

)
.

Substituting this into (5) we have that for all δ > 0 and for all ε > 0:

Pr
(
lim inf
m→∞

{ω ∈ Ω : ∀π ∈ Π,∆(π, ω) < ε+ (K + K̂)δ}
)
= 1

The next part of the proof massages (5) into a statement of the same form as (4). Consider the choice of δ := ε/(K + K̂).
Define ε′ = 2ε. Then for all ε′ > 0:

Pr
(
lim inf
m→∞

{ω ∈ Ω : ∀π ∈ Π,∆(π, ω) < ε′}
)
= 1 (6)

Since ∀π ∈ Π,∆(π, ω) < ε′, we obtain:

∆(πb, ω) < ε′ (7)

∆(πD, ω) < ε′ (8)
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and then applying the definition of ∆

L(πD)
(a)

≤L(πb) (9)

(b)
<L̂(πb|Dm(ω)) + ε′ (10)

(c)

≤L̂(πD|Dm(ω)) + ε′ (11)

(d)

≤L(πD) + 2ε′ (12)

where (a) comes from the fact that πb maximizes L, (b) comes from (7), (c) comes from the fact that πD maximizes

L̂(·|Dm(ω)), and (d) comes from (8). Considering (9) and (12), it follows that |L(πD)− L(πb)| < 2ε′. Thus, (6) implies

that:

∀ε′ > 0,Pr
(
lim inf
m→∞

{ω ∈ Ω : |L(πD)− L(πb)| < 2ε′}
)
= 1

Using ε′′ := 2ε′ we obtain:

∀ε′′ > 0,Pr
(
lim inf
m→∞

{ω ∈ Ω : |L(πD)− L(πb)| < ε′′}
)
= 1

From the definition of the KL-Divergence,

L(πD)− L(πb) = Edπb
[δKL(s)]

and we obtain that:

∀ε > 0,Pr
(
lim inf
n→∞

{ω ∈ Ω : | −Edπb
[δKL(s)]| < ε}

)
= 1

And finally, since the KL-Divergence is non-negative:

∀ε > 0,Pr
(
lim inf
m→∞

{ω ∈ Ω : Edπb
[δKL(s)]| < ε}

)
= 1,

which, by the definition of almost sure convergence, means that Edπb
[δKL(s)]

a.s.
−−→ 0.

Proposition 1. If Assumptions 1 and 2 hold, then RIS(n) is a consistent estimator of v(πe): RIS(n)(πe,D)
a.s.
−−→ v(πe).

Proof. Lemma 1 shows that as the amount of data increases, the behavior policy estimated by RIS will almost surely

converge to the true behavior policy. Almost sure convergence to the true behavior policy means that RIS almost surely

converges to the ordinary OIS estimate. Since OIS is a consistent estimator of v(πe), RIS is also a consistent estimator of

v(πe).

B. Asymptotic Variance Proof

In this appendix we prove that, ∀n, RIS(n) has asymptotic variance at most that of OIS. We give this result as a corollary to

Theorem 1 of Henmi et al. (2007) that holds for general Monte Carlo integration. Note that while we define distributions as

probability mass functions, this result can be applied to continuous-valued state and action spaces by replacing probability

mass functions with density functions.

Corollary 1. Let Πn
θ

be a class of twice differentiable policies, πθ(·|st−n, at−n, . . . , st). If ∃θ̃ such that π
θ̃
∈ Πn

θ
and

π
θ̃
= πb then

VarA(RIS(n)(πe,D)) ≤ VarA(IS(πe,D, πb))

where VarA denotes the asymptotic variance.
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Corollary 1 states that the asymptotic variance of RIS(n) must be at least as low as that of OIS.

We first present Theorem 1 from Henmi et al. (2007) and adopt their notation for its presentation. Consider estimating

v = Ep [f(x)] for probability mass function p and real-valued function f . Given parameterized and twice differentiable

probability mass function q(·|θ̃), we define the ordinary importance sampling estimator of v as ṽ = 1
m

∑m
i=1

p(xi)

q(xi,θ̃)
f(xi).

Similarly, define v̂ = 1
m

∑m
i=1

p(xi)

q(xi,θ̂)
f(xi) where θ̂ is the maximum likelihood estimate of θ̃ given the m samples from

q(·|θ̃). The following theorem relates the asymptotic variance of v̂ to that of ṽ.

Theorem 1.

