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Abstract

The Multi-Agent Pathfinding (MAPF) problem is the funda-
mental problem of planning paths for multiple agents, where
the key constraint is that the agents will be able to follow
these paths concurrently without colliding with each other.
Applications of MAPF include automated warehouses and
autonomous vehicles. Research on MAPF has been flourish-
ing in the past couple of years. Different MAPF research pa-
pers make different assumptions, e.g., whether agents can tra-
verse the same road at the same time, and have different ob-
jective functions, e.g., minimize makespan or sum of agents’
actions costs. These assumptions and objectives are some-
times implicitly assumed or described informally. This makes
it difficult to establish appropriate baselines for comparison in
research papers, as well as making it difficult for practitioners
to find the papers relevant to their concrete application. This
paper aims to fill this gap and support researchers and prac-
titioners by providing a unifying terminology for describing
common MAPF assumptions and objectives. In addition, we
also provide pointers to two MAPF benchmarks. In partic-
ular, we introduce a new grid-based benchmark for MAPF,
and demonstrate experimentally that it poses a challenge to
contemporary MAPF algorithms.

1 Introduction
MAPF is an important type of multi-agent planning prob-
lem in which the task is to plan paths for multiple agents,
where the key constraint is that the agents will be able to
follow these paths concurrently without colliding with each
other. MAPF has a range of relevant contemporary appli-
cations including automated warehouses, autonomous vehi-
cles, and robotics. Consequently, this problem has received
attention in recent years from various research groups and
academic communities (Standley 2010; Felner et al. 2017;

Surynek et al. 2016; Barták, Švancara, and Vlk 2018; Cohen
et al. 2018a; Li et al. 2019; Ma et al. 2019a).

Different MAPF research papers consider different sets
of assumptions about the agents and aim for different ob-
jectives. These assumptions and objectives are sometimes
implicitly assumed or described informally. Even in cases
where the assumptions and objective function are described
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formally, there are still differences in used MAPF terminol-
ogy. This makes it difficult to navigate through and under-
stand existing literature and to establish appropriate base-
lines for comparison. In addition, it makes it difficult for
practitioners to find papers relevant to their concrete appli-
cation.

This paper aims to address this growing challenge by in-
troducing a unified terminology to describe MAPF prob-
lems, and by establishing common benchmarks and eval-
uation measures for evaluating MAPF algorithms. The uni-
fied MAPF terminology we present in this paper is our at-
tempt to classify the currently studied MAPF variants. We
hope this terminology will serve as a common ground for
future researchers, and will be used by them to describe their
contributions succinctly and accurately.

In the second part of this paper, we introduce a new grid
MAPF benchmark to the community. This benchmark in-
cludes a diverse set of maps, as well as generated source
and target vertices. We report the performance of a stan-
dard MAPF algorithm on this benchmark, to serve as base-
line for comparison to future research. This benchmark is
intended to help future researchers and enable more scien-
tifically rigorous empirical comparisons of existing and fu-
ture MAPF algorithms. We do not claim that these bench-
marks are perfect, as they may have some biases. But,
through their use and study these biases can be discovered
and corrected. It is also important to emphasize that this
document is not intended to be a survey of state of the art
MAPF algorithms. For such a survey, see (Felner et al. 2017;
Ma and Koenig 2017). In addition, the newly created website
http://mapf.info contains MAPF-related tutorials and other
resources.

2 Classical MAPF

We first describe what we refer to as a classical MAPF prob-
lem. The input to a classical MAPF problem with k agents is
a tuple 〈G, s, t〉 where G = (V,E) is an undirected graph,
s : [1, . . . , k] → V maps an agent to a source vertex, and
t : [1, . . . , k] → V maps an agent to a target vertex. Time
is assumed to be discretized, and in every time step each
agent is situated in one of the graph vertices and can per-
form a single action. An action in classical MAPF is a func-





• Disappear at target Under this assumption, when an
agent reaches its target it immediately disappears. This
means the plan of that agent will not have any conflict
after the time step in which the corresponding agent has
reached its target.

Most prior work on classical MAPF assumed stay-at-target,
but recent work also considered the disappear-at-target as-
sumption (Ma et al. 2019a).

2.3 Objective Functions in Classical MAPF

It is safe to say that in most real applications of MAPF, some
MAPF solutions are better than others. To capture that, work
in classical MAPF considers an objective function that is
used to evaluate MAPF solutions. The two most common
functions used for evaluating a solution in classical MAPF
are makespan and sum of costs.

• Makespan. The number of time steps required for
all agents to reach their target. For a MAPF solution
π = {π1, . . . πk}, the makespan of π is defined as
max1≤i≤k |πi|.

• Sum of costs. The sum of time steps required by each
agent to reach its target. The sum of costs of π is defined
as

∑
1≤i≤k

|πi|. Sum of costs is also known as flowtime.