VarA(v̂) ≤ VarA(ṽ)

where VarA denotes the asymptotic variance.

Proof. See Theorem 1 of Henmi et al. (2007).

Theorem 1 shows that the maximum likelihood estimated parameters of the sampling distribution yield an asymptotically

lower variance estimate than using the true parameters, θ̃. To specialize this theorem to our setting, we show that

the maximum likelihood behavior policy parameters are also the maximum likelihood parameters for the trajectory

distribution of the behavior policy. First specify the class of sampling distribution: Pr(h;θ) = p(h)wθ(h) where p(h) =

d0(s0)
∏L−1

t=1 P (st|st−1, at−1) and wθ(h) =
∏L−1

t=0 πθ(at|st−n, at−n, . . . , st). We now present the following lemma:

Lemma 2.

argmax
θ

∑

h∈D

L−1∑

t=0

log πθ(at|st−n, at−n, . . . , st) = argmax
θ

∑

h∈D

log Pr(h;θ)

Proof.

argmax
θ

∑

h∈D

L−1∑

t=0

log πθ(at|st−n, at−n, . . . , st)

= argmax
θ

∑

h∈D

L−1∑

t=0

log πθ(at|st−n, at−n, . . . , st) + log d(s0) +

L−1∑

t=1

logP (st|st−1, at−1)

︸ ︷︷ ︸
const w.r.t. θ

=argmax
θ

∑

h∈D

logwθ(h) + log p(h)

θ =argmax
θ

∑

h∈D

log Pr(h; θ)

Finally, we combine Lemma 2 with Theorem 1 to prove Corollary 1:

Corollary 1. Let Πn
θ

be a class of policies, πθ(·|st−n, at−n, . . . , st) that are twice differentiable with respect to θ. If

∃θ ∈ Πn
θ

such that πθ = πb then

VarA(RIS(n)(πe,D)) ≤ VarA(IS(πe,D, πb))

where VarA denotes the asymptotic variance.

Proof. Define f(h) = g(h), p(h) = Pr(h|πe) and q(h|θ) = Pr(h|πθ). Lemma 2 implies that:

θ̂ = argmax
θ∈Πθ

∑

h∈D

L∑

t=0

log πθ(at|st)

is the maximum likelihood estimate of θ̃ (where π
θ̃
= πb and Pr(h|θ̃) is the probability of h under πb) and then Corollary 1

follows directly from Theorem 1.
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Note that for RIS(n) with n > 0, the condition that π
θ̃
∈ Πn can hold even if the distribution of At ∼ π

θ̃
(i.e., At ∼ πb) is

only conditioned on st. This condition holds when ∃πθ ∈ Πn such that ∀st−n, at−n, . . . at−1:

π
θ̃
(at|st) = πθ(at|st−n, at−n, . . . , st),

i.e., the action probabilities only vary with respect to st.

C. Connection to the REG estimator

In this appendix we show that RIS(L − 1) is an approximation of the REG estimator studied by Li et al. (2015). This

connection is notable because Li et al. showed REG is asymptotically minimax optimal, however, in MDPs, REG requires

knowledge of the environment’s transition and initial state distribution probabilities while RIS(L− 1) does not. For this

discussion, we recall the definition of the probability of a trajectory for a given MDP and policy:

Pr(h|π) = d0(s0)π(a0|s0)P (s1|s0, a0) · · ·P (sL−1|sL−2, aL−2)π(aL−1|sL−1).

We also define H to be the set of all state-action trajectories possible under πb of length L: s0, a0, ...sL−1, aL−1.

Li et al. introduce the regression estimator (REG) for multi-armed bandit problems (2015). This method estimates the mean

reward for each action as r̂(a,D) and then computes the REG estimate as:

REG(πe,D) =
∑

a∈A

πe(a)r̂(a,D).

This estimator is identical to RIS(0) in multi-armed bandit problems (Li et al., 2015). The extension of REG to finite horizon

MDPs estimates the mean return for each trajectory as ĝ(h,D) and then computes the estimate:

REG(πe,D) =
∑

h∈H

Pr(h|πe)ĝ(h,D).

Since this estimate uses Pr(h|πe) it requires knowledge of the initial state distribution, d0, and transition probabilities, P .

We now elucidate a relationship between RIS(L−1) and REG even though they are different estimators. Let c(h) denote the

number of times that trajectory h appears in D. We can rewrite REG as an importance sampling method with a count-based

estimate of the probability of a trajectory in the denominator:

REG(πe,D) =
∑

h∈H

Pr(h|πe)ĝ(h,D) (13)

=
1

m

∑

h∈H

c(h)
Pr(h|πe)

c(h)/m
ĝ(h,D) (14)

=
1

m

m∑

i=1

Pr(hi|πe)

c(hi)/m
g(hi) (15)

The denominator in (15) can be re-written as a telescoping product to obtain an estimator that is similar to RIS(L− 1):

REG(πe,D) =
1

m

m∑

i=1

Pr(hi|πe)

c(hi)/m
g(hi)

=
1

m

m∑

i=1

Pr(hi|πe)
c(s0)
m

c(s0,a0)
c(s0)

· · · c(hi)
c(hi/aL−1)

g(hi)

=
1

m

m∑

i=1

d0(s0)πe(a0|s0)P (s1|s0, a0) · · ·P (sL−1|sL−2, aL−2)πe(aL−1|sL−1)

d̂(s0)πD(a0|s0)P̂ (s1|s0, a0) · · · P̂ (sL−1|h0:L−1)πD(aL−1|hi:j)
g(hi).

This expression differs from RIS(L− 1) in two ways:

1. The numerator includes the initial state distribution and transition probabilities of the environment.
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2. The denominator includes count-based estimates of the initial state distribution and transition probabilities of the

environment where the transition probabilities are conditioned on all past states and actions.

If we assume that the empirical estimates of the environment probabilities in the denominator are equal to the true

environment probabilities then these factors cancel and we obtain the RIS(L− 1) estimate. This assumption will almost

always be false except in deterministic environments. However, showing that RIS(L− 1) is approximating REG suggests

that RIS(L− 1) may have similar theoretical properties to those elucidated for REG by Li et al. (2015). Our SinglePath

experiment (See Figure 2 in the main text) supports this conjecture: RIS(L− 1) has high bias in the low to medium sample

size but have asymptotically lower MSE compared to other methods. REG has even higher bias in the low to medium

sample size range but has asymptotically lower MSE compared to RIS(L− 1). RIS with smaller n appear to decrease the

initial bias but have larger MSE as the sample size grows. The asymptotic benefit of RIS for all n is also corroborated

by Corollary 1 in Appendix B though Corollary 1 does not tell us anything about how different RIS methods compare

asymptotically. The asymptotic benefit of REG compared to RIS methods can be understood as REG correcting for

sampling error in both the action selection and state transitions.

D. Sampling Error with Continuous Actions

In Section 3 of the main text we discussed how ordinary importance sampling can suffer from sampling error. Then, in

Section 4, we presented an example showing how RIS corrects for sampling error in D in deterministic and finite MDPs.

Most of this discussion assumed that the state and action spaces of the MDP were finite. Here, we discuss sampling error in

continuous action spaces. The primary purpose of this discussion is intuition and we limit discussion to a setting that can be

easily visualized. We consider a deterministic MDP with scalar, real-valued actions, reward R : A → R, and L = 1.

We assume the support of πb and πe is bounded and for simplicity assume the support to be [0, 1]. Policy evaluation is

equivalent to estimating the integral:

v(πe) =

∫ 1

0

R(a)πe(a)da (16)

and the ordinary importance sampling estimate of this quantity with m samples from πb is:

1

m

m∑

i=1

πe(ai)

πb(ai)
R(ai). (17)

Even though the OIS estimate is a sum over a finite number of samples, we show it is exactly equal to an integral over a

particular piece-wise function. We assume (w.l.o.g) that the ai’s are in non-decreasing order, (a0 <= ai <= am). Imagine

that we place the R(ai) values uniformly across the interval [0, 1] so that they divide the range [0, 1] into m equal bins. In

other words, we maintain the relative ordering of the action samples but ignore the spatial relationship between samples.

We now define piece-wise constant function R̄OIS where R̄OIS(a) = R(ai) if a is in the ith bin. The ordinary importance

sampling estimate is exactly equal to the integral
∫ 1

0
R̄OIS(a)da.

It would be reasonable to assume that R̄OIS(a) is approximating R(a)πe(a) since the ordinary importance sampling estimate

(17) is approximating (16), i.e., lim
m→∞

R̄OIS(a) = R(a)πe(a). In reality, R̄OIS approaches a stretched version of R where

areas with high density under πe are stretched and areas with low density are contracted. We call this stretched version of R,

R̄?. The integral of
∫ 1

0
R̄?(a)da is v(πe).

Figure 7(a) gives a visualization of an example R̄? using on-policy Monte Carlo sampling from an example πe and linear R.