If the agent-at-target behavior is stay at target and the ob-
jective function is sum of costs, then one needs to specify
how staying at a target affects the sum of costs. For exam-
ple, one can define that, if an agent waits at its target, then it
does not increase the sum of costs. The common assumption
in most prior work is that an agent staying in its target counts
as a wait action unless it is not planning to move away from
its target again. For example, assume that agent i reaches its
target at time step t, leaves its target at time step t′, arrives
back at its target at time step t′′, and then stays at its tar-
get until all agents reach their target. Then, this single-agent
plan will contribute t′′ to the sum of costs of the correspond-
ing solution.

We do not claim that these are the only possible objective
functions for classical MAPF. One may define other objec-
tive functions, such as the total non-waiting actions required
to reach the target (some refer to this as the sum-of-fuel),
and total time spent by the agent not in the target. However,
to the best of our knowledge, the above objective functions
are the only ones used in prior work on classical MAPF.
Makespan has been used extensively by compilation-based
MAPF algorithms, while sum of costs has been used by most
search-based MAPF algorithms. But, there has also been
work on both objective functions by both types of MAPF
algorithms (Surynek et al. 2016). There has also been work
on maximizing the number of agents reaching their targets
within a given makespan (i.e., deadline) (Ma et al. 2018).

3 Beyond Classical MAPF
All the above classical MAPF variants share the following
assumptions: (1) time is discretized into time steps, (2) every
action takes exactly one time step, and (3) in every time step,
each agent occupies exactly a single vertex.

Next, we briefly list several MAPF variants that relax
these assumptions.

Figure 2: 2k Neighborhood movement models for k = 2,3,4 and 5.

3.1 MAPF on Weighted Graphs

The assumption that each action – move or wait – takes
exactly one time step, implicitly assumes a somewhat sim-
plistic motion model for the agents. More complex motion
models have been studied in the MAPF literature, in which
different actions may have different duration. This means
the underlying graph that represents the possible locations
agents may occupy (denoted G earlier) is now a weighted
graph, where the weight of each edge represents the dura-
tion it will take an agent to traverse this edge.2

Bartak et al. (2018) proposed a scheduling-based ap-
proach for MAPF on weighted graphs, and Walker et
al. (2018) proposed a variant of the Increasing Cost Tree
Search (ICTS) algorithm. Yakovlev and Andreychuk (2017)
proposed a hybrid of the SIPP algorithm (Phillips and
Likhachev 2011) and prioritized planning for weighted
graphs.

The types of weighted graphs that have been used in
MAPF reseach so far include:

• MAPF in 2k-neighbor grids.3 Such maps are a restricted
form of weighted graphs in which every vertex represents
a cell in a two-dimensional grid. The move actions of an
agent in a cell are all its 2k neighboring cells, where k is a
parameter. Costs are based on Euclidean distance, there-
fore when k > 2, this introduces actions with different
costs. For example, in an 8-neighbor grid a diagonal move

costs
√
2 while a move in one of the cardinal directions

costs 1. Figure 2 shows the possible move actions in 2k-
neighbor grids for k = 2, 3, 4, and 5.

• MAPF in Euclidean space. MAPF in Euclidean space
is a generalization of MAPF in which every node in G
represents a Euclidean point (x, y), and the edges repre-
sent allowed move actions. Such settings arise, for exam-
ple, when the underlying graph is a roadmap generated
for a continuous Euclidean environment (Khatib 1986;
Wagner, Kang, and Choset 2012).

3.2 Feasibility Rules

The definition of a valid solution used in classical MAPF –
no conflicts – is just one type of solution requirement. We
use the term feasibility rule to refer to a requirement over

2One can also differentiate between the time it takes to traverse
an edge and the cost it incurs. E.g., it may take one time step to
traverse an edge but it may cost more, for example, energy.

3Such grids are also referred to as 2k-connected grids.



a MAPF solution. Other MAPF feasibility rules have been
suggested.

• Robustness rules. These are rules designed to ensure that
a MAPF solution considers inadvertent delays in execu-
tion. A k-robust MAPF plan builds in a sufficient buffer
for agents to be delayed up to k time steps without result-
ing in a conflict (Atzmon et al. 2018). When the probabil-
ity of future delays is known, robustness rules can require
that the probability an agent will conflict during execution
is lower than a given bound (Wagner and Choset 2017)
or be combined with execution policies to guarantee a
conflict-free execution (Ma, Kumar, and Koenig 2017).

• Formation rules. These are restrictions over the allowed
move actions of an agent that depend on the location of
the other agents but are not related to collisions. For ex-
ample, restrictions intended for the agents to maintain a
specified formation (Barel, Manor, and Bruckstein 2017),
or to maintain a communication link with a set of neigh-
boring agents (Stump et al. 2011; Gilboa, Meisels, and
Felner 2006).

3.3 From Pathfinding to Motion Planning

In classical MAPF, agents are assumed to occupy exactly
one vertex, in a sense having no volume, no shape, and move
at constant speed. By contrast, motion planning algorithms
directly consider these properties. There, an agent is situated
at each time step in a configuration instead of only a vertex,
where a configuration specifies the agent’s location, orienta-
tion, velocity, etc, and an edge between configurations repre-
sents kinematic motion. Several notable MAPF variants are
steps towards closing this gap between classical MAPF and
motion planning.

MAPF with large agents. Some MAPF research con-
sidered agents with a specific geometric shape and vol-
ume (Li et al. 2019; Walker, Sturtevant, and Felner 2018;
Yakovlev and Andreychuk 2017; Thomas, Deodhare, and
Murty 2015). The fact that agents have volume raises ques-
tions about how they are situated in the underlying graph G
and how they move in it. In particular, if an agent is located
in one vertex, it may prohibit other agents from occupying
nearby vertices. Similarly, if an agent moves along an edge
it may prohibit other agents from moving along intersecting
edges or staying at vertices that are too close to the edge.
This may introduce new types of conflicts, such as vertex-
to-vertex, edge-to-edge, and edge-to-vertex conflicts (Hönig
et al. 2018).

Several approaches for solving MAPF with large agents
have appeared in the literature, including a CBS-based ap-
proach (Li et al. 2019), an ICTS-based approach (Walker,
Sturtevant, and Felner 2018), and a prioritized planning ap-
proach (Yakovlev and Andreychuk 2017). A special case
of agents with volume is the convoy setting, in which
agents occupy a string of vertices and their connecting edges
(Thomas, Deodhare, and Murty 2015).

MAPF with kinematic constraints. Other MAPF re-
search considered kinematic constraints over agents’ move
actions (Hönig et al. 2017; Walker, Chan, and Sturtevant

2017). That is, the move actions an agent can perform de-
pend not only on its current location, but also on state param-
eters such as velocity and orientation. A by-product of such
constraints is that the underlying graph becomes directed, as
there may be edges that can only be passable in one direction
due to kinematic constraints of the agent. MAPF-POST, as
an example, is a MAPF algorithm that considers these kine-
matic constraints by post-processing a solution created by a
MAPF algorithm. There is also a reduction-based approach
that assumes rotation actions as a half way to kinematic con-
straints (Barták et al. 2018).

3.4 Tasks and Agents

In classical MAPF, each agent has one task - to get it to
its target. Several extensions have been made in the MAPF
literature in which agents may be assigned more than one
target.

Anonymous MAPF. In this MAPF variant, the objective
is to move the agents to a set of target vertices, but it does
not matter which agent reaches which target (Kloder and
Hutchinson 2006; Yu and LaValle 2013). Another way to
view this MAPF variant is as a MAPF problem in which ev-
ery agent can be assigned to any target, but it has to be a
one-to-one mapping between agents and targets.

Colored MAPF. This MAPF variant is a generalization of
anonymous MAPF in which agents are grouped into teams,
and every team has a set of targets. The objective is to move
the agents in each team to their targets (Ma and Koenig
2016; Solovey and Halperin 2014). Another way to view
this MAPF variant is as a MAPF problem in which every
agent can be assigned to targets only from the set of targets
designated for its team.

One can generalize colored MAPF even further, assigning
a target and an agent to multiple teams.

Online MAPF. In online MAPF, a sequence of MAPF
problems are solved on the same graph. This setting has also
been called “Lifelong MAPF” (Ma et al. 2017; 2019b). On-
line MAPF problems can be classified as follows.

• Warehouse model. This is the setting where a fixed set of
agents solve a MAPF problem, but after an agent finds a
target, it may be tasked to go to a different target (Ma et al.
2019b). This setting is inspired by MAPF for autonomous
warehouses.

• Intersection model. This is the setting where new agents
may appear, and each agent has one task – to reach

its target (Švancara et al. 2019). This setting is inspired
by autonomous vehicles entering and exiting intersec-
tions (Dresner and Stone 2008).

Of course, hybrid models in which an agent can receive a
new task when it reaches its target and new agents can ap-
pear over time is also possible.

4 Benchmarks

In this section, we describe how classical MAPF algorithms
have been evaluated, suggest an organized benchmark for
this purpose, and point to other relevant benchmark suites.







5 Conclusion
In the first part of this paper, we defined common assump-
tions in the “classical” Multi-Agent Pathfinding (MAPF)
problem and discuss the relationships between them. Then,
we defined notable extensions to classical MAPF that were
previously published. In the second part of this paper, we
introduced a new suite of MAPF benchmark problems and
point to another set of MAPF benchmark problems. Both
parts of this paper are intended to propose a common lan-
guage, terminology, and experimental setting for MAPF re-
search. It is our hope that future MAPF researchers will fol-
low our terminology and find these benchmarks useful.
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