In contrast to the true R̄?, the OIS approximation to R̄, R̄OIS stretches ranges of R according to the number of samples in

that range: ranges with many samples are stretched and ranges without many samples are contracted. As the sample size

grows, any range of R will be stretched in proportion to the probability of getting a sample in that range. For example, if

the probability of drawing a sample from [a, b] is 0.5 then R̄? stretches R on [a, b] to cover half the range [0, 1]. Figure 7

visualizes R̄OIS the OIS approximation to R̄? for sample sizes of 10 and 200.

In this analysis, sampling error corresponds to over-stretching or under-stretching R in any given range. The limitation of

ordinary importance sampling can then be expressed as follows: given πe, we know the correct amount of stretching for any

range and yet OIS ignores this information and stretches based on the empirical proportion of samples in a particular range.

On the other hand, RIS first divides by the empirical pdf (approximately undoing the stretching from sampling) and then





Importance Sampling Policy Evaluation with an Estimated Behavior Policy

as both behavior and evaluation policy. RIS estimates the behavior policy with the empirical frequency of actions in each

state. This domain allows us to study RIS separately from questions of function approximation.

Linear Dynamical System This domain is a point-mass agent moving towards a goal in a two dimensional world by

setting x and y acceleration. The state-space is the agent’s x and y position and velocity. The agent acts for L = 20 time-

steps under linear-gaussian dynamics and receives a reward that is proportional to its distance from the goal. Specifically, if

st is the agent’s state vector and it takes action at, then the resulting next state is:

st+1 = A · st +B · at + εt

where εt ∼ N (0, I), A is the identity matrix, and

B =




0.5 0
0 0.5
1 0
0 1


 .

The agent’s policy is a linear map from state features to the mean of a Gaussian distribution over actions. For the state

features, we use second order polynomial basis functions so that policies are non-linear in the state features but we can still

estimate πD efficiently with ordinary least squares. We obtain a basic policy by optimizing the linear weights of this policy

for 10 iterations of the Cross-Entropy method (Rubinstein & Kroese, 2013). The evaluation policy uses a standard deviation

of 0.5 and the true πb uses a standard deviation of 0.6.

Continuous Control We also use two continuous control tasks from the OpenAI gym: Hopper and HalfCheetah.6 The

state and action dimensions of each task are shown in Table 1. In each task, we use neural network policies with 2 layers of

Environment State Dimension Action Dimension

Hopper 15 3

Half Cheetah 26 6

Table 1: State and action dimension for each OpenAI Roboschool environment.

64 hidden units each for πe and πb. Each policy maps the state to the mean of a Gaussian distribution with state-independent

standard deviation. We obtain πe and πb by running the OpenAI Baselines (Dhariwal et al., 2017) version of proximal policy

optimization (PPO) (Schulman et al., 2017) and then selecting two policies along the learning curve. For both environments,

we use the policy after 30 updates for πe and after 20 updates for πb. These policies use tanh activations on their hidden

units since these are the default in the OpenAI Baselines PPO implementation.

RIS estimates the behavior policy with gradient descent on the negative log-likelihood of the neural network. Specifically,

we interpret the neural network outputs, µ(s), as the mean of a multi-variate Gaussian distribution with diagonal covariance

matrix. We use a state-independent parameter vector, σ, to represent the log-standard deviation of the Gaussian distribution.

Given m, state-action pairs, RIS uses the loss function:

L =

m∑

i=1

0.5((ai − µ(si))/e
σ)2 + σ

Minimizing L is equivalent to minimizing a squared-error loss function with regards to estimating µ.

In our experiments we use a learning rate of 1× 10−3 and L2-regularization with a weight of 0.02. The multi-layer behavior

policies learned by RIS use relu activations. The specific architectures considered for πD have either 0, 1, 2, or 3 hidden

layers with 64 units in each hidden layer.

In these domains we only consider a batch size of 400 trajectories for estimating πD and computing the policy value estimate.

For determining early stopping and measuring validation error we use a separate batch of 80 trajectories (20% of the policy

evaluation data).

6For these tasks we use the Roboschool versions: https://github.com/openai/roboschool